Articoli di riviste sul tema "Genetic screening"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Genetic screening.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Genetic screening".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Elias, Sherman, e George J. Annas. "Generic Consent for Genetic Screening". New England Journal of Medicine 330, n. 22 (2 giugno 1994): 1611–13. http://dx.doi.org/10.1056/nejm199406023302213.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Hasanova, Aytakin, e Lamiya Guliyeva. "GENETIC SCREENING". Likarska sprava, n. 1-2 (25 maggio 2021): 40–44. http://dx.doi.org/10.31640/jvd.1-2.2021(6).

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Human, as a species, is very variable, and his variability is at the basis of his social organization. This variability is maintained, in part, by the chance effects of gene assortment and the variation in these genes is the result of mutations in the past. If our remote ancestors had not mutated we would not he here; further, since no species is likely to he able to reduce its mutation rate substantially by the sort of selection to which it is exposed, we may regard mutations of recent origin as part of the price of having evolved. We are here: all of us have some imperfections we would wish not to have, and many of us are seriously incommoded by poor sight, hearing or thinking. Others among us suffer from some malformation due to faulty development. A few are formed lacking some essential substance necessary to metabolize a normal diet, to clot the blood, or to darken the back of the eye. We will all die and our deaths will normally be related to some variation in our immu­nological defences, in our ability to maintain our arteries free from occlusion, or in some other physiological aptitude. This massive variation, which is the consequence both of chance in the distribution of alleles and variety in the alleles themselves, imposes severe disabilities and handicaps on a substantial proportion of our population. The prospects of reducing this burden by artificial selection from counsel­ling or selective feticide will be considered and some numerical estimates made of its efficiency and efficacy.
3

Burke, W., B. Tarini, N. A. Press e J. P. Evans. "Genetic Screening". Epidemiologic Reviews 33, n. 1 (27 giugno 2011): 148–64. http://dx.doi.org/10.1093/epirev/mxr008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Clarke, Angus. "Genetic screening". Practice Nursing 7, n. 14 (settembre 1996): 32–34. http://dx.doi.org/10.12968/pnur.1996.7.14.9823.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Williams, Janet K. "Genetic Screening". Journal of Obstetric, Gynecologic & Neonatal Nursing 14, n. 5 (settembre 1985): 350. http://dx.doi.org/10.1111/j.1552-6909.1985.tb02081.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

McCarrick, Pat Milmoe. "Genetic Testing and Genetic Screening". Kennedy Institute of Ethics Journal 3, n. 3 (1993): 333–54. http://dx.doi.org/10.1353/ken.0.0251.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Sermon, Karen. "Preimplantation Genetic Screening". OBM Genetics 1, n. 4 (27 ottobre 2017): 1. http://dx.doi.org/10.21926/obm.genet.1704008.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Sermon, Karen. "Preimplantation Genetic Screening". OBM Genetics 1, n. 1 (27 ottobre 2017): 1. http://dx.doi.org/10.21926/obm.genet.1704009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Mastenbroek, S., M. Twisk, F. van der Veen e S. Repping. "Preimplantation genetic screening". Reproductive BioMedicine Online 17, n. 2 (gennaio 2008): 293. http://dx.doi.org/10.1016/s1472-6483(10)60209-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Harper, Joyce C. "Preimplantation genetic screening". Journal of Medical Screening 25, n. 1 (14 giugno 2017): 1–5. http://dx.doi.org/10.1177/0969141317691797.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Preimplantation genetic diagnosis was first successfully performed in 1989 as an alternative to prenatal diagnosis for couples at risk of transmitting a genetic or chromosomal abnormality, such as cystic fibrosis, to their child. From embryos generated in vitro, biopsied cells are genetically tested. From the mid-1990s, this technology has been employed as an embryo selection tool for patients undergoing in vitro fertilisation, screening as many chromosomes as possible, in the hope that selecting chromosomally normal embryos will lead to higher implantation and decreased miscarriage rates. This procedure, preimplantation genetic screening, was initially performed using fluorescent in situ hybridisation, but 11 randomised controlled trials of screening using this technique showed no improvement in in vitro fertilisation delivery rates. Progress in genetic testing has led to the introduction of array comparative genomic hybridisation, quantitative polymerase chain reaction, and next generation sequencing for preimplantation genetic screening, and three small randomised controlled trials of preimplantation genetic screening using these new techniques indicate a modest benefit. Other trials are still in progress but, regardless of their results, preimplantation genetic screening is now being offered globally. In the near future, it is likely that sequencing will be used to screen the full genetic code of the embryo.
11

Lalwani, Sasmira, Jeannine Witmyer, Nancy Gaba e David Frankfurter. "Preimplantation Genetic Screening". Postgraduate Obstetrics & Gynecology 35, n. 17 (settembre 2015): 1–5. http://dx.doi.org/10.1097/01.pgo.0000471712.79930.33.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Burgin, Karen B. "Prenatal Genetic Screening". Journal of Midwifery & Women's Health 53, n. 4 (8 luglio 2008): 391–92. http://dx.doi.org/10.1016/j.jmwh.2008.02.002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Kenner, Carole, e Stephanie Amlung. "Newborn Genetic Screening: Blessing or Curse?" Neonatal Network 18, n. 7 (ottobre 1999): 11–19. http://dx.doi.org/10.1891/0730-0832.18.7.11.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Newly discovered genes and advances in genetic screening programs prompt many questions reflecting the kinds of ethical dilemmas that go hand in hand with life-changing discoveries. Neonatal genetic screening has been a standard of care for some time, but as our knowledge in the field of genetics expands, should we continue with the same approach? What newborn genetic screening tests should be mandatory, and what are the long-range consequences associated with testing? This article reviews genetic modes of inheritance, outlines and explains the most common newborn screening tests, and enumerates the ethical issues associated with these screening procedures. The role of the neonatal nurse in the newborn genetic screening process is discussed.
14

Moore, Aideen M., e Julie Richer. "Genetic testing and screening in children". Paediatrics & Child Health 27, n. 4 (1 luglio 2022): 243–47. http://dx.doi.org/10.1093/pch/pxac028.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract Genetic testing has progressed rapidly over the past two decades and is becoming common in paediatrics. This statement provides an overview of recent developments that may impact genetic testing in children. Genetics is a rapidly evolving field, and this statement focuses specifically on expanded newborn screening, next generation sequencing (NGS), incidental findings, direct-to-consumer testing, histocompatibility testing, and genetic testing in a research context.
15

Lorey, Fred. "Human Genetics Data Applied to Genetic Screening Programs". Practicing Anthropology 20, n. 2 (1 aprile 1998): 30–33. http://dx.doi.org/10.17730/praa.20.2.n84728r821185380.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The uses of human genetic data in genetic screening are multifaceted and dynamic, creating an ongoing stream of useful prevalence data, ethnicity data, and natural history information. Since the primary facility for generation of these data is a large public health genetic screening program, however, the results must be continually analyzed and evaluated in the context of testing parameters. For example, presumptive positive rates (initial screening test positives, only a portion of which will become diagnosed cases), false positive rates, detection rates, and analytical values must be constantly checked to ensure the screening program is running smoothly and effectively. Any departures from the expected must be investigated so that the cause(s) can be determined and corrected. On a longitudinal basis, outcomes must be evaluated to ensure that the intended purpose of preventing mortality and reducing morbidity through intervention is achieved.
16

Nolan, Kathleen. "First Fruits: Genetic Screening". Hastings Center Report 22, n. 4 (luglio 1992): S2. http://dx.doi.org/10.2307/3563030.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Holden, Constance. "Employers Shun Genetic Screening". Science 250, n. 4982 (9 novembre 1990): 752. http://dx.doi.org/10.1126/science.250.4982.752.b.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Traeger-Synodinos, Johanne, e François Rousseau. "Introduction to Genetic Screening". OBM Genetics 3, n. 3 (6 settembre 2019): 1. http://dx.doi.org/10.21926/obm.genet.1903094.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Javaher, P., E. Nyoungui, H. Kääriäinen, U. Kristoffersson, I. Nippert, J. Sequeiros e J. Schmidtke. "Genetic Screening in Europe". Public Health Genomics 13, n. 7-8 (2010): 524–37. http://dx.doi.org/10.1159/000294998.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Carlsson, Christina, Mats Jonsson, Bengt Nordén, Maria T. Dulay, Richard N. Zare, Jaan Noolandi, Peter E. Nielsen, Lap-Chee Tsui e Julian Zielenski. "Screening for genetic mutations". Nature 380, n. 6571 (marzo 1996): 207. http://dx.doi.org/10.1038/380207a0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Mills, Catherine. "GENETIC SCREENING AND SELFHOOD". Australian Feminist Studies 23, n. 55 (marzo 2008): 43–55. http://dx.doi.org/10.1080/08164640701816207.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Grody, Wayne W. "Molecular Genetic Risk Screening". Annual Review of Medicine 54, n. 1 (febbraio 2003): 473–90. http://dx.doi.org/10.1146/annurev.med.54.101601.152127.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Lea, Dale Halsey, e Janet K. Williams. "Genetic Testing and Screening". AJN, American Journal of Nursing 102, n. 7 (luglio 2002): 36–43. http://dx.doi.org/10.1097/00000446-200207000-00035.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Motulsky, Arno G. "Screening for Genetic Diseases". New England Journal of Medicine 336, n. 18 (maggio 1997): 1314–16. http://dx.doi.org/10.1056/nejm199705013361810.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Caskey, C. Thomas, Manuel L. Gonzalez-Garay, Stacey Pereira e Amy L. McGuire. "Adult Genetic Risk Screening". Annual Review of Medicine 65, n. 1 (14 gennaio 2014): 1–17. http://dx.doi.org/10.1146/annurev-med-111212-144716.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Smith, Richard J. H., e Stephen Hone. "Genetic screening for deafness". Pediatric Clinics of North America 50, n. 2 (aprile 2003): 315–29. http://dx.doi.org/10.1016/s0031-3955(03)00026-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Williams, D. K., e I. D. Young. "Implications of genetic screening". Current Obstetrics & Gynaecology 7, n. 3 (settembre 1997): 180–81. http://dx.doi.org/10.1016/s0957-5847(97)80082-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Harper, Peter S. "What is Genetic Screening?" Journal of Medical Screening 3, n. 3 (settembre 1996): 165–66. http://dx.doi.org/10.1177/096914139600300314.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Gregg, Anthony R., e Joe Leigh Simpson. "Genetic screening and counseling". Obstetrics and Gynecology Clinics of North America 29, n. 2 (giugno 2002): xi—xii. http://dx.doi.org/10.1016/s0889-8545(02)00006-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Washburn, Newell R. "Screening for genetic anomalies". American Journal of Obstetrics and Gynecology 157, n. 1 (luglio 1987): 212. http://dx.doi.org/10.1016/s0002-9378(87)80384-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Connor, J. Michael. "Screening for genetic abnormality". Fetal and Maternal Medicine Review 1, n. 01 (gennaio 1989): 13. http://dx.doi.org/10.1017/s096553950000005x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Philip, Nicole. "Screening for genetic disorders". Child's Nervous System 19, n. 7-8 (1 agosto 2003): 436–39. http://dx.doi.org/10.1007/s00381-003-0779-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Williams, Janet K. "Screening for genetic disorders". Journal of Pediatric Health Care 3, n. 3 (maggio 1989): 115–21. http://dx.doi.org/10.1016/0891-5245(89)90060-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Uzych, L. "Genetic screening and ethics." Journal of Medical Ethics 22, n. 1 (1 febbraio 1996): 53–54. http://dx.doi.org/10.1136/jme.22.1.53.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Crisp, R. "Genetic screening: ethical issues". Journal of Medical Ethics 20, n. 4 (1 dicembre 1994): 264–65. http://dx.doi.org/10.1136/jme.20.4.264.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

KOLATA, G. "Genetic Screening Issues Studied". Science 232, n. 4748 (18 aprile 1986): 318. http://dx.doi.org/10.1126/science.232.4748.318.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Norton, Mary E. "Genetic screening and counseling". Current Opinion in Obstetrics and Gynecology 20, n. 2 (aprile 2008): 157–63. http://dx.doi.org/10.1097/gco.0b013e3282f73230.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Elias, Sherman, e George J. Annas. "Routine Prenatal Genetic Screening". New England Journal of Medicine 317, n. 22 (26 novembre 1987): 1407–9. http://dx.doi.org/10.1056/nejm198711263172208.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Lau, Tze Kin, e Tse Ngong Leung. "Genetic screening and diagnosis". Current Opinion in Obstetrics and Gynecology 17, n. 2 (aprile 2005): 163–69. http://dx.doi.org/10.1097/01.gco.0000162187.99219.e0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Cao, Antonio, Maria Cristina Rosatelli e Renzo Galanello. "Population-based genetic screening". Current Opinion in Genetics & Development 1, n. 1 (giugno 1991): 48–53. http://dx.doi.org/10.1016/0959-437x(91)80040-s.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Orentlicher, David. "Genetic Screening by Employers". JAMA: The Journal of the American Medical Association 263, n. 7 (16 febbraio 1990): 1005. http://dx.doi.org/10.1001/jama.1990.03440070093040.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Victor Maafo, E. "Research Note: Genetic Engineering and Genetic Screening". Competitiveness Review 11, n. 1 (gennaio 2001): 83–84. http://dx.doi.org/10.1108/eb046421.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Sullivan-Pyke, Chantae, e Anuja Dokras. "Preimplantation Genetic Screening and Preimplantation Genetic Diagnosis". Obstetrics and Gynecology Clinics of North America 45, n. 1 (marzo 2018): 113–25. http://dx.doi.org/10.1016/j.ogc.2017.10.009.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Markossian, Sarine, Kenny K. Ang, Christopher G. Wilson e Michelle R. Arkin. "Small-Molecule Screening for Genetic Diseases". Annual Review of Genomics and Human Genetics 19, n. 1 (31 agosto 2018): 263–88. http://dx.doi.org/10.1146/annurev-genom-083117-021452.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The genetic determinants of many diseases, including monogenic diseases and cancers, have been identified; nevertheless, targeted therapy remains elusive for most. High-throughput screening (HTS) of small molecules, including high-content analysis (HCA), has been an important technology for the discovery of molecular tools and new therapeutics. HTS can be based on modulation of a known disease target (called reverse chemical genetics) or modulation of a disease-associated mechanism or phenotype (forward chemical genetics). Prominent target-based successes include modulators of transthyretin, used to treat transthyretin amyloidoses, and the BCR-ABL kinase inhibitor Gleevec, used to treat chronic myelogenous leukemia. Phenotypic screening successes include modulators of cystic fibrosis transmembrane conductance regulator, splicing correctors for spinal muscular atrophy, and histone deacetylase inhibitors for cancer. Synthetic lethal screening, in which chemotherapeutics are screened for efficacy against specific genetic backgrounds, is a promising approach that merges phenotype and target. In this article, we introduce HTS technology and highlight its contributions to the discovery of drugs and probes for monogenic diseases and cancer.
45

Brezina, Paul R., Raymond W. Ke e William H. Kutteh. "Preimplantation Genetic Screening: A Practical Guide". Clinical Medicine Insights: Reproductive Health 7 (gennaio 2013): CMRH.S10852. http://dx.doi.org/10.4137/cmrh.s10852.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The past several decades have seen tremendous advances in the field of medical genetics. The application of genetic technologies to the field of reproductive medicine has ushered in a new era of medicine that is likely to greatly expand in the coming years. Concurrent with an in vitro fertilization (IVF) cycle, it is now possible to obtain a cellular biopsy from a developing embryo and genetically evaluate this sample with increasing sophistication and detail. Preimplantation genetic screening (PGS) is the practice of determining the presence of aneuploidy (either too many or too few chromosomes) in a developing embryo. However, how and in whom PGS should be offered is a topic of much debate.
46

van El, Carla Geertruida, Toine Pieters e Martina Cornel. "Genetic screening and democracy: lessons from debating genetic screening criteria in the Netherlands". Journal of Community Genetics 3, n. 2 (30 agosto 2011): 79–89. http://dx.doi.org/10.1007/s12687-011-0063-z.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Ross, Lainie Friedman. "Predictive Genetic Testing of Children and the Role of the Best Interest Standard". Journal of Law, Medicine & Ethics 41, n. 4 (2013): 899–906. http://dx.doi.org/10.1111/jlme.12099.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The genetic testing and screening of children has been fraught with controversy since Robert Guthrie developed the bacterial inhibition assay to test for phenylketonuria and advocated for rapid uptake of universal newborn screening in the early 1960s. Today with fast and affordable mass screening of the whole genome on the horizon, the debate about when and in what scenarios children should undergo genetic testing and screening has gained renewed attention. United States (US) professional guidelines — both the American College of Medical Genetics (ACMG)/American Society of Human Genetics (ASHG) statement (1995) and the American Academy of Pediatrics (AAP) Statement on the genetic testing of children (2001) and the new AAP and ACMG joint policy statement (2013) and technical report (2013) — as well as the old UK guidelines by the Working Part of the Clinical Genetics Society (1994) and the new United Kingdom (UK) guidelines by the British Society of Human Genetics (BSHG) (2010) all give the same answer: genetic testing and screening should only be done if it is in the child’s best interest.
48

Comparetto, Ciro, e Franco Borruto. "Genetic Screening of Cervical Cancer". OBM Genetics 05, n. 03 (29 giugno 2021): 1. http://dx.doi.org/10.21926/obm.genet.2103132.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Medical genetics plays an important role in the screening and prevention of numerous diseases. Thus, it is important to develop effective screening and prevention programs and improve the assessment of the susceptibility of diseases. The development of screening and prevention programs depends on the identification of early biomarkers (including functional and behavioral) for the risk and onset of the disease, and such programs need to be designed according to internationally accepted criteria. Cervical cancer represents a very relevant disease from the health and social perspective; around 528,000 new cases are diagnosed every year globally, of which, 85% are from developing countries, representing almost 12% of all cancers in females. Substantial reductions in the incidence of and mortality from cervical cancer have been observed after the introduction of prevention campaigns with the implementation of cervical screening programs through Papanicolaou (Pap) tests and, in particular, following the introduction of organized programs which guarantee a high level of screening coverage, as well as, the quality and continuity of diagnostic-therapeutic procedures. It is estimated that Pap smear screening every 3-5 years provides 80% protection against the onset of cancer. Advances in diagnostic techniques, particularly the development of easy-to-use molecular genetic tests, are replacing the use of the established Pap smear as a screening tool. This is possible owing to the discovery in 1975 that some cellular morphological changes (koilocytosis) were related to the presence of a Human Papillomavirus (HPV) infection. The HPV test is performed on a small sample of cells taken from the cervix, similar to the Pap test; however, it is not a morphological exam but a molecular biology exam that detects the presence of HPV by identifying its deoxyribonucleic acid (DNA) or messenger ribonucleic acid (mRNA). The results of numerous experimental studies have demonstrated a greater sensitivity of this test compared to the sensitivity of the traditional Pap test. However, the HPV test has a lower specificity due to two main factors: 1) The HPV test is based on the search for the types of viruses that have a greater oncogenic potential, and 2) It does not discriminate between transient infections and persistent and productive infections. The most widely used molecular tests are based on the search for HPV sequences and genotyping using molecular biology techniques, such as direct hybridization, qualitative polymerase chain reaction (PCR), and viral nucleotide sequencing.
49

Holtzman, N. A. "Genetic screening and public health." American Journal of Public Health 87, n. 8 (agosto 1997): 1275–77. http://dx.doi.org/10.2105/ajph.87.8.1275.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Dyson, Simon. "Genetic screening and ethnic minorities". Critical Social Policy 19, n. 2 (maggio 1999): 195–215. http://dx.doi.org/10.1177/026101839901900204.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Vai alla bibliografia