Letteratura scientifica selezionata sul tema "Gas generation"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Gas generation".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Gas generation"
Devine, K. "Gas in Electricity Generation". Energy Exploration & Exploitation 13, n. 2-3 (maggio 1995): 149–57. http://dx.doi.org/10.1177/0144598795013002-305.
Testo completoGiunta, G., R. Vernazza, R. Salerno, A. Ceppi, G. Ercolani e M. Mancini. "Hourly weather forecasts for gas turbine power generation". Meteorologische Zeitschrift 26, n. 3 (14 giugno 2017): 307–17. http://dx.doi.org/10.1127/metz/2017/0791.
Testo completoTAKATA, Kazumasa, Keizo TSUKAGOSHI, Junichiro MASADA e Eisaku ITO. "A102 DEVELOPMENT OF ADVANCED TECHNOLOGIES FOR THE NEXT GENERATION GAS TURBINE(Gas Turbine-1)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–29_—_1–34_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-29_.
Testo completoSaitoh, Keijiro, Eisaku Ito, Koichi Nishida, Satoshi Tanimura e Keizo Tsukagoshi. "A105 DEVELOPMENT OF COMBUSTOR WITH EXHAUST GAS RECIRCULATION SYSTEM FOR THE NEXT GENERATION GAS TURBINE(Gas Turbine-2)". Proceedings of the International Conference on Power Engineering (ICOPE) 2009.1 (2009): _1–47_—_1–52_. http://dx.doi.org/10.1299/jsmeicope.2009.1._1-47_.
Testo completoMoring, Frederick. "LDCs and distributed generation developments". Natural Gas 17, n. 3 (10 gennaio 2007): 30–32. http://dx.doi.org/10.1002/gas.3410170307.
Testo completoBurnby, M. W. "Gas for electricity generation". Power Engineering Journal 7, n. 6 (1993): 236. http://dx.doi.org/10.1049/pe:19930061.
Testo completoVickers, Frank. "Gas marketing opportunities in electric power generation". Natural Gas 13, n. 7 (9 gennaio 2007): 13–17. http://dx.doi.org/10.1002/gas.3410130704.
Testo completoSmith, William H. "Distributed electric generation to increase gas markets". Natural Gas 17, n. 2 (10 gennaio 2007): 29–32. http://dx.doi.org/10.1002/gas.3410170208.
Testo completoAweh, Amanda. "Enabling the Next Generation Smart Grid". Climate and Energy 38, n. 2 (10 agosto 2021): 20–23. http://dx.doi.org/10.1002/gas.22247.
Testo completoChapman, Bruce R. "Pricing Distributed Generation: Challenges and Alternatives". Natural Gas & Electricity 33, n. 8 (15 febbraio 2017): 1–7. http://dx.doi.org/10.1002/gas.21965.
Testo completoTesi sul tema "Gas generation"
Lee, Hi Sun. "Spray generation by gas-lift pumps". Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61897.
Testo completoOpseth, Douglas A. "Landfill gas generation at a semi-arid landfill". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq39150.pdf.
Testo completoWitty, Susan Jean. "Sound generation by gas flow through corrugated pipes". Thesis, University of Hull, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.395653.
Testo completoEccles, Neil C. "Structured grid generation for gas turbine combustion systems". Thesis, Loughborough University, 2000. https://dspace.lboro.ac.uk/2134/7348.
Testo completoPapadopoulos, Tilemachos. "Gas turbine cycles for intermediate load power generation". Thesis, Cranfield University, 2005. http://dspace.lib.cranfield.ac.uk/handle/1826/10718.
Testo completoUvwie, Patrick Awaciere. "Nigeria's gas flaring reduction : economic viability of power generation using flared gas / P.A. Uvwie". Thesis, North-West University, 2008. http://hdl.handle.net/10394/3697.
Testo completoHayko, Robert Kory. "Systems approach to natural gas analysis for power generation". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ30858.pdf.
Testo completoTsoutsanis, Elias. "Performance adaptation of gas turbines for power generation applications". Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/5614.
Testo completoGrilli, Roberto. "Methods for Trace Gas Detection Using Difference Frequency Generation". Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.520211.
Testo completoAVELLAR, VINICIUS PIMENTA DE. "TRANSIENT MODELLING OF INDUSTRIAL GAS TURBINE FOR POWER GENERATION". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16332@1.
Testo completoAs turbinas a gás são equipamentos de vital importância para o setor industrial, fornecendo trabalho e calor para diversos setores, do transporte aos sistemas de cogeração. A crescente necessidade de geração de energia elétrica confiável tem incentivado o projeto de turbinas a gás industriais, inclusive no Brasil, que operam com vários combustíveis como o diesel, gás natural, álcool e de combustíveis de baixo poder calorífico. Para melhor monitorar e controlar estes motores, uma análise completa da previsão de funcionamento em regime transitório é necessária. Durante o regime transitório das turbinas a gás industriais (heavy-duty), o sistema de controle deve manter os limites de certos parâmetros, tais como a temperatura na entrada da turbina e a velocidade de rotação do eixo, no seu valor nominal. Além disso, o tempo de resposta necessário para o sistema de controle atuar deve ser o mais breve possível para garantir uma operação de qualidade, segura e confiável. A temperatura de entrada da turbina, que é um parâmetro muito importante no desempenho de uma turbina a gás, é limitada pela resistência mecânica do material das pás da turbina. A velocidade de rotação do eixo deve permanecer constante, devido à ligação ao sistema elétrico, que não pode suportar altas flutuações de freqüência. Este trabalho tem como motivação o incremento da capacidade de simulação de um modelo computacional existente, incorporando, para este fim, rotinas de sistemas de controle. Como resultado, o novo modelo é capaz de simular qualquer condição de funcionamento de turbinas a gás industriais, em regime permanente e transitório controlado. Os resultados obtidos pelo programa computacional se mostraram fiéis ao comportamento real da máquina. Além disso, mostraram a flexibilidade do modelo ao lidar com diferentes condições de operação.Um programa computacional capaz de simular o desempenho transitório controlado de turbinas a gás é de extrema relevância para o desenvolvimento de softwares que auxiliam os operadores destes equipamentos. Dentre estes, estão os sistemas de monitoramento e diagnóstico dos equipamentos em questão.
Gas turbine engines are a vital part of today’s industry, providing both work and heat for several industry sectors, from transportation to cogeneration systems. The growing need for reliable electricity has encouraged the design of stationary gas turbines, including in Brazil, which operates on multiple fuels such as diesel, natural gas and low calorific fuels. To better monitor and control these engines, a complete analysis for prediction of transient operation is required. During transient operation of heavy duty gas turbines, the control system must keep the limits of certain parameters, such as turbine inlet temperature (TIT) and the rotational shaft speed within their design range. Moreover, the time required for the control system to react should be as short as possible to guarantee a safe and reliable operation. The turbine inlet temperature, which is a very important parameter in the performance of a gas turbine, is limited by the turbine blades material mechanical resistance. Furthermore, the rotational speed should remain constant due to the electric grid connection, which cannot withstand high frequency fluctuations. This work is motivated by the need to increase the ability of a computer model to simulate the performance of industrial gas turbines, incorporating, for this purpose, control system routines. As a result, the new model will be able to simulate any operating condition of industrial gas turbines, in both steady state and transient. The results obtained by the computer program proved to be faithful to the actual behavior of the engine. Furthermore, they showed the flexibility of the model to deal with different operating conditions. A computer program capable of simulating the transient performance of gas turbines is very important for the development softwares to help operators of such equipment. In addition, it could be used in on-line intelligent diagnostic program.
Libri sul tema "Gas generation"
L, Reynolds Thomas, e NASA Glenn Research Center, a cura di. Onboard Inert Gas Generation System/Onboard Oxygen Gas Generation System (OBIGGS/OBOGS) study. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Cerca il testo completoJames, Newcomb, e Cambridge Energy Research Associates, a cura di. Generation gap: U.S. natural gas and electric power in the 1990s. Cambridge, MA (Charles Square, 20 University Rd., Cambridge 02138): Cambridge Energy Research Associates, 1991.
Cerca il testo completoBoard, Canada National Energy, a cura di. Natural gas for power generation: Issues and implications. Calgary: National Energy Board, 2006.
Cerca il testo completoM, Spencer A., a cura di. Generation, accumulation, and production of Europe's hydrocarbons III. Berlin: Springer-Verlag, 1993.
Cerca il testo completoVladislav, Sadykov, a cura di. Syngas generation from hydrocarbons and oxygenates with structured catalysts. Hauppauge, N.Y: Nova Science Publishers, 2009.
Cerca il testo completoMadhlopa, Amos. Principles of Solar Gas Turbines for Electricity Generation. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-68388-1.
Testo completoChen, M. J. Generation systems software: Steam, gas and diesel plant. London: Chapman & Hall, 1996.
Cerca il testo completoGreenspan, Donald. The generation of turbulence in a compressed gas. Arlington, Tex: University of Texas at Arlington, Dept. of Mathematics, 1997.
Cerca il testo completoM, Spencer A., a cura di. Generation, accumulation, and production of Europe's hydrocarbons II. Berlin: Springer-Verlag, 1992.
Cerca il testo completo1948-, Lewan M. D., e Geological Survey (U.S.), a cura di. Comparison of kinetic-model predictions of deep gas generation. [Reston, Va.?]: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.
Cerca il testo completoCapitoli di libri sul tema "Gas generation"
Zakharov, Y. N. "Mathematical Modeling of Gas Generation in Underground Gas Generator". In Communications in Computer and Information Science, 218–27. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12203-4_22.
Testo completoChen, M. J., M. Buamud e D. M. Grant. "Gas turbine-generator program manual". In Generation Systems Software, 76–101. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1191-1_6.
Testo completoBarlaz, Morton A., e Robert K. Ham. "Leachate and gas generation". In Geotechnical Practice for Waste Disposal, 113–36. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3070-1_6.
Testo completoCôme, Guy-Marie. "Generation of Reaction Mechanisms". In Gas-Phase Thermal Reactions, 201–23. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9805-7_10.
Testo completoSchulenberg, Thomas. "Gas-Cooled Fast Reactors". In The fourth generation of nuclear reactors, 135–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-64919-0_8.
Testo completoHiller, W. J., e J. Hägele. "Generation of High-Speed Aerosol Beams By Laval Nozzles". In Rarefied Gas Dynamics, 1235–43. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2467-6_55.
Testo completoHeszler, Peter, Lars Landström e Claes-Göran Grangvist. "Basics of UV Laser-Assisted Generation of Nanoparticles". In Gas Phase Nanoparticle Synthesis, 69–122. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2444-3_4.
Testo completoTaylor, J'tia P. "Generation-IV Gas-Cooled Fast Reactor". In Nuclear Energy Encyclopedia, 349–51. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118043493.ch29.
Testo completoLiu, Kun, Daifen Chen, Serhiy Serbin e Volodymyr Patlaichuk. "Power Generation Market for Gas Turbines". In Gas Turbines Structural Properties, Operation Principles and Design Features, 3–9. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0977-3_1.
Testo completoAyala, R. E. "Application of IGCC Technology to Power Generation". In Desulfurization of Hot Coal Gas, 75–101. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58977-5_5.
Testo completoAtti di convegni sul tema "Gas generation"
Sato, T., S. Aoki e H. Mori. "A Gas Turbine Interactive Design System — TDSYS — for Advanced Gas Turbines". In 1985 Joint Power Generation Conference: GT Papers. American Society of Mechanical Engineers, 1985. http://dx.doi.org/10.1115/85-jpgc-gt-11.
Testo completoStillman, Arnold. "Signal generation in gas detectors". In Beam Instrumentation Workshop. AIP, 1994. http://dx.doi.org/10.1063/1.46990.
Testo completoRutledge, Chris. "Monitoring Gas Generation in Transformers". In 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D). IEEE, 2018. http://dx.doi.org/10.1109/tdc.2018.8440249.
Testo completoBanister, Mark. "Photo Reactive Gas Generation System". In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-4501.
Testo completoAchitaev, Andrei A., Stanislav A. Eroshenko, Anastasia G. Rusina, Alexey A. Zhidkov e Pavel N. Evseenkov. "Landfill Gas Generation Projects Implementation". In 2020 Ural Smart Energy Conference (USEC). IEEE, 2020. http://dx.doi.org/10.1109/usec50097.2020.9281152.
Testo completoLothe, Per, e Nils Kristian Stroem. "Pressurized Natural Gas-Next-Generation Marine Gas Transport Solution". In Offshore Technology Conference. Offshore Technology Conference, 2007. http://dx.doi.org/10.4043/18630-ms.
Testo completoLi, Nathan, Lei Tao, James McSpiritt, Eric M. Jackson, Chadwick L. Canedy, Charles D. Merritt, Mijin Kim et al. "Resonant cavity infrared detectors for scalable gas sensing". In Next-Generation Spectroscopic Technologies XV, a cura di Richard A. Crocombe e Luisa T. M. Profeta. SPIE, 2023. http://dx.doi.org/10.1117/12.2662739.
Testo completoChen, Shin-Juh, Nicholas F. Aubut, Michael B. Frish, Kevin Bendele, Paul D. Wehnert e Vineet Aggarwal. "Versatile advanced mobile natural gas leak detection system". In Next-Generation Spectroscopic Technologies XV, a cura di Richard A. Crocombe e Luisa T. M. Profeta. SPIE, 2023. http://dx.doi.org/10.1117/12.2663631.
Testo completoWilkes, Colin. "Statistical Determination of Natural Gas Superheat Requirements". In 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26036.
Testo completoSanjay, Onkar Singh e B. N. Prasad. "Thermodynamic Performance of Complex Gas Turbine Cycles". In 2002 International Joint Power Generation Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/ijpgc2002-26109.
Testo completoRapporti di organizzazioni sul tema "Gas generation"
Frank S. Felicione, Steven M. Frank e Dennis D. Keiser. WIPP Gas-Generation Experiments. Office of Scientific and Technical Information (OSTI), maggio 2007. http://dx.doi.org/10.2172/920400.
Testo completoPerson, J. C. Grout gas generation test plan. Office of Scientific and Technical Information (OSTI), gennaio 1995. http://dx.doi.org/10.2172/10116469.
Testo completoZACH, J. J. The Chemistry of Flammable Gas Generation. Office of Scientific and Technical Information (OSTI), ottobre 2000. http://dx.doi.org/10.2172/805379.
Testo completoZACH, J. J. The Chemistry of Flammable Gas Generation. Office of Scientific and Technical Information (OSTI), settembre 2001. http://dx.doi.org/10.2172/807324.
Testo completoHolmes, Matthew David, e Gary Robert Parker. Gas Generation of Heated PBX 9502. Office of Scientific and Technical Information (OSTI), ottobre 2016. http://dx.doi.org/10.2172/1329835.
Testo completoJonah, C. D., S. Kapoor, M. S. Matheson, W. A. Mulac e D. Meisel. Gas generation from Hanford grout samples. Office of Scientific and Technical Information (OSTI), marzo 1996. http://dx.doi.org/10.2172/205643.
Testo completoDeb, Kaushik. Gas Demand Growth Beyond Power Generation. King Abdullah Petroleum Studies and Research Center, maggio 2019. http://dx.doi.org/10.30573/ks--2019-dp62.
Testo completoBenjamin C. Wiant, Ihor S. Diakunchak, Dennis A. Horazak e Harry T. Morehead. NEXT GENERATION GAS TURBINE SYSTEMS STUDY. Office of Scientific and Technical Information (OSTI), marzo 2003. http://dx.doi.org/10.2172/828625.
Testo completoGeorge Bailey, Elizabeth Bluhm, John Lyman, Richard Mason, Mark Paffett, Gary Polansky, G. D. Roberson, Martin Sherman, Kirk Veirs e Laura Worl. Gas Generation from Actinide Oxide Materials. Office of Scientific and Technical Information (OSTI), dicembre 2000. http://dx.doi.org/10.2172/775827.
Testo completoUnknown. NEXT GENERATION GAS TURBINE (NGGT) SYSTEMS STUDY. Office of Scientific and Technical Information (OSTI), dicembre 2001. http://dx.doi.org/10.2172/791498.
Testo completo