Letteratura scientifica selezionata sul tema "Fractals"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Fractals".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Fractals"
MITINA, OLGA V., e FREDERICK DAVID ABRAHAM. "THE USE OF FRACTALS FOR THE STUDY OF THE PSYCHOLOGY OF PERCEPTION: PSYCHOPHYSICS AND PERSONALITY FACTORS, A BRIEF REPORT". International Journal of Modern Physics C 14, n. 08 (ottobre 2003): 1047–60. http://dx.doi.org/10.1142/s0129183103005182.
Testo completoЖихарев, Л., e L. Zhikharev. "Fractals In Three-Dimensional Space. I-Fractals". Geometry & Graphics 5, n. 3 (28 settembre 2017): 51–66. http://dx.doi.org/10.12737/article_59bfa55ec01b38.55497926.
Testo completoЖихарев e L. Zhikharev. "Generalization to Three-Dimensional Space Fractals of Pythagoras and Koch. Part I". Geometry & Graphics 3, n. 3 (30 novembre 2015): 24–37. http://dx.doi.org/10.12737/14417.
Testo completoHusain, Akhlaq, Manikyala Navaneeth Nanda, Movva Sitaram Chowdary e Mohammad Sajid. "Fractals: An Eclectic Survey, Part II". Fractal and Fractional 6, n. 7 (2 luglio 2022): 379. http://dx.doi.org/10.3390/fractalfract6070379.
Testo completoCherny, A. Yu, E. M. Anitas, V. A. Osipov e A. I. Kuklin. "Scattering from surface fractals in terms of composing mass fractals". Journal of Applied Crystallography 50, n. 3 (1 giugno 2017): 919–31. http://dx.doi.org/10.1107/s1600576717005696.
Testo completoFraboni, Michael, e Trisha Moller. "Fractals in the Classroom". Mathematics Teacher 102, n. 3 (ottobre 2008): 197–99. http://dx.doi.org/10.5951/mt.102.3.0197.
Testo completoFraboni, Michael, e Trisha Moller. "Fractals in the Classroom". Mathematics Teacher 102, n. 3 (ottobre 2008): 197–99. http://dx.doi.org/10.5951/mt.102.3.0197.
Testo completoJoy, Elizabeth K., e Dr Vikas Garg. "FRACTALS AND THEIR APPLICATIONS: A REVIEW". Journal of University of Shanghai for Science and Technology 23, n. 07 (1 agosto 2021): 1509–17. http://dx.doi.org/10.51201/jusst/21/07277.
Testo completoChen, Yanguang. "Fractal Modeling and Fractal Dimension Description of Urban Morphology". Entropy 22, n. 9 (30 agosto 2020): 961. http://dx.doi.org/10.3390/e22090961.
Testo completoBANAKH, T., e N. NOVOSAD. "MICRO AND MACRO FRACTALS GENERATED BY MULTI-VALUED DYNAMICAL SYSTEMS". Fractals 22, n. 04 (12 novembre 2014): 1450012. http://dx.doi.org/10.1142/s0218348x14500121.
Testo completoTesi sul tema "Fractals"
Moraes, Leonardo Bastos. "Antenas impressas compactas para sistemas WIMAX". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-26122013-161125/.
Testo completoAchieving high data rates in wireless communication is difficult. High data rates for wireless local area networks became commercially successful only around 2000. Wide area wireless networks are still designed and used primarily for low rate voice services. Despite many promising technologies, the reality of a wide area network that services many users at high data rates with reasonable bandwidth and power consumption, while maintaining high coverage and quality of service has not been achieved. The goal of the IEEE 802.16 was to design a wireless communication system processing to achieve a broadband internet for mobile users over a wide or metropolitan area. It is important to realize that WIMAX system have to confront similar challenges as existing cellular systems and their eventual performance will be bounded by the same laws of physics and information theory. In many areas of electrical engineering, miniaturization has been an important issue. Antennas are not an exception. After Wheeler initiated studies on the fundamental limits for miniaturization of antennas, this subject has been extensively discussed by several scholars and many contributions have been made. The advances of recent decades in the field of microelectronics enabled the miniaturization of components and provided the use of compact, lightweight, equipments with many features in commercial applications. Although circuit integration is a reality, the integration of a complete system, including its antenna, is still one of the major technological challenges. In the case of patch antennas, the search is for compact structures with increased bandwidth, due to the inherent narrowband characteristic of this type of antenna. In this work the focus is on a comparison between the Minkowski and the Koch Fractal Patch Antennas. Initially, patch antennas with conventional square and triangular geometries were simulated to present the same resonance frequency. After that, fractal Minkowski and Koch Island Loop antennas were implemented in the square and triangular geometries, respectively, to the third iteration. A comparison was made for two substrates of different permittivities FR-4 and DUROID 5870 at the frequencies of 2,4 GHz; 3,5 GHz; 5,0 GHz and 5,8 GHz. 8 Prototype antennas were built using FR-4 and DUROID 5870 to resonate at a frequency of 3,5 GHz to validate simulation results. The contribution of this work is the analysis of the advantages and disadvantages of each proposed fractal structure. According to the project requirements, the best option can be use a miniaturized antenna with a wider band, as in commercial projects. Particularly in military applications, a narrow band antenna can be a requirement, as sometimes maximum discretion in transmission is a paramount. An additional analysis was performed to verify which of the geometries fulfilled the miniaturization criteria of Hansen.
Дядечко, Алла Миколаївна, Алла Николаевна Дядечко, Alla Mykolaivna Diadechko, D. Tokar e V. R. Tarasenko. "Fractals". Thesis, Видавництво СумДУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/13436.
Testo completoZanotto, Ricardo Anselmo. "Estudo da geometria fractal clássica". Universidade Federal de Goiás, 2015. http://repositorio.bc.ufg.br/tede/handle/tede/6058.
Testo completoApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2016-08-31T19:47:01Z (GMT) No. of bitstreams: 2 Dissertação - Ricardo Anselmo Zanotto - 2015.pdf: 7706833 bytes, checksum: 26c6e884d0e3a03a3daebaa4ab5764a4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2016-08-31T19:47:01Z (GMT). No. of bitstreams: 2 Dissertação - Ricardo Anselmo Zanotto - 2015.pdf: 7706833 bytes, checksum: 26c6e884d0e3a03a3daebaa4ab5764a4 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2015-12-12
Outro
This is a research about a part of the non-Euclidean geometry that has recently been very studied. It was addressed initial themes of the non-Euclidean geometry and it was exposed the studies abut fractals, its history, buildings and main fractals (known as classic fractals). It was also addressed the relation among the school years contents and how to use fractals; as well as some of its applications that have helped a lot of researches to spread and show better results.
Este trabalho é uma pesquisa sobre parte da geometria não euclidiana que há pouco vem sendo muito estudada, os fractais. Abordamos temas iniciais da geometria nãoeuclidiana e no decorrer do trabalho expomos nosso estudo sobre fractais, seu histórico, construções, principais fractais (conhecidos como fractais clássicos). Também abordamos relações entre conteúdos dos anos escolares e como usar fractais nos mesmos; como também algumas de suas aplicações que vem ajudando muitas pesquisas a se difundirem e apresentarem melhores resultados.
LONG, LUN-HAI. "Fractals arithmetiques". Université Louis Pasteur (Strasbourg) (1971-2008), 1993. http://www.theses.fr/1993STR13249.
Testo completoJoanpere, Salvadó Meritxell. "Fractals and Computer Graphics". Thesis, Linköpings universitet, Matematiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68876.
Testo completoMucheroni, Laís Fernandes [UNESP]. "Dimensão de Hausdorff e algumas aplicações". Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151653.
Testo completoApproved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T20:08:28Z (GMT) No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5)
Made available in DSpace on 2017-09-19T20:08:28Z (GMT). No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) Previous issue date: 2017-08-18
Intuitivamente, um ponto tem dimensão 0, uma reta tem dimensão 1, um plano tem dimensão 2 e um cubo tem dimensão 3. Porém, na geometria fractal encontramos objetos matemáticos que possuem dimensão fracionária. Esses objetos são denominados fractais cujo nome vem do verbo "frangere", em latim, que significa quebrar, fragmentar. Neste trabalho faremos um estudo sobre o conceito de dimensão, definindo dimensão topológica e dimensão de Hausdorff. O objetivo deste trabalho é, além de apresentar as definições de dimensão, também apresentar algumas aplicações da dimensão de Hausdorff na geometria fractal.
We know, intuitively, that the dimension of a dot is 0, the dimension of a line is 1, the dimension of a square is 2 and the dimension of a cube is 3. However, in the fractal geometry we have objects with a fractional dimension. This objects are called fractals whose name comes from the verb frangere, in Latin, that means breaking, fragmenting. In this work we will study about the concept of dimension, defining topological dimension and Hausdorff dimension. The purpose of this work, besides presenting the definitions of dimension, is to show an application of the Hausdorff dimension on the fractal geometry.
Berbiche, Amine. "Propagation d'ondes acoustiques dans les milieux poreux fractals". Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4758.
Testo completoThe action integral minimization method (variational principle) provides the wave propagation equations. This method has been generalized to fractal dimensional porous media to study the acoustic propagation in the time domain, based on the equivalent fluid model. The resulting equation rewritten in the frequency domain represents a generalization for the Helmholtz equation. As part of the Allard-Johnson model, the propagation equation was solved analytically in the time domain, for both high and low frequencies fields. The resolution was made by the method of the Laplace transform, and focused on a semi-infinite porous medium. It was found that the wave velocity depends on the fractal dimension.For a fractal porous material of finite thickness which receives an acoustic wave at normal incidence, the Euler conditions were used to determine the reflected and transmitted fields. The resolution of the direct problem was made in the time domain by the method of the Laplace transform, and through the use of the Mittag-Leffler functions. The inverse problem was solved by the method of minimizing the least squares sense. Tests have been performed successfully on experimental data; programs written from the formalism developed in this work have allowed finding the acoustic parameters of porous foams, in the fields of high and low frequencies
Prehl, geb Balg Janett. "Diffusion on Fractals". Master's thesis, Universitätsbibliothek Chemnitz, 2007. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200701033.
Testo completoIn dieser Arbeit untersuchen wir anomale Diffusion auf Fraktalen unter Einwirkung eines statisches äußeres Feldes. Wir benutzen die Mastergleichung, um die Wahrscheinlichkeitsverteilung der Teilchen zu berechnen, um daraus wichtige Größen wie das mittlere Abstandsquadrat zu bestimmen. Wir wenden unterschiedliche Feldstärken bei verschiedenen regelmäßigen Sierpinski-Teppichen an und erhalten maximale Driftgeschwindigkeiten für schwache Feldstärken. Über ~t^{2/d_w} bestimmen wir die Random-Walk-Dimension d_w als d_w<2. Dieser Wert für d_w entspricht der Superdiffusion, obwohl der Diffusionsprozess durch Strukturen des Teppichs, wie Sackgassen, behindert wird. Es schient, dass dies das Ergebnis zweier konkurrierender Effekte ist, die durch das Anlegen eines äußeren Feldes entstehen. Einerseits bewegen sich die Teilchen bevorzugt entlang der Feldrichtung. Andererseits gelangen einige Teilchen in Sackgassen. Um die Sackgassen, die in Feldrichtung liegen, zu verlassen, müssen sich die Teilchen entgegen der Feldrichtung bewegen. Somit sind die Teilchen eine gewisse Zeit in der Sackgasse gefangen. Infolge der durch das äußere Feld beschleunigten und der gefangenen Teilchen, verbreitert sich die Wahrscheinlichkeitsverteilung der Teilchen und somit ist d_w<2
Yin, Qinghe. "Fractals and sumsets". Title page, contents and abstract only, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phy51.pdf.
Testo completoBeaver, Philip Frederick. "Fractals and chaos". Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28232.
Testo completoLibri sul tema "Fractals"
A, Pickover Clifford, a cura di. Fractal horizons: The future use of fractals. New York: St. Martin's Press, 1996.
Cerca il testo completoFeder, Jens. Fractals. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6.
Testo completoDekking, Michel, Jacques Lévy Véhel, Evelyne Lutton e Claude Tricot, a cura di. Fractals. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0873-3.
Testo completoO'Connell, Richard. Fractals. Newport: Atlantis Editions, 2002.
Cerca il testo completoStephen, Pollock, e British Broadcasting Corporation, a cura di. Fractals. [London]: [British Broadcasting Corporation, 1990.
Cerca il testo completoFeder, Jens. Fractals. New York: Plenum Press, 1988.
Cerca il testo completoFeder, Jens. Fractals. New York, NY: Plenum Press, 1988.
Cerca il testo completoMac Cormac, Earl, e Maxim I. Stamenov, a cura di. Fractals of Brain, Fractals of Mind. Amsterdam: John Benjamins Publishing Company, 1996. http://dx.doi.org/10.1075/aicr.7.
Testo completoBarnsley, Michael. Fractals everywhere. 2a ed. Boston: Academic Press, 1993.
Cerca il testo completoBarnsley, Michael. Fractals everywhere. Mineola, N.Y: Dover Publications, 2012.
Cerca il testo completoCapitoli di libri sul tema "Fractals"
Hergarten, Stefan. "Fractals and Fractal Distributions". In Self-Organized Criticality in Earth Systems, 1–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04390-5_1.
Testo completoCourtens, Eric, e René Vacher. "Fractons in Real Fractals". In Random Fluctuations and Pattern Growth: Experiments and Models, 20–26. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2653-0_4.
Testo completoFeder, Jens. "Introduction". In Fractals, 1–5. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_1.
Testo completoFeder, Jens. "Self-Similarity and Self-Affinity". In Fractals, 184–92. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_10.
Testo completoFeder, Jens. "Wave-Height Statistics". In Fractals, 193–99. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_11.
Testo completoFeder, Jens. "The Perimeter-Area Relation". In Fractals, 200–211. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_12.
Testo completoFeder, Jens. "Fractal Surfaces". In Fractals, 212–28. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_13.
Testo completoFeder, Jens. "Observations of Fractal Surfaces". In Fractals, 229–43. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_14.
Testo completoFeder, Jens. "The Fractal Dimension". In Fractals, 6–30. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_2.
Testo completoFeder, Jens. "The Cluster Fractal Dimension". In Fractals, 31–40. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4899-2124-6_3.
Testo completoAtti di convegni sul tema "Fractals"
Wang, Yan. "3D Fractals From Periodic Surfaces". In ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29081.
Testo completo"BACK MATTER". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_bmatter.
Testo completoWEST, BRUCE J. "MODELING FRACTAL DYNAMICS". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0002.
Testo completoMAINZER, KLAUS. "COMPLEXITY IN NATURE AND SOCIETY: Complexity Management in the Age of Globalization". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0010.
Testo completoPEARSON, MICHAEL. "FRACTALS, COMPLEXITY AND CHAOS IN SUPPLY CHAIN NETWORKS". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0011.
Testo completoSING, BERND. "ITERATED FUNCTION SYSTEMS IN MIXED EUCLIDEAN AND 𝔭-ADIC SPACES". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0024.
Testo completoLIEBOVITCH, L. S., V. K. JIRSA e L. A. SHEHADEH. "STRUCTURE OF GENETIC REGULATORY NETWORKS: EVIDENCE FOR SCALE FREE NETWORKS". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0001.
Testo completoGORENFLO, RUDOLF, e FRANCESCO MAINARDI. "FRACTIONAL RELAXATION OF DISTRIBUTED ORDER". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0003.
Testo completoALLEGRINI, P., F. BARBI, P. GRIGOLINI e P. PARADISI. "FRACTIONAL TIME: DISHOMOGENOUS POISSON PROCESSES VS. HOMOGENEOUS NON-POISSON PROCESSES". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0004.
Testo completoPAPASIMAKIS, NIKITAS, e FOTINI PALLIKARI. "MARKOV MEMORY IN MULTIFRACTAL NATURAL PROCESSES". In Fractals 2006. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774217_0005.
Testo completoRapporti di organizzazioni sul tema "Fractals"
Haussermann, John W. An Introduction to Fractals and Chaos. Fort Belvoir, VA: Defense Technical Information Center, giugno 1989. http://dx.doi.org/10.21236/ada210257.
Testo completoDriscoll, John. Fractals as Basis for Design and Critique. Portland State University Library, gennaio 2000. http://dx.doi.org/10.15760/etd.7059.
Testo completoMoore, Charles. A Quantitative Description of Soil Microstructure Using Fractals. Fort Belvoir, VA: Defense Technical Information Center, luglio 1992. http://dx.doi.org/10.21236/ada337825.
Testo completoKostoff, Ronald N., Dustin Johnson, J. A. Del Rio, Louis A. Bloomfield, Michael F. Shlesinger e Guido Malpohl. Duplicate Publication and 'Paper Inflation' in the Fractals Literature. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2005. http://dx.doi.org/10.21236/ada440622.
Testo completoOppenheim, Alan V., e Gregory W. Wornell. Signal Analysis, Synthesis and Processing Using Fractals and Wavelets. Fort Belvoir, VA: Defense Technical Information Center, novembre 1995. http://dx.doi.org/10.21236/ada305490.
Testo completoRao, C. R., e S. R. Kumara. Shape and Image Analysis using Neural Networks Fractals and Wavelets. Fort Belvoir, VA: Defense Technical Information Center, maggio 2000. http://dx.doi.org/10.21236/ada392772.
Testo completoYortsos, Y. C., e J. A. Acuna. Numerical construction and flow simulation in networks of fractures using fractals. Office of Scientific and Technical Information (OSTI), novembre 1991. http://dx.doi.org/10.2172/6283188.
Testo completoPardo Igúzquiza, Eulogio. Karst y fractales. Ilustre Colegio Oficial de Geólogos, dicembre 2022. http://dx.doi.org/10.21028/eog.2022.12.05.
Testo completoAminzadeh, Fred, Charles Sammis, Mohammad Sahimi e David Okaya. Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy. Office of Scientific and Technical Information (OSTI), aprile 2015. http://dx.doi.org/10.2172/1185274.
Testo completoFisher, Yuval, e Albert Lawrence. Fractal Image Encoding. Fort Belvoir, VA: Defense Technical Information Center, marzo 1992. http://dx.doi.org/10.21236/ada248003.
Testo completo