Letteratura scientifica selezionata sul tema "Fourier restriction theorems"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Fourier restriction theorems".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Fourier restriction theorems"
Demeter, Ciprian, e S. Zubin Gautam. "Bilinear Fourier Restriction Theorems". Journal of Fourier Analysis and Applications 18, n. 6 (6 giugno 2012): 1265–90. http://dx.doi.org/10.1007/s00041-012-9230-9.
Testo completoDrury, S. W., e B. P. Marshall. "Fourier restriction theorems for degenerate curves". Mathematical Proceedings of the Cambridge Philosophical Society 101, n. 3 (maggio 1987): 541–53. http://dx.doi.org/10.1017/s0305004100066901.
Testo completoLakey, Joseph D. "Weighted Restriction for Curves". Canadian Mathematical Bulletin 36, n. 1 (1 marzo 1993): 87–95. http://dx.doi.org/10.4153/cmb-1993-013-5.
Testo completoBloom, Steven, e Gary Sampson. "Weighted spherical restriction theorems for the Fourier transform". Illinois Journal of Mathematics 36, n. 1 (marzo 1992): 73–101. http://dx.doi.org/10.1215/ijm/1255987608.
Testo completoDe Carli, Laura, Dmitry Gorbachev e Sergey Tikhonov. "Pitt inequalities and restriction theorems for the Fourier transform". Revista Matemática Iberoamericana 33, n. 3 (2017): 789–808. http://dx.doi.org/10.4171/rmi/955.
Testo completoDrury, S. W., e B. P. Marshall. "Fourier restriction theorems for curves with affine and Euclidean arclengths". Mathematical Proceedings of the Cambridge Philosophical Society 97, n. 1 (gennaio 1985): 111–25. http://dx.doi.org/10.1017/s0305004100062654.
Testo completoFerreyra, Elida, e Marta Urciuolo. "Restriction Theorems for Anisotropically Homogeneous Hypersurfaces of". gmj 15, n. 4 (dicembre 2008): 643–51. http://dx.doi.org/10.1515/gmj.2008.643.
Testo completoFerreyra, E., T. Godoy e M. Urciuolo. "Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in R3". Studia Mathematica 160, n. 3 (2004): 249–65. http://dx.doi.org/10.4064/sm160-3-4.
Testo completoFraser, Robert, e Kyle Hambrook. "Explicit Salem sets, Fourier restriction, and metric Diophantine approximation in the p-adic numbers". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150, n. 3 (29 gennaio 2019): 1265–88. http://dx.doi.org/10.1017/prm.2018.115.
Testo completoCluckers, Raf. "Analytic van der Corput Lemma for p-adic and Fq((t)) oscillatory integrals, singular Fourier transforms, and restriction theorems". Expositiones Mathematicae 29, n. 4 (2011): 371–86. http://dx.doi.org/10.1016/j.exmath.2011.06.004.
Testo completoTesi sul tema "Fourier restriction theorems"
Buschenhenke, Stefan [Verfasser]. "Restriction theorems for the Fourier transform / Stefan Buschenhenke". Kiel : Universitätsbibliothek Kiel, 2014. http://d-nb.info/1050388658/34.
Testo completoThabouti, Lotfi. "Estimées de Carleman L^p globales". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0491.
Testo completoIn this thesis, we study L^p Carleman inequalities for elliptic problems and their applications to the quantification of unique continuation with respect to perturbations of the Laplacian. We first focus on L^p Carleman inequalities on a strip of R^d (dgeq 3) , denoted mathcal{S}:= (0,1) imes R^{d-1} , for the Laplacian. Using the Fourier transform and a factorisation of the conjugate operator, we reduce the proof of these inequalities to the construction of a parametrix for the Laplacian problem with boundary conditions. Utilising this parametrix, we first reprove classical L^2 Carleman inequalities for the Laplacian. Then, applying harmonic analysis techniques, particularly the Fourier restriction theorem to establish L^p-L^q type continuity results, we obtain L^p - L^q estimates for this parametrix.We then apply these methods to the case of interest, namely L^p Carleman inequalities for the Laplacian defined on Omega , a bounded and regular open subset of R^d (d geq 3) , with a right-hand side f_2 + f_{2 *'} + div F , f_2 in L^2(Omega), , f_{2 *'} in L^{ frac{2d}{d+2}}(Omega), ,F in L^2(Omega; C^{d}) , and a Dirichlet condition g in H^{frac{1}{2}}(partial Omega) . We establish two global Carleman estimates: one on the H^1 norm of the solution and another on its L^{frac{2d}{d-2}} norm, in terms of weighted L^2 norms of f_2 and F , the L^{frac{2d}{d+2}} norm of f_{2 *'} , and the H^{frac{1}{2}} norm of g . This allows us, for example, to obtain a quantification of unique continuation for solutions of Delta u = V u + W_1 cdotabla u + div(W_2 u) in terms of the norms of V in L^{q_0}(Omega) , W_1 in L^{q_1}(Omega) , and W_2 in L^{q_2}(Omega) for q_0 in (d/2, infty] and q_1 and q_2 satisfying either q_1, , q_2 > (3d-2)/2 and frac{1}{q_1} + frac{1}{q_2}< 4(1-frac{1}{d})/(3d-2) , or q_1, , q_2 > 3d/2 .In the third part, we study a quantification of unique continuation for solutions of the equation Delta u = V u + W_1 cdotabla u + div(W_2 u) but with first-order potentials that are more singular in the limit integrability class. In particular, we consider the case where W_1 in L^{q_1} and W_2 in L^{q_2} , with q_1 > d and q_2 > d . Using T. Wolff's lemma on Euclidean measures and a refined version of Carleman estimates, we obtain unique continuation quantification results for solutions u of Delta u = V u + W_1 cdotabla u + div(W_2 u) in terms of the norms of the potentials
Papadimitropoulos, Christos. "Fourier restriction phenomenon in thin sets". Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4625.
Testo completoCapitoli di libri sul tema "Fourier restriction theorems"
Carton-Lebrun, C., e H. P. Heinig. "Weighted Extensions of Restriction Theorems for the Fourier Transform". In Recent Advances in Fourier Analysis and Its Applications, 579–96. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0665-5_32.
Testo completoLarin, A. A. "Theorems on Restriction of Fourier–Bessel and Multidimensional Bessel Transforms to Spherical Surfaces". In Trends in Mathematics, 159–70. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35914-0_8.
Testo completoStens, R. L. "Sampling by Generalized Kernels". In Sampling Theory in Fourier and Signal Analysis, 130–57. Oxford University PressOxford, 1999. http://dx.doi.org/10.1093/oso/9780198534969.003.0006.
Testo completoIkromov, Isroil A., e Detlef Müller. "How to Go beyond the Case hlin(φ) ≥ 5". In Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra (AM-194). Princeton University Press, 2016. http://dx.doi.org/10.23943/princeton/9780691170541.003.0007.
Testo completoIkromov, Isroil A., e Detlef Müller. "Improved Estimates by Means of Airy-Type Analysis". In Fourier Restriction for Hypersurfaces in Three Dimensions and Newton Polyhedra (AM-194). Princeton University Press, 2016. http://dx.doi.org/10.23943/princeton/9780691170541.003.0005.
Testo completoAtti di convegni sul tema "Fourier restriction theorems"
Walther, A. "Quality of the Fourier transform produced by an imaging lens". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.we3.
Testo completo