Articoli di riviste sul tema "Fork restart"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Fork restart".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Gold, Michaela A., Jenna M. Whalen, Karine Freon, Zixin Hong, Ismail Iraqui, Sarah A. E. Lambert e Catherine H. Freudenreich. "Restarted replication forks are error-prone and cause CAG repeat expansions and contractions". PLOS Genetics 17, n. 10 (21 ottobre 2021): e1009863. http://dx.doi.org/10.1371/journal.pgen.1009863.
Testo completoPetermann, Eva, e Thomas Helleday. "Pathways of mammalian replication fork restart". Nature Reviews Molecular Cell Biology 11, n. 10 (15 settembre 2010): 683–87. http://dx.doi.org/10.1038/nrm2974.
Testo completoPepe, Alessandra, e Stephen C. West. "MUS81-EME2 Promotes Replication Fork Restart". Cell Reports 7, n. 4 (maggio 2014): 1048–55. http://dx.doi.org/10.1016/j.celrep.2014.04.007.
Testo completoDyankova-Danovska, Teodora, Sonya Uzunova, Georgi Danovski, Rumen Stamatov, Petar-Bogomil Kanev, Aleksandar Atemin, Aneliya Ivanova, Radoslav Aleksandrov e Stoyno Stoynov. "In and out of Replication Stress: PCNA/RPA1-Based Dynamics of Fork Stalling and Restart in the Same Cell". International Journal of Molecular Sciences 26, n. 2 (14 gennaio 2025): 667. https://doi.org/10.3390/ijms26020667.
Testo completoLongerich, S., e P. Sung. "Clearance of roadblocks in replication fork restart". Proceedings of the National Academy of Sciences 108, n. 34 (8 agosto 2011): 13881–82. http://dx.doi.org/10.1073/pnas.1110698108.
Testo completoIyer, Divya R., e Alan D. D’Andrea. "Fork restart: unloading FANCD2 to travel ahead". Molecular Cell 83, n. 20 (ottobre 2023): 3590–92. http://dx.doi.org/10.1016/j.molcel.2023.09.027.
Testo completoThangavel, Saravanabhavan, Matteo Berti, Maryna Levikova, Cosimo Pinto, Shivasankari Gomathinayagam, Marko Vujanovic, Ralph Zellweger et al. "DNA2 drives processing and restart of reversed replication forks in human cells". Journal of Cell Biology 208, n. 5 (2 marzo 2015): 545–62. http://dx.doi.org/10.1083/jcb.201406100.
Testo completoEksi, Sebnem Ece, e Joshua C. Saldivar. "Cohesin Is Out for Stalled Replication Fork Restart". Developmental Cell 52, n. 6 (marzo 2020): 675–76. http://dx.doi.org/10.1016/j.devcel.2020.03.001.
Testo completoMarians, Kenneth J. "PriA-directed replication fork restart in Escherichia coli". Trends in Biochemical Sciences 25, n. 4 (aprile 2000): 185–89. http://dx.doi.org/10.1016/s0968-0004(00)01565-6.
Testo completoMarians, Kenneth J. "Mechanisms of replication fork restart in Escherichia coli". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359, n. 1441 (29 gennaio 2004): 71–77. http://dx.doi.org/10.1098/rstb.2003.1366.
Testo completoXu, Michelle J., e Philip W. Jordan. "SMC5/6 Promotes Replication Fork Stability via Negative Regulation of the COP9 Signalosome". International Journal of Molecular Sciences 25, n. 2 (12 gennaio 2024): 952. http://dx.doi.org/10.3390/ijms25020952.
Testo completoTorres, Jorge Z., Sandra L. Schnakenberg e Virginia A. Zakian. "Saccharomyces cerevisiae Rrm3p DNA Helicase Promotes Genome Integrity by Preventing Replication Fork Stalling: Viability of rrm3 Cells Requires the Intra-S-Phase Checkpoint and Fork Restart Activities". Molecular and Cellular Biology 24, n. 8 (15 aprile 2004): 3198–212. http://dx.doi.org/10.1128/mcb.24.8.3198-3212.2004.
Testo completoBianco, Piero R., e Yue Lu. "Single-molecule insight into stalled replication fork rescue in Escherichia coli". Nucleic Acids Research 49, n. 8 (21 marzo 2021): 4220–38. http://dx.doi.org/10.1093/nar/gkab142.
Testo completoJain, Chetan K., Swagata Mukhopadhyay e Agneyo Ganguly. "RecQ Family Helicases in Replication Fork Remodeling and Repair: Opening New Avenues towards the Identification of Potential Targets for Cancer Chemotherapy". Anti-Cancer Agents in Medicinal Chemistry 20, n. 11 (8 luglio 2020): 1311–26. http://dx.doi.org/10.2174/1871520620666200518082433.
Testo completoGrompone, Gianfranco, Dusko Ehrlich e Bénédicte Michel. "Cells defective for replication restart undergo replication fork reversal". EMBO reports 5, n. 6 (28 maggio 2004): 607–12. http://dx.doi.org/10.1038/sj.embor.7400167.
Testo completoManosas, M., S. K. Perumal, V. Croquette e S. J. Benkovic. "Direct Observation of Stalled Fork Restart via Fork Regression in the T4 Replication System". Science 338, n. 6111 (29 novembre 2012): 1217–20. http://dx.doi.org/10.1126/science.1225437.
Testo completoYates, Maïlyn, e Alexandre Maréchal. "Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication". International Journal of Molecular Sciences 19, n. 10 (25 settembre 2018): 2909. http://dx.doi.org/10.3390/ijms19102909.
Testo completoLeuzzi, Giuseppe, Veronica Marabitti, Pietro Pichierri e Annapaola Franchitto. "WRNIP 1 protects stalled forks from degradation and promotes fork restart after replication stress". EMBO Journal 35, n. 13 (30 maggio 2016): 1437–51. http://dx.doi.org/10.15252/embj.201593265.
Testo completoPolleys, Erica J., Nealia C. M. House e Catherine H. Freudenreich. "Role of recombination and replication fork restart in repeat instability". DNA Repair 56 (agosto 2017): 156–65. http://dx.doi.org/10.1016/j.dnarep.2017.06.018.
Testo completoRaghunandan, Maya, Jung Eun Yeo, Ryan Walter, Kai Saito, Adam J. Harvey, Stacie Ittershagen, Eun-A. Lee et al. "Functional cross talk between the Fanconi anemia and ATRX/DAXX histone chaperone pathways promotes replication fork recovery". Human Molecular Genetics 29, n. 7 (19 ottobre 2019): 1083–95. http://dx.doi.org/10.1093/hmg/ddz250.
Testo completoBatenburg, Nicole L., Sofiane Y. Mersaoui, John R. Walker, Yan Coulombe, Ian Hammond-Martel, Hugo Wurtele, Jean-Yves Masson e Xu-Dong Zhu. "Cockayne syndrome group B protein regulates fork restart, fork progression and MRE11-dependent fork degradation in BRCA1/2-deficient cells". Nucleic Acids Research 49, n. 22 (6 dicembre 2021): 12836–54. http://dx.doi.org/10.1093/nar/gkab1173.
Testo completoFeu, Sonia, Fernando Unzueta, Amaia Ercilla, Alejandro Pérez-Venteo, Montserrat Jaumot e Neus Agell. "RAD51 is a druggable target that sustains replication fork progression upon DNA replication stress". PLOS ONE 17, n. 8 (15 agosto 2022): e0266645. http://dx.doi.org/10.1371/journal.pone.0266645.
Testo completoLiu, Wenpeng, Yuichiro Saito, Jessica Jackson, Rahul Bhowmick, Masato T. Kanemaki, Alessandro Vindigni e David Cortez. "RAD51 bypasses the CMG helicase to promote replication fork reversal". Science 380, n. 6643 (28 aprile 2023): 382–87. http://dx.doi.org/10.1126/science.add7328.
Testo completoMiyabe, Izumi, Ken'Ichi Mizuno, Andrea Keszthelyi, Yasukazu Daigaku, Meliti Skouteri, Saed Mohebi, Thomas A. Kunkel, Johanne M. Murray e Antony M. Carr. "Polymerase δ replicates both strands after homologous recombination–dependent fork restart". Nature Structural & Molecular Biology 22, n. 11 (5 ottobre 2015): 932–38. http://dx.doi.org/10.1038/nsmb.3100.
Testo completoSzyjka, S. J., J. G. Aparicio, C. J. Viggiani, S. Knott, W. Xu, S. Tavare e O. M. Aparicio. "Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae". Genes & Development 22, n. 14 (15 luglio 2008): 1906–20. http://dx.doi.org/10.1101/gad.1660408.
Testo completoCroquette, Vincent, Maria Manosas, Senthil K. Perumal e Stephen J. Benkovic. "Direct Observation of Stalled Fork Restart and Lesion Bypass via Fork Regression in the T4 Replication System". Biophysical Journal 104, n. 2 (gennaio 2013): 367a—368a. http://dx.doi.org/10.1016/j.bpj.2012.11.2042.
Testo completoLo, Calvin Shun Yu, Marvin van Toorn, Vincent Gaggioli, Mariana Paes Dias, Yifan Zhu, Eleni Maria Manolika, Wei Zhao et al. "SMARCAD1-mediated active replication fork stability maintains genome integrity". Science Advances 7, n. 19 (maggio 2021): eabe7804. http://dx.doi.org/10.1126/sciadv.abe7804.
Testo completoSchwab, Rebekka A., Jadwiga Nieminuszczy, Kazuo Shin-ya e Wojciech Niedzwiedz. "FANCJ couples replication past natural fork barriers with maintenance of chromatin structure". Journal of Cell Biology 201, n. 1 (25 marzo 2013): 33–48. http://dx.doi.org/10.1083/jcb.201208009.
Testo completoThakur, Varsha, Juliano Tiburcio de Freitas, Yuan Li, Keman Zhang, Alyssa Savadelis e Barbara Bedogni. "MT1-MMP-dependent ECM processing regulates laminB1 stability and mediates replication fork restart". PLOS ONE 16, n. 7 (8 luglio 2021): e0253062. http://dx.doi.org/10.1371/journal.pone.0253062.
Testo completoBatenburg, Nicole L., John R. Walker e Xu-Dong Zhu. "CSB Regulates Pathway Choice in Response to DNA Replication Stress Induced by Camptothecin". International Journal of Molecular Sciences 24, n. 15 (4 agosto 2023): 12419. http://dx.doi.org/10.3390/ijms241512419.
Testo completoChappidi, Nagaraja, Zuzana Nascakova, Barbora Boleslavska, Ralph Zellweger, Esin Isik, Martin Andrs, Shruti Menon et al. "Fork Cleavage-Religation Cycle and Active Transcription Mediate Replication Restart after Fork Stalling at Co-transcriptional R-Loops". Molecular Cell 77, n. 3 (febbraio 2020): 528–41. http://dx.doi.org/10.1016/j.molcel.2019.10.026.
Testo completoHromas, R., E. A. Williamson, S. Fnu, Y.-J. Lee, S.-J. Park, B. D. Beck, J.-S. You, A. Laitao, J. A. Nickoloff e S.-H. Lee. "Chk1 phosphorylation of Metnase enhances DNA repair but inhibits replication fork restart". Oncogene 31, n. 38 (9 gennaio 2012): 4245–54. http://dx.doi.org/10.1038/onc.2011.586.
Testo completoSchwab, Rebekka A., Andrew N. Blackford e Wojciech Niedzwiedz. "ATR activation and replication fork restart are defective in FANCM-deficient cells". EMBO Journal 29, n. 4 (7 gennaio 2010): 806–18. http://dx.doi.org/10.1038/emboj.2009.385.
Testo completoTittel-Elmer, Mireille, Armelle Lengronne, Marta B. Davidson, Julien Bacal, Philippe François, Marcel Hohl, John H. J. Petrini, Philippe Pasero e Jennifer A. Cobb. "Cohesin Association to Replication Sites Depends on Rad50 and Promotes Fork Restart". Molecular Cell 48, n. 1 (ottobre 2012): 98–108. http://dx.doi.org/10.1016/j.molcel.2012.07.004.
Testo completoWang, Yaqing, Zhiqiang Sun, Piero R. Bianco e Yuri L. Lyubchenko. "Atomic force microscopy–based characterization of the interaction of PriA helicase with stalled DNA replication forks". Journal of Biological Chemistry 295, n. 18 (24 marzo 2020): 6043–52. http://dx.doi.org/10.1074/jbc.ra120.013013.
Testo completoBolt, E. L. "Helicases that interact with replication forks: new candidates from archaea". Biochemical Society Transactions 33, n. 6 (26 ottobre 2005): 1471–73. http://dx.doi.org/10.1042/bst0331471.
Testo completoZellweger, Ralph, Damian Dalcher, Karun Mutreja, Matteo Berti, Jonas A. Schmid, Raquel Herrador, Alessandro Vindigni e Massimo Lopes. "Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells". Journal of Cell Biology 208, n. 5 (2 marzo 2015): 563–79. http://dx.doi.org/10.1083/jcb.201406099.
Testo completoBianco, Piero R. "DNA Helicase-SSB Interactions Critical to the Regression and Restart of Stalled DNA Replication Forks in Escherichia coli". Genes 11, n. 5 (26 aprile 2020): 471. http://dx.doi.org/10.3390/genes11050471.
Testo completoNickoloff, Jac A., Neelam Sharma, Lynn Taylor, Sage J. Allen e Robert Hromas. "Nucleases and Co-Factors in DNA Replication Stress Responses". DNA 2, n. 1 (1 marzo 2022): 68–85. http://dx.doi.org/10.3390/dna2010006.
Testo completoSingh, Mayank, Clayton R. Hunt, Raj K. Pandita, Rakesh Kumar, Chin-Rang Yang, Nobuo Horikoshi, Robert Bachoo et al. "Lamin A/C Depletion Enhances DNA Damage-Induced Stalled Replication Fork Arrest". Molecular and Cellular Biology 33, n. 6 (14 gennaio 2013): 1210–22. http://dx.doi.org/10.1128/mcb.01676-12.
Testo completoTanaka, Taku, Yasumasa Nishito e Hisao Masai. "Fork restart protein, PriA, binds around oriC after depletion of nucleotide precursors: Replication fork arrest near the replication origin". Biochemical and Biophysical Research Communications 470, n. 3 (febbraio 2016): 546–51. http://dx.doi.org/10.1016/j.bbrc.2016.01.108.
Testo completoBainbridge, Lewis J., Rebecca Teague e Aidan J. Doherty. "Repriming DNA synthesis: an intrinsic restart pathway that maintains efficient genome replication". Nucleic Acids Research 49, n. 9 (21 marzo 2021): 4831–47. http://dx.doi.org/10.1093/nar/gkab176.
Testo completoPatel, Darshil R., e Robert S. Weiss. "A tough row to hoe: when replication forks encounter DNA damage". Biochemical Society Transactions 46, n. 6 (4 dicembre 2018): 1643–51. http://dx.doi.org/10.1042/bst20180308.
Testo completoBatté, Amandine, Sophie C. van der Horst, Mireille Tittel-Elmer, Su Ming Sun, Sushma Sharma, Jolanda van Leeuwen, Andrei Chabes e Haico van Attikum. "Chl1 helicase controls replication fork progression by regulating dNTP pools". Life Science Alliance 5, n. 4 (11 gennaio 2022): e202101153. http://dx.doi.org/10.26508/lsa.202101153.
Testo completoHromas, R., E. A. Williamson, S. Fnu, Y.-J. Lee, S.-J. Park, B. D. Beck, J.-S. You, A. Leitao, J. A. Nickoloff e S.-H. Lee. "Erratum: Chk1 phosphorylation of Metnase enhances DNA repair but inhibits replication fork restart". Oncogene 33, n. 4 (gennaio 2014): 536. http://dx.doi.org/10.1038/onc.2013.510.
Testo completoStewart, Jason A., Feng Wang, Mary F. Chaiken, Christopher Kasbek, Paul D. Chastain, Woodring E. Wright e Carolyn M. Price. "Human CST promotes telomere duplex replication and general replication restart after fork stalling". EMBO Journal 31, n. 17 (3 agosto 2012): 3537–49. http://dx.doi.org/10.1038/emboj.2012.215.
Testo completoPomerantz, R. T., e M. O'Donnell. "Direct Restart of a Replication Fork Stalled by a Head-On RNA Polymerase". Science 327, n. 5965 (28 gennaio 2010): 590–92. http://dx.doi.org/10.1126/science.1179595.
Testo completoJones, Rebecca M., e Eva Petermann. "Replication fork dynamics and the DNA damage response". Biochemical Journal 443, n. 1 (14 marzo 2012): 13–26. http://dx.doi.org/10.1042/bj20112100.
Testo completoLee, Han-Sae, Hye-Ran Seo, Shin-Ai Lee, Soohee Choi, Dongmin Kang e Jongbum Kwon. "BAP1 promotes stalled fork restart and cell survival via INO80 in response to replication stress". Biochemical Journal 476, n. 20 (28 ottobre 2019): 3053–66. http://dx.doi.org/10.1042/bcj20190622.
Testo completoYates, Maïlyn, Isabelle Marois, Edlie St-Hilaire, Daryl A. Ronato, Billel Djerir, Chloé Brochu, Théo Morin et al. "SMARCAL1 ubiquitylation controls its association with RPA-coated ssDNA and promotes replication fork stability". PLOS Biology 22, n. 3 (19 marzo 2024): e3002552. http://dx.doi.org/10.1371/journal.pbio.3002552.
Testo completo