Letteratura scientifica selezionata sul tema "Fluxonium"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Fluxonium".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Fluxonium"
Rastelli, Gianluca, Mihajlo Vanević e Wolfgang Belzig. "Coherent dynamics in long fluxonium qubits". New Journal of Physics 17, n. 5 (18 maggio 2015): 053026. http://dx.doi.org/10.1088/1367-2630/17/5/053026.
Testo completoMoskalenko, I. N., I. S. Besedin, I. A. Tsitsilin, G. S. Mazhorin, N. N. Abramov, A. Grigor’ev, I. A. Rodionov et al. "Planar Architecture for Studying a Fluxonium Qubit". JETP Letters 110, n. 8 (ottobre 2019): 574–79. http://dx.doi.org/10.1134/s0021364019200074.
Testo completoManucharyan, V. E., J. Koch, L. I. Glazman e M. H. Devoret. "Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets". Science 326, n. 5949 (1 ottobre 2009): 113–16. http://dx.doi.org/10.1126/science.1175552.
Testo completoMoskalenko, I. N., I. S. Besedin, I. A. Simakov e A. V. Ustinov. "Tunable coupling scheme for implementing two-qubit gates on fluxonium qubits". Applied Physics Letters 119, n. 19 (8 novembre 2021): 194001. http://dx.doi.org/10.1063/5.0064800.
Testo completoSpilla, Samuele, Fabian Hassler, Anna Napoli e Janine Splettstoesser. "Dephasing due to quasiparticle tunneling in fluxonium qubits: a phenomenological approach". New Journal of Physics 17, n. 6 (16 giugno 2015): 065012. http://dx.doi.org/10.1088/1367-2630/17/6/065012.
Testo completoYang, Yuchen, Zhongtao Shen, Xing Zhu, Ziqi Wang, Gengyan Zhang, Jingwei Zhou, Xun Jiang, Chunqing Deng e Shubin Liu. "FPGA-based electronic system for the control and readout of superconducting quantum processors". Review of Scientific Instruments 93, n. 7 (1 luglio 2022): 074701. http://dx.doi.org/10.1063/5.0085467.
Testo completoGusenkova, Daria, Francesco Valenti, Martin Spiecker, Simon Günzler, Patrick Paluch, Dennis Rieger, Larisa-Milena Pioraş-Ţimbolmaş et al. "Operating in a deep underground facility improves the locking of gradiometric fluxonium qubits at the sweet spots". Applied Physics Letters 120, n. 5 (31 gennaio 2022): 054001. http://dx.doi.org/10.1063/5.0075909.
Testo completoGroszkowski, Peter, e Jens Koch. "Scqubits: a Python package for superconducting qubits". Quantum 5 (17 novembre 2021): 583. http://dx.doi.org/10.22331/q-2021-11-17-583.
Testo completoRaissi, F., e J. E. Nordman. "Josephson fluxonic diode". Applied Physics Letters 65, n. 14 (3 ottobre 1994): 1838–40. http://dx.doi.org/10.1063/1.112859.
Testo completoMilošević, M. V., G. R. Berdiyorov e F. M. Peeters. "Fluxonic cellular automata". Applied Physics Letters 91, n. 21 (19 novembre 2007): 212501. http://dx.doi.org/10.1063/1.2813047.
Testo completoTesi sul tema "Fluxonium"
Najera, Santos Baldo Luis. "Radio-frequency fluxonium superconducting qubit for AC-charge sensing applications". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS159.
Testo completoRadio-frequency fluxonium superconducting circuit for AC-charge sensing applicationsSuperconducting-circuits are artificial quantum systems whose properties can be engineered to match the requirements of each specific application. A typical superconducting circuit is engineered to have a sufficiently an-harmonic transition to be used as a qubit, which can be easily manipulated and read-out thanks to its strong (dipolar) interaction with electromagnetic fields. The property of having a strong dipole moment is particularly interesting for interfacing a superconducting circuit with other quantum systems. For instance, fluorescence from individual electronic spins was successfully detected using a superconducting qubit-based microwave-photon detector operating in the 5-10 GHz band. In the realm of circuit quantum acousto-dynamics (cQAD), the coupling between a qubit and a piezoelectric resonator is used to detect and manipulate the phononic state, typically within the 2-10 GHz range. However, adapting these sensing schemes to lower frequencies, below the conventional operating frequency of superconducting qubits, introduces distinct challenges. First, superconducting qubits are read out thanks to the dispersive shift imparted to a nearby superconducting resonator. As the dispersive shift quickly drops for a cavity detuning exceeding the qubit anharmonicity, weakly anharmonic qubits, such as transmons, require nearly resonant resonators with dimensions scaling inversely with the frequency (as an illustration, a 1 MHz λ/2-coplanar cavity requires a 100-m-long waveguide). Second, low-frequency systems are coupled to a hot thermal bath with which they exchange photons randomly, quickly turning pure quantum states into statistical mixtures. The fluxonium qubit, composed of a Josephson junction shunted simultaneously by a large inductance and a capacitance, presents unique opportunities in the realm of low-frequency superconducting qubits.In this work, we demonstrate a heavy fluxonium with an unprecedentedly low transition frequency of 1.8 MHz, while maintaining the ability to manipulate and read out the qubit using standard microwave techniques. This is made possible by the highly non-linear energy spectrum of the fluxonium, where the first transition occurs in the MHz range while transitions to higher excited states are within the 3-10 GHz range. We successfully demonstrate resolved sideband cooling of the fluxonium, reducing its effective temperature to 23 μK and achieving a ground state population of 97.7%. Our experiments further reveal the qubit's coherent manipulation capabilities, with coherence times of T1=34 μs and T2*=39 μs, along with reliable single-shot state readout.We furthermore demonstrate the qubit's enhanced sensitivity to radio-frequency fields, achieved through direct interaction with a capacitively coupled waveguide. By employing cyclic preparation and measurement protocols, we transform the fluxonium into a precise frequency-resolved charge sensor, boasting a charge sensitivity of 33 μe/√Hz. This translates to an energy sensitivity of 2.8ℏ per hertz, rivaling state-of-the-art transport-based sensors while remaining inherently resistant to dc-charge noise. The large gate-capacitance of our fluxonium-based charge sensor (~50 fF) is highly beneficial in real-world charge sensing applications, where the sensitivity gets diluted when the self-capacitance of the probed system exceeds that of the sensor. This work paves the way for new experimental investigations into quantum phenomena within the 1-10 MHz range, including the strong-coupling regime with macroscopic mechanical resonators
Atti di convegni sul tema "Fluxonium"
Ozguler, A., Vladimir Manucharyan e Maxim Vavilov. "Excitation dynamics in galvanically coupled fluxonium circuits". In Excitation dynamics in galvanically coupled fluxonium circuits. US DOE, 2021. http://dx.doi.org/10.2172/1779479.
Testo completoGebauer, Richard, Nick Karcher, Daria Gusenkova, Martin Spiecker, Lukas Grünhaupt, Ivan Takmakov, Patrick Winkel et al. "State preparation of a fluxonium qubit with feedback from a custom FPGA-based platform". In FIFTH INTERNATIONAL CONFERENCE ON QUANTUM TECHNOLOGIES (ICQT-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0011721.
Testo completoGuevel, Loïck Le, Chen Wang e Joseph C. Bardin. "29.1 A 22nm FD-SOI <1.2mW/Active-Qubit AWG-Free Cryo-CMOS Controller for Fluxonium Qubits". In 2024 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 2024. http://dx.doi.org/10.1109/isscc49657.2024.10454522.
Testo completoKunert, Juergen, Oliver Brandel, Sven Linzen, Torsten May, Ronny Stolz e Hans-Georg Meyer. "Superconductor digital electronics technology for sensor interfacing at the FLUXONICS Foundry". In 2014 11th International Workshop on Low Temperature Electronics (WOLTE). IEEE, 2014. http://dx.doi.org/10.1109/wolte.2014.6881021.
Testo completo