Articoli di riviste sul tema "Fluid-structure interaction"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Fluid-structure interaction.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Fluid-structure interaction".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Xing, Jing Tang. "Fluid-Structure Interaction". Strain 39, n. 4 (novembre 2003): 186–87. http://dx.doi.org/10.1046/j.0039-2103.2003.00067.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Bazilevs, Yuri, Kenji Takizawa e Tayfun E. Tezduyar. "Fluid–structure interaction". Computational Mechanics 55, n. 6 (10 maggio 2015): 1057–58. http://dx.doi.org/10.1007/s00466-015-1162-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Lee, Kyoungsoo, Ziaul Huque, Raghava Kommalapati e Sang-Eul Han. "The Evaluation of Aerodynamic Interaction of Wind Blade Using Fluid Structure Interaction Method". Journal of Clean Energy Technologies 3, n. 4 (2015): 270–75. http://dx.doi.org/10.7763/jocet.2015.v3.207.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Ortiz, Jose L., e Alan A. Barhorst. "Modeling Fluid-Structure Interaction". Journal of Guidance, Control, and Dynamics 20, n. 6 (novembre 1997): 1221–28. http://dx.doi.org/10.2514/2.4180.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Ko, Sung H. "Structure–fluid interaction problems". Journal of the Acoustical Society of America 88, n. 1 (luglio 1990): 367. http://dx.doi.org/10.1121/1.399912.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Semenov, Yuriy A. "Fluid/Structure Interactions". Journal of Marine Science and Engineering 10, n. 2 (26 gennaio 2022): 159. http://dx.doi.org/10.3390/jmse10020159.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Takizawa, Kenji, Yuri Bazilevs e Tayfun E. Tezduyar. "Computational fluid mechanics and fluid–structure interaction". Computational Mechanics 50, n. 6 (18 settembre 2012): 665. http://dx.doi.org/10.1007/s00466-012-0793-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Bazilevs, Yuri, Kenji Takizawa e Tayfun E. Tezduyar. "Biomedical fluid mechanics and fluid–structure interaction". Computational Mechanics 54, n. 4 (15 luglio 2014): 893. http://dx.doi.org/10.1007/s00466-014-1056-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Souli, M., K. Mahmadi e N. Aquelet. "ALE and Fluid Structure Interaction". Materials Science Forum 465-466 (settembre 2004): 143–50. http://dx.doi.org/10.4028/www.scientific.net/msf.465-466.143.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Chung, H., e M. D. Bernstein. "Topics in Fluid Structure Interaction". Journal of Pressure Vessel Technology 107, n. 1 (1 febbraio 1985): 99. http://dx.doi.org/10.1115/1.3264418.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

van Rij, J., T. Harman e T. Ameel. "Slip flow fluid-structure-interaction". International Journal of Thermal Sciences 58 (agosto 2012): 9–19. http://dx.doi.org/10.1016/j.ijthermalsci.2012.03.001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Izadpanah, Kamran, Robert L. Harder, Raj Kansakar e Mike Reymond. "Coupled fluid-structure interaction analysis". Finite Elements in Analysis and Design 7, n. 4 (febbraio 1991): 331–42. http://dx.doi.org/10.1016/0168-874x(91)90049-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Hsiao, George C., Francisco-Javier Sayas e Richard J. Weinacht. "Time-dependent fluid-structure interaction". Mathematical Methods in the Applied Sciences 40, n. 2 (19 marzo 2015): 486–500. http://dx.doi.org/10.1002/mma.3427.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Tijsseling, A. S., e C. S. W. Lavooij. "Waterhammer with fluid-structure interaction". Applied Scientific Research 47, n. 3 (luglio 1990): 273–85. http://dx.doi.org/10.1007/bf00418055.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Jensen, J. S. "FLUID TRANSPORT DUE TO NONLINEAR FLUID–STRUCTURE INTERACTION". Journal of Fluids and Structures 11, n. 3 (aprile 1997): 327–44. http://dx.doi.org/10.1006/jfls.1996.0080.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Bathe, Klaus-Ju¨rgen. "Fluid-structure Interactions". Mechanical Engineering 120, n. 04 (1 aprile 1998): 66–68. http://dx.doi.org/10.1115/1.1998-apr-4.

Testo completo
Abstract (sommario):
This article reviews finite element methods that are widely used in the analysis of solids and structures, and they provide great benefits in product design. In fact, with today’s highly competitive design and manufacturing markets, it is nearly impossible to ignore the advances that have been made in the computer analysis of structures without losing an edge in innovation and productivity. Various commercial finite-element programs are widely used and have proven to be indispensable in designing safer, more economical products. Applications of acoustic-fluid/structure interactions are found whenever the fluid can be modeled to be inviscid and to undergo only relatively small particle motions. The interplay between finite-element modeling and analysis with the recognition and understanding of new physical phenomena will advance the understanding of physical processes. This will lead to increasingly better simulations. Based on current technology and realistic expectations of further hardware and software developments, a tremendous future for fluid–structure interaction applications lies ahead.
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Rafatpanah, Ramin M., e Jianfeng Yang. "ICONE23-1732 SIMULATING FLUID-STRUCTURE INTERACTION UTILIZING THREE-DIMENSIONAL ACOUSTIC FLUID ELEMENTS FOR REACTOR EQUIPMENT SYSTEM MODEL". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_362.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Toma, Milan, Rosalyn Chan-Akeley, Jonathan Arias, Gregory D. Kurgansky e Wenbin Mao. "Fluid–Structure Interaction Analyses of Biological Systems Using Smoothed-Particle Hydrodynamics". Biology 10, n. 3 (2 marzo 2021): 185. http://dx.doi.org/10.3390/biology10030185.

Testo completo
Abstract (sommario):
Due to the inherent complexity of biological applications that more often than not include fluids and structures interacting together, the development of computational fluid–structure interaction models is necessary to achieve a quantitative understanding of their structure and function in both health and disease. The functions of biological structures usually include their interactions with the surrounding fluids. Hence, we contend that the use of fluid–structure interaction models in computational studies of biological systems is practical, if not necessary. The ultimate goal is to develop computational models to predict human biological processes. These models are meant to guide us through the multitude of possible diseases affecting our organs and lead to more effective methods for disease diagnosis, risk stratification, and therapy. This review paper summarizes computational models that use smoothed-particle hydrodynamics to simulate the fluid–structure interactions in complex biological systems.
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Lefrançois, Emmanuel. "Fluid-structure interaction in rocket engines". European Journal of Computational Mechanics 19, n. 5-7 (gennaio 2010): 637–52. http://dx.doi.org/10.3166/ejcm.19.637-652.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Chen, Wenli, Zifeng Yang, Gang Hu, Haiquan Jing e Junlei Wang. "New Advances in Fluid–Structure Interaction". Applied Sciences 12, n. 11 (26 maggio 2022): 5366. http://dx.doi.org/10.3390/app12115366.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Meywerk, M., F. Decker e J. Cordes. "Fluid-structure interaction in crash simulation". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 214, n. 7 (luglio 2000): 669–73. http://dx.doi.org/10.1243/0954407001527547.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Lohner, R., J. Cebral, Chi Yang, J. D. Baum, E. Mestreau, C. Charman e D. Pelessone. "Large-scale fluid-structure interaction simulations". Computing in Science & Engineering 6, n. 3 (maggio 2004): 27–37. http://dx.doi.org/10.1109/mcise.2004.1289306.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Oden, J. T., L. Demkowicz e J. Bennighof. "Fluid-Structure Interaction in Underwater Acoustics". Applied Mechanics Reviews 43, n. 5S (1 maggio 1990): S374—S380. http://dx.doi.org/10.1115/1.3120843.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Benaroya, Haym, e Rene D. Gabbai. "Modelling vortex-induced fluid–structure interaction". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, n. 1868 (5 novembre 2007): 1231–74. http://dx.doi.org/10.1098/rsta.2007.2130.

Testo completo
Abstract (sommario):
The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid–structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid–structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion. Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid–structure interaction models entails formulating generalized equations of motion, as a superset of the flow-oscillator models; and developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion. The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier–Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Souli, Mhamed, e Nicolas Aquelet. "Fluid Structure Interaction for Hydraulic Problems". La Houille Blanche, n. 6 (dicembre 2011): 5–10. http://dx.doi.org/10.1051/lhb/2011054.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Benyahia, Nabil, e Ferhat Souidi. "Fluid-structure interaction in pipe flow". Progress in Computational Fluid Dynamics, An International Journal 7, n. 6 (2007): 354. http://dx.doi.org/10.1504/pcfd.2007.014685.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Chakraborty, Debadi, J. Ravi Prakash, James Friend e Leslie Yeo. "Fluid-structure interaction in deformable microchannels". Physics of Fluids 24, n. 10 (ottobre 2012): 102002. http://dx.doi.org/10.1063/1.4759493.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

TAKIZAWA, KENJI, e TAYFUN E. TEZDUYAR. "SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS". Mathematical Models and Methods in Applied Sciences 22, supp02 (25 luglio 2012): 1230001. http://dx.doi.org/10.1142/s0218202512300013.

Testo completo
Abstract (sommario):
Since its introduction in 1991 for computation of flow problems with moving boundaries and interfaces, the Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST) formulation has been applied to a diverse set of challenging problems. The classes of problems computed include free-surface and two-fluid flows, fluid–object, fluid–particle and fluid–structure interaction (FSI), and flows with mechanical components in fast, linear or rotational relative motion. The DSD/SST formulation, as a core technology, is being used for some of the most challenging FSI problems, including parachute modeling and arterial FSI. Versions of the DSD/SST formulation introduced in recent years serve as lower-cost alternatives. More recent variational multiscale (VMS) version, which is called DSD/SST-VMST (and also ST-VMS), has brought better computational accuracy and serves as a reliable turbulence model. Special space–time FSI techniques introduced for specific classes of problems, such as parachute modeling and arterial FSI, have increased the scope and accuracy of the FSI modeling in those classes of computations. This paper provides an overview of the core space–time FSI technique, its recent versions, and the special space–time FSI techniques. The paper includes test computations with the DSD/SST-VMST technique.
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Gorla, Rama Subba Reddy, Shantaram S. Pai e Jeffrey J. Rusick. "Probabilistic study of fluid structure interaction". International Journal of Engineering Science 41, n. 3-5 (marzo 2003): 271–82. http://dx.doi.org/10.1016/s0020-7225(02)00205-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Haase, Werner. "Unsteady aerodynamics including fluid/structure interaction". Air & Space Europe 3, n. 3-4 (maggio 2001): 83–86. http://dx.doi.org/10.1016/s1290-0958(01)90063-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Casoni, Eva, Guillaume Houzeaux e Mariano Vázquez. "Parallel Aspects of Fluid-structure Interaction". Procedia Engineering 61 (2013): 117–21. http://dx.doi.org/10.1016/j.proeng.2013.07.103.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Degroote, Joris. "Partitioned Simulation of Fluid-Structure Interaction". Archives of Computational Methods in Engineering 20, n. 3 (14 luglio 2013): 185–238. http://dx.doi.org/10.1007/s11831-013-9085-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Griffith, Boyce E., e Neelesh A. Patankar. "Immersed Methods for Fluid–Structure Interaction". Annual Review of Fluid Mechanics 52, n. 1 (5 gennaio 2020): 421–48. http://dx.doi.org/10.1146/annurev-fluid-010719-060228.

Testo completo
Abstract (sommario):
Fluid–structure interaction is ubiquitous in nature and occurs at all biological scales. Immersed methods provide mathematical and computational frameworks for modeling fluid–structure systems. These methods, which typically use an Eulerian description of the fluid and a Lagrangian description of the structure, can treat thin immersed boundaries and volumetric bodies, and they can model structures that are flexible or rigid or that move with prescribed deformational kinematics. Immersed formulations do not require body-fitted discretizations and thereby avoid the frequent grid regeneration that can otherwise be required for models involving large deformations and displacements. This article reviews immersed methods for both elastic structures and structures with prescribed kinematics. It considers formulations using integral operators to connect the Eulerian and Lagrangian frames and methods that directly apply jump conditions along fluid–structure interfaces. Benchmark problems demonstrate the effectiveness of these methods, and selected applications at Reynolds numbers up to approximately 20,000 highlight their impact in biological and biomedical modeling and simulation.
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Kamakoti, Ramji, e Wei Shyy. "Fluid–structure interaction for aeroelastic applications". Progress in Aerospace Sciences 40, n. 8 (novembre 2004): 535–58. http://dx.doi.org/10.1016/j.paerosci.2005.01.001.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Han, Luhui, e Xiangyu Hu. "SPH modeling of fluid-structure interaction". Journal of Hydrodynamics 30, n. 1 (febbraio 2018): 62–69. http://dx.doi.org/10.1007/s42241-018-0006-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Dumitrache, C. L., e D. Deleanu. "Sloshing effect, Fluid Structure Interaction analysis". IOP Conference Series: Materials Science and Engineering 916 (11 settembre 2020): 012030. http://dx.doi.org/10.1088/1757-899x/916/1/012030.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Samuelides, E., e P. A. Frieze. "Fluid-structure interaction in ship collisions". Marine Structures 2, n. 1 (gennaio 1989): 65–88. http://dx.doi.org/10.1016/0951-8339(89)90024-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Jung, Sunghwan, e Ramiro Godoy-Diana. "Special issue: bioinspired fluid-structure interaction". Bioinspiration & Biomimetics 18, n. 3 (3 aprile 2023): 030401. http://dx.doi.org/10.1088/1748-3190/acc778.

Testo completo
Abstract (sommario):
Abstract Fluid-structure interaction (FSI) studies the interaction between fluid and solid objects. It helps understand how fluid motion affects solid objects and vice versa. FSI research is important in engineering applications such as aerodynamics, hydrodynamics, and structural analysis. It has been used to design efficient systems such as ships, aircraft, and buildings. FSI in biological systems has gained interest in recent years for understanding how organisms interact with their fluidic environment. Our special issue features papers on various biological and bio-inspired FSI problems. Papers in this special issue cover topics ranging from flow physics to optimization and diagonistics. These papers offer new insights into natural systems and inspire the development of new technologies based on natural principles.
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Hou, Gene, Jin Wang e Anita Layton. "Numerical Methods for Fluid-Structure Interaction — A Review". Communications in Computational Physics 12, n. 2 (agosto 2012): 337–77. http://dx.doi.org/10.4208/cicp.291210.290411s.

Testo completo
Abstract (sommario):
AbstractThe interactions between incompressible fluid flows and immersed structures are nonlinear multi-physics phenomena that have applications to a wide range of scientific and engineering disciplines. In this article, we review representative numerical methods based on conforming and non-conforming meshes that are currently available for computing fluid-structure interaction problems, with an emphasis on some of the recent developments in the field. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study in fluid-structure interactions.
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Nho, In-Sik, e Sang-Mook Shin. "Fluid-Structure Interaction Analysis for Structure in Viscous Flow". Journal of the Society of Naval Architects of Korea 45, n. 2 (20 aprile 2008): 168–74. http://dx.doi.org/10.3744/snak.2008.45.2.168.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Liu, Tiegang, A. W. Chowdhury e Boo Cheong Khoo. "The Modified Ghost Fluid Method Applied to Fluid-Elastic Structure Interaction". Advances in Applied Mathematics and Mechanics 3, n. 5 (ottobre 2011): 611–32. http://dx.doi.org/10.4208/aamm.10-m1054.

Testo completo
Abstract (sommario):
AbstractIn this work, the modified ghost fluid method is developed to deal with 2D compressible fluid interacting with elastic solid in an Euler-Lagrange coupled system. In applying the modified Ghost Fluid Method to treat the fluid-elastic solid coupling, the Navier equations for elastic solid are cast into a system similar to the Euler equations but in Lagrangian coordinates. Furthermore, to take into account the influence of material deformation and nonlinear wave interaction at the interface, an Euler-Lagrange Riemann problem is constructed and solved approximately along the normal direction of the interface to predict the interfacial status and then define the ghost fluid and ghost solid states. Numerical tests are presented to verify the resultant method.
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Huerta, A., e W. K. Liu. "Viscous Flow Structure Interaction". Journal of Pressure Vessel Technology 110, n. 1 (1 febbraio 1988): 15–21. http://dx.doi.org/10.1115/1.3265561.

Testo completo
Abstract (sommario):
Considerable research activities in vibration and seismic analysis for various fluid-structure systems have been carried out in the past two decades. Most of the approaches are formulated within the framework of finite elements, and the majority of work deals with inviscid fluids. However, there has been little work done in the area of fluid-structure interaction problems accounting for flow separation and nonlinear phenomenon of steady streaming. In this paper, the Arbitrary Lagrangian Eulerian (ALE) finite element method is extended to address the flow separation and nonlinear phenomenon of steady streaming for arbitrarily shaped bodies undergoing large periodic motion in a viscous fluid. The results are designed to evaluate the fluid force acting on the body; thus, the coupled rigid body-viscous flow problem can be simplified to a standard structural problem using the concept of added mass and added damping. Formulas for these two constants are given for the particular case of a cylinder immersed in an infinite viscous fluid. The finite element modeling is based on a pressure-velocity mixed formulation and a streamline upwind Petrov/Galerkin technique. All computations are performed using a personal computer.
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Wang, Xiaolin, Ken Kamrin e Chris H. Rycroft. "An incompressible Eulerian method for fluid–structure interaction with mixed soft and rigid solids". Physics of Fluids 34, n. 3 (marzo 2022): 033604. http://dx.doi.org/10.1063/5.0082233.

Testo completo
Abstract (sommario):
We present a general simulation approach for incompressible fluid–structure interactions in a fully Eulerian framework using the reference map technique. The approach is suitable for modeling one or more rigid or finitely deformable objects or soft objects with rigid components interacting with the fluid and with each other. It is also extended to control the kinematics of structures in fluids. The model is based on our previous Eulerian fluid–soft solver [Rycroft et al., “Reference map technique for incompressible fluid–structure interaction,” J. Fluid Mech. 898, A9 (2020)] and generalized to rigid structures by constraining the deformation-rate tensor in a projection framework. Several numerical examples are presented to illustrate the capability of the method.
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Tchieu, A. A., D. Crowdy e A. Leonard. "Fluid-structure interaction of two bodies in an inviscid fluid". Physics of Fluids 22, n. 10 (ottobre 2010): 107101. http://dx.doi.org/10.1063/1.3485063.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Hamdan, F. H. "Near-field fluid–structure interaction using Lagrangian fluid finite elements". Computers & Structures 71, n. 2 (aprile 1999): 123–41. http://dx.doi.org/10.1016/s0045-7949(98)00298-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Yang, Liang. "One-fluid formulation for fluid–structure interaction with free surface". Computer Methods in Applied Mechanics and Engineering 332 (aprile 2018): 102–35. http://dx.doi.org/10.1016/j.cma.2017.12.016.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Bazilevs, Yuri, Kenji Takizawa e Tayfun E. Tezduyar. "Special issue on computational fluid mechanics and fluid–structure interaction". Computational Mechanics 48, n. 3 (8 luglio 2011): 245. http://dx.doi.org/10.1007/s00466-011-0621-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Leary, P. C. "Relating microscale rock-fluid interaction to macroscale fluid flow structure". Geological Society, London, Special Publications 147, n. 1 (1998): 243–60. http://dx.doi.org/10.1144/gsl.sp.1998.147.01.16.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Sheldon Wang, X., Ye Yang e TaoWu. "Model Studies of Fluid-Structure Interaction Problems". Computer Modeling in Engineering & Sciences 119, n. 1 (2019): 5–34. http://dx.doi.org/10.32604/cmes.2019.04204.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Li, Zhilin, X. Sheldon Wang e Lucy T. Zhang. "Preface: Simulation of Fluid-Structure Interaction Problems". Computer Modeling in Engineering & Sciences 119, n. 1 (2019): 1–3. http://dx.doi.org/10.32604/cmes.2019.06635.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia