Letteratura scientifica selezionata sul tema "Fluid-structure interaction"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Fluid-structure interaction".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Fluid-structure interaction"

1

Xing, Jing Tang. "Fluid-Structure Interaction". Strain 39, n. 4 (novembre 2003): 186–87. http://dx.doi.org/10.1046/j.0039-2103.2003.00067.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Bazilevs, Yuri, Kenji Takizawa e Tayfun E. Tezduyar. "Fluid–structure interaction". Computational Mechanics 55, n. 6 (10 maggio 2015): 1057–58. http://dx.doi.org/10.1007/s00466-015-1162-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Lee, Kyoungsoo, Ziaul Huque, Raghava Kommalapati e Sang-Eul Han. "The Evaluation of Aerodynamic Interaction of Wind Blade Using Fluid Structure Interaction Method". Journal of Clean Energy Technologies 3, n. 4 (2015): 270–75. http://dx.doi.org/10.7763/jocet.2015.v3.207.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Ortiz, Jose L., e Alan A. Barhorst. "Modeling Fluid-Structure Interaction". Journal of Guidance, Control, and Dynamics 20, n. 6 (novembre 1997): 1221–28. http://dx.doi.org/10.2514/2.4180.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Ko, Sung H. "Structure–fluid interaction problems". Journal of the Acoustical Society of America 88, n. 1 (luglio 1990): 367. http://dx.doi.org/10.1121/1.399912.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Semenov, Yuriy A. "Fluid/Structure Interactions". Journal of Marine Science and Engineering 10, n. 2 (26 gennaio 2022): 159. http://dx.doi.org/10.3390/jmse10020159.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Takizawa, Kenji, Yuri Bazilevs e Tayfun E. Tezduyar. "Computational fluid mechanics and fluid–structure interaction". Computational Mechanics 50, n. 6 (18 settembre 2012): 665. http://dx.doi.org/10.1007/s00466-012-0793-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Bazilevs, Yuri, Kenji Takizawa e Tayfun E. Tezduyar. "Biomedical fluid mechanics and fluid–structure interaction". Computational Mechanics 54, n. 4 (15 luglio 2014): 893. http://dx.doi.org/10.1007/s00466-014-1056-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Souli, M., K. Mahmadi e N. Aquelet. "ALE and Fluid Structure Interaction". Materials Science Forum 465-466 (settembre 2004): 143–50. http://dx.doi.org/10.4028/www.scientific.net/msf.465-466.143.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Chung, H., e M. D. Bernstein. "Topics in Fluid Structure Interaction". Journal of Pressure Vessel Technology 107, n. 1 (1 febbraio 1985): 99. http://dx.doi.org/10.1115/1.3264418.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Fluid-structure interaction"

1

Mawson, Mark. "Interactive fluid-structure interaction with many-core accelerators". Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/interactive-fluidstructure-interaction-with-manycore-accelerators(a4fc2068-bac7-4511-960d-41d2560a0ea1).html.

Testo completo
Abstract (sommario):
The use of accelerator technology, particularly Graphics Processing Units (GPUs), for scientific computing has increased greatly over the last decade. While this technology allows larger and more complicated problems to be solved faster than before it also presents another opportunity: the real-time and interactive solution of problems. This work aims to investigate the progress that GPU technology has made towards allowing fluid-structure interaction (FSI) problems to be solved in real-time, and to facilitate user interaction with such a solver. A mesoscopic scale fluid flow solver is implemented on third generation nVidia ‘Kepler’ GPUs in two and three dimensions, and its performance studied and compared with existing literature. Following careful optimisation the solvers are found to be at least as efficient as existing work, reaching peak efficiencies of 93% compared with theoretical values. These solvers are then coupled with a novel immersed boundary method, allowing boundaries defined at arbitrary coordinates to interact with the structured fluid domain through a set of singular forces. The limiting factor of the performance of this method is found to be the integration of forces and velocities over the fluid and boundaries; the arbitrary location of boundary markers makes the memory accesses during these integrations largely random, leading to poor utilisation of the available memory bandwidth. In sample cases, the efficiency of the method is found to be as low as 2.7%, although in most scenarios this inefficiency is masked by the fact that the time taken to evolve the fluid flow dominates the overall execution time of the solver. Finally, techniques to visualise the fluid flow in-situ are implemented, and used to allow user interaction with the solvers. Initially this is achieved via keyboard and mouse to control the fluid properties and create boundaries within the fluid, and later by using an image based depth sensor to import real world geometry into the fluid. The work concludes that, for 2D problems, real-time interactive FSI solvers can be implemented on a single laptop-based GPU. In 3D the memory (both size and bandwidth) of the GPU limits the solver to relatively simple cases. Recommendations for future work to allow larger and more complicated test cases to be solved in real-time are then made to complete the work.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Altstadt, Eberhard, Helmar Carl e Rainer Weiß. "Fluid-Structure Interaction Investigations for Pipelines". Forschungszentrum Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-28993.

Testo completo
Abstract (sommario):
The influence of the fluid-structure interaction on the magnitude fo the loads on pipe walls and support structures is not yet completely understood. In case of a dynamic load caused by a pressure wave, the stresses in pipe walls, especially in bends, are different from the static case.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Plessas, Spyridon D. "Fluid-structure interaction in composite structures". Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/41432.

Testo completo
Abstract (sommario):
Approved for public release; distribution is unlimited.
In this research, dynamic characteristics of polymer composite beam and plate structures were studied when the structures were in contact with water. The effect of fluid-structure interaction (FSI) on natural frequencies, mode shapes, and dynamic responses was examined for polymer composite structures using multiphysics-based computational techniques. Composite structures were modeled using the finite element method. The fluid was modeled as an acoustic medium using the cellular automata technique. Both techniques were coupled so that both fluid and structure could interact bi-directionally. In order to make the coupling easier, the beam and plate finite elements have only displacement degrees of freedom but no rotational degrees of freedom. The fast Fourier transform (FFT) technique was applied to the transient responses of the composite structures with and without FSI, respectively, so that the effect of FSI can be examined by comparing the two results. The study showed that the effect of FSI is significant on dynamic properties of polymer composite structures. Some previous experimental observations were confirmed using the results from the computer simulations, which also enhanced understanding the effect of FSI on dynamic responses of composite structures.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Randall, Richard John. "Fluid-structure interaction of submerged shells". Thesis, Brunel University, 1990. http://bura.brunel.ac.uk/handle/2438/5446.

Testo completo
Abstract (sommario):
A general three-dimensional hydroelasticity theory for the evaluation of responses has been adapted to formulate hydrodynamic coefficients for submerged shell-type structures. The derivation of the theory has been presented and is placed in context with other methods of analysis. The ability of this form of analysis to offer an insight into the physical behaviour of practical systems is demonstrated. The influence of external boundaries and fluid viscosity was considered separately using a flexible cylinder as the model. When the surrounding fluid is water, viscosity was assessed to be significant for slender structural members and flexible pipes and in situations where the clearance to an outer casing was slight. To validate the three-dimensional hydroelasticity theory, predictions of resonance frequencies and mode shapes were compared, with measured data from trials undertaken in enclosed tanks. These data exhibited differences due to the position of the test structures in relation to free and fixed boundaries. The rationale of the testing programme and practical considerations of instrumentation, capture and storage of data are described in detail. At first sight a relatively unsophisticated analytical method appeared to offer better correlation with the measured data than the hydroelastic solution. This impression was mistaken, the agreement was merely fortuitous as only the hydroelastic approach is capable of reproducing-the trends recorded in the experiments. The significance of an accurate dynamic analysis using finite elements and the influence of physical factors such as buoyancy on the predicted results are also examined.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Giannopapa, Christina-Grigoria. "Fluid structure interaction in flexible vessels". Thesis, King's College London (University of London), 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.413425.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Wright, Stewart Andrew. "Aspects of unsteady fluid-structure interaction". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621939.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Altstadt, Eberhard, Helmar Carl e Rainer Weiß. "Fluid-Structure Interaction Investigations for Pipelines". Forschungszentrum Rossendorf, 2003. https://hzdr.qucosa.de/id/qucosa%3A21726.

Testo completo
Abstract (sommario):
The influence of the fluid-structure interaction on the magnitude fo the loads on pipe walls and support structures is not yet completely understood. In case of a dynamic load caused by a pressure wave, the stresses in pipe walls, especially in bends, are different from the static case.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Holder, Justin. "Fluid Structure Interaction in Compressible Flows". University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin159584692691518.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Paton, Jonathan. "Computational fluid dynamics and fluid structure interaction of yacht sails". Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/14036/.

Testo completo
Abstract (sommario):
This thesis focuses on the numerical simulation of yacht sails using both computational fluid dynamics (CFD) and fluid structure interaction (FSI) modelling. The modelling of yacht sails using RANS based CFD and the SST turbulence model is justified with validation against wind tunnel studies (Collie, 2005; Wilkinson, 1983). The CFD method is found to perform well, with the ability to predict flow separation, velocity and pressure profiles satisfactorily. This work is extended to look into multiple sail interaction and the impact of the mast upon performance. A FSI solution is proposed next, coupling viscous RANS based CFD and a structural code capable of modelling anistropic laminate sails (RELAX, 2009). The aim of this FSI solution is to offer the ability to investigate sails' performance and flying shapes more accurately than with current methods. The FSI solution is validated with the comparison to flying shapes of offwind sails from a bespoke wind tunnel experiment carried out at the University of Nottingham. The method predicted offwind flying shapes to a greater level of accuracy than previous methods. Finally the CFD and FSI solution described here above is showcased and used to model a full scale Volvo Open 70 racing yacht, including multiple offwind laminate sails, mast, hull, deck and twisted wind profile. The model is used to demonstrate the potential of viscous CFD and FSI to predict performance and aid in the design of high performance sails and yachts. The method predicted flying shapes and performance through a range of realistic sail trims providing valuable data for crews, naval architects and sail designers.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Gregson, James. "Fluid-structure interaction simulations in liquid-lead". Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/12340.

Testo completo
Abstract (sommario):
An Eulerian compressible flow solver suitable for simulating liquid-lead flows involving fluid-structure interaction, cavitation and free surfaces was developed and applied to investigation of a magnetized target fusion reactor concept. The numerical methods used and results of common test cases are presented. Simulations were then performed to assess the smoothing properties of interacting mechanically generated shocks in liquid lead, as well as the early-time collapse behavior of cavities due to free surface reflection of such shocks. An empirical formula to estimate shock smoothness based on the shock smoothing results is presented, and issues related to shock driven cavity collapse in liquid liner magnetized target fusion reactors are presented and discussed.
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Fluid-structure interaction"

1

Bungartz, Hans-Joachim, e Michael Schäfer, a cura di. Fluid-Structure Interaction. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-34596-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Sigrist, Jean-François. Fluid-Structure Interaction. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781118927762.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

1941-, Chakrabarti Subrata K., e Brebbia C. A, a cura di. Fluid structure interaction. Southampton: WIT Press, 2001.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Bazilevs, Yuri, Kenji Takizawa e Tayfun E. Tezduyar. Computational Fluid-Structure Interaction. Chichester, UK: John Wiley & Sons, Ltd, 2013. http://dx.doi.org/10.1002/9781118483565.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Bungartz, Hans-Joachim, Miriam Mehl e Michael Schäfer, a cura di. Fluid Structure Interaction II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14206-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

International Conference on Fluid Structure Interaction (5th 2009 Chersonēsos, Crete, Greece). Fluid structure interaction V. A cura di Brebbia C. A e Wessex Institute of Technology. Southampton: WIT, 2009.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

R, Ohayon, e United States. National Aeronautics and Space Administration., a cura di. Coupled fluid-structure interaction. [Washington, DC]: National Aeronautics and Space Administration, 1991.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

International Conference on Fluid Structure Interaction (2nd 2003 Cadiz, Spain). Fluid structure interaction II. Southampton: WIT, 2003.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Canary Islands) International Conference on Fluid Structure Interaction (7th 2013 Las Palmas. Fluid structure interaction VII. A cura di Brebbia C. A, Rodríguez G. R e Wessex Institute of Technology. Southampton: WIT Press, 2013.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

International Conference on Fluid Structure Interaction (6th 2011 Orlando, Fla.). Fluid structure interaction VI. A cura di Kassab, A. (Alain J.). Southampton, UK: WIT Press, 2011.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Fluid-structure interaction"

1

Dolejší, Vít, e Miloslav Feistauer. "Fluid-Structure Interaction". In Discontinuous Galerkin Method, 521–51. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19267-3_10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Doyle, James F. "Structure-Fluid Interaction". In Wave Propagation in Structures, 243–74. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1832-6_8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Kleinstreuer, Clement. "Fluid–Structure Interaction". In Fluid Mechanics and Its Applications, 435–79. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8670-0_8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Souli, Mhamed. "Fluid-Structure Interaction". In Arbitrary Lagrangian-Eulerian and Fluid-Structure Interaction, 51–108. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118557884.ch2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Yang, Z. "Fluid-Structure Interaction". In Multiphysics Modeling with Application to Biomedical Engineering, 55–73. Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9780367510800-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Tu, Jiyuan, Kiao Inthavong e Kelvin Kian Loong Wong. "Computational Fluid Structure Interaction". In Computational Hemodynamics – Theory, Modelling and Applications, 95–154. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9594-4_5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Brebbia, C. A. "Fluid Structure Interaction Problems". In Vibrations of Engineering Structures, 225–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82390-9_13.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Berezin, Ihor, Prasanta Sarkar e Jacek Malecki. "Fluid–Structure Interaction Simulation". In Recent Progress in Flow Control for Practical Flows, 263–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50568-8_14.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Liu, Zhen. "Hydrodynomechanics: Fluid-Structure Interaction". In Multiphysics in Porous Materials, 319–32. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93028-2_25.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Birken, Philipp. "Thermal Fluid Structure Interaction". In Numerical Methods for Unsteady Compressible Flow Problems, 177–86. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003025214-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Fluid-structure interaction"

1

Jecl, R., L. Škerget e J. Kramer. "Heat and mass transfer in compressible fluid saturated porous media with the boundary element method". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090011.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Pelosi, M., e M. Ivantysynova. "A novel fluid-structure interaction model for lubricating gaps of piston machines". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090021.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Yu, P., K. S. Yeo, X. Y. Wang e S. J. Ang. "A singular value decomposition based generalized finite difference method for fluid solid interaction problems". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090031.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Ushijima, S., e N. Kuroda. "Multiphase modeling to predict finite deformations of elastic objects in free surface flows". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090041.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Belloli, M., B. Pizzigoni, F. Ripamonti e D. Rocchi. "Fluid-structure interaction between trains and noise-reduction barriers: numerical and experimental analysis". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090051.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Fujita, S., T. Harima e H. Osaka. "Turbulent jets issuing from the rectangular nozzle with a rectangular notch at the midspan". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090061.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Liang, C. C., e W. M. Tseng. "Numerical study of water barriers produced by underwater explosions". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090071.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Fujita, K. "Simulation analysis using CFD on vibration behaviors of circular cylinders subjected to free jets through narrow gaps in the vicinity of walls". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090081.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Moe, G., e J. M. Niedzwecki. "Flow-induced vibrations of offshore flare towers and flare booms". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090091.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Jurado, J. Á., A. León, S. Hernández e F. Nieto. "Aeroelastic analysis of long-span bridges using time domain methods". In FLUID STRUCTURE INTERACTION 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/fsi090101.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Fluid-structure interaction"

1

Benaroya, Haym, e Timothy Wei. Modeling Fluid Structure Interaction. Fort Belvoir, VA: Defense Technical Information Center, settembre 2000. http://dx.doi.org/10.21236/ada382782.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Isaac, Daron, e Michael Iverson. Automated Fluid-Structure Interaction Analysis. Fort Belvoir, VA: Defense Technical Information Center, febbraio 2003. http://dx.doi.org/10.21236/ada435321.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Barone, Matthew Franklin, Irina Kalashnikova, Daniel Joseph Segalman e Matthew Robert Brake. Reduced order modeling of fluid/structure interaction. Office of Scientific and Technical Information (OSTI), novembre 2009. http://dx.doi.org/10.2172/974411.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Schunk, Peter. Fluid-Structure Interaction of Deforming Porous Media. Office of Scientific and Technical Information (OSTI), novembre 2017. http://dx.doi.org/10.2172/1411752.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Wood, Stephen L., e Ralf Deiterding. Shock-driven fluid-structure interaction for civil design. Office of Scientific and Technical Information (OSTI), novembre 2011. http://dx.doi.org/10.2172/1041422.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Schroeder, Erwin A. Infinite Elements for Three-Dimensional Fluid-Structure Interaction Problems. Fort Belvoir, VA: Defense Technical Information Center, novembre 1987. http://dx.doi.org/10.21236/ada189462.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Barone, Matthew Franklin, e Jeffrey L. Payne. Methods for simulation-based analysis of fluid-structure interaction. Office of Scientific and Technical Information (OSTI), ottobre 2005. http://dx.doi.org/10.2172/875605.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Zhu, Minjie, e Michael Scott. Fluid-Structure Interaction and Python-Scripting Capabilities in OpenSees. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, agosto 2019. http://dx.doi.org/10.55461/vdix3057.

Testo completo
Abstract (sommario):
Building upon recent advances in OpenSees, the goals of this project are to expand the framework’s Python scripting capabilities and to further develop its fluid–structure interaction (FSI) simulation capabilities, which are based on the particle finite-element method (PFEM). At its inception, the FSI modules in OpenSees were based on Python scripting. To accomplish FSI simulations in OpenSees, Python commands have been added for a limited number of pre-existing element and material commands, e.g., linear-elastic triangle elements and beam–column elements with Concrete01/Steel01 fiber sections. Incorporation of hundreds of constitutive models and element formulations under the Python umbrella for FSI and general OpenSees use remain to be done. Although the original scripting language, Tcl, in OpenSees is string based, powerful, and easy to learn, it is not suitable for mathematical computations. Recent trends in scripting languages for engineering applications have embraced more general, scientific languages such as Python, which has evolved to a large community with numerous libraries for numerical computing, data analysis, scientific visualization, and web development. These libraries can be utilized with the FSI simulation for tsunami analysis. Extending OpenSees to Python will help OpenSees keep pace with new scripting developments from the scientific computing community and make the framework more accessible to graduate students, who likely have learned Python as undergraduates.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Tezduyar, Tayfun E. Multiscale and Sequential Coupling Techniques for Fluid-Structure Interaction Computations. Fort Belvoir, VA: Defense Technical Information Center, ottobre 2012. http://dx.doi.org/10.21236/ada585768.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Liszka, Tadeusz J., C. A. Duarte e O. P. Hamzeh. Hp-Meshless Cloud Method for Dynamic Fracture in Fluid Structure Interaction. Fort Belvoir, VA: Defense Technical Information Center, marzo 2000. http://dx.doi.org/10.21236/ada376673.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia