Letteratura scientifica selezionata sul tema "Fluid mechanics"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Fluid mechanics".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Fluid mechanics"
Nishihara, Kazuyoshi, e Koji Mori. "OS22-11 Mechanical Active Noise Control for Multi Blade Fan(Fluid Machinery and Functional Fluids,OS22 Experimental method in fluid mechanics,FLUID AND THERMODYNAMICS)". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 275. http://dx.doi.org/10.1299/jsmeatem.2015.14.275.
Testo completoIdo, Yasushi, Hiroki Yokoyama e Hitoshi Nishida. "OS22-13 Viscous Property of Magnetic Compound Fluids Containing Needle-like Particles(Fluid Machinery and Functional Fluids,OS22 Experimental method in fluid mechanics,FLUID AND THERMODYNAMICS)". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 277. http://dx.doi.org/10.1299/jsmeatem.2015.14.277.
Testo completoBland, J. A., D. Pnueli e C. Gutfinger. "Fluid Mechanics". Mathematical Gazette 78, n. 482 (luglio 1994): 221. http://dx.doi.org/10.2307/3618595.
Testo completoQuinlan, Suzanne. "Fluid mechanics". Nursing Standard 14, n. 41 (28 giugno 2000): 26. http://dx.doi.org/10.7748/ns.14.41.26.s42.
Testo completoRadev, St, F. R. A. Onofri, A. Lenoble e L. Tadrist. "Fluid Mechanics". Journal of Theoretical and Applied Mechanics 43, n. 2 (1 giugno 2013): 5–30. http://dx.doi.org/10.2478/jtam-2013-0011.
Testo completoLiggett, J. A., e B. E. Larock. "Fluid Mechanics". Journal of Hydraulic Engineering 120, n. 10 (ottobre 1994): 1233. http://dx.doi.org/10.1061/(asce)0733-9429(1994)120:10(1233).
Testo completoBarnes, H. A. "Fluid Mechanics". Journal of Non-Newtonian Fluid Mechanics 37, n. 2-3 (gennaio 1990): 387. http://dx.doi.org/10.1016/0377-0257(90)90014-3.
Testo completoDrazin, Philip. "Fluid mechanics". Physics Education 22, n. 6 (1 novembre 1987): 350–54. http://dx.doi.org/10.1088/0031-9120/22/6/004.
Testo completoGartshore, I. S. "Fluid mechanics". International Journal of Heat and Fluid Flow 10, n. 4 (dicembre 1989): 372–73. http://dx.doi.org/10.1016/0142-727x(89)90033-7.
Testo completoSaegusa, Koyo, Shohei Shinoki e Hidemasa Takana. "OS22-12 Visualization and Analysis on Electrospray Formation with Ionic Liquid(Fluid Machinery and Functional Fluids,OS22 Experimental method in fluid mechanics,FLUID AND THERMODYNAMICS)". Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2015.14 (2015): 276. http://dx.doi.org/10.1299/jsmeatem.2015.14.276.
Testo completoTesi sul tema "Fluid mechanics"
Wylie, Jonathan James. "Geological fluid mechanics". Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627211.
Testo completoHildyard, M. L. "The fluid mechanics of filters". Thesis, University of Leeds, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233871.
Testo completoGoode, Peter Allan. "Momentum transfer across fluid-fluid interfaces in porous media". Thesis, Heriot-Watt University, 1991. http://hdl.handle.net/10399/847.
Testo completoCoffey, Christopher J. "The fluid mechanics of emptying boxes". Thesis, Imperial College London, 2006. http://hdl.handle.net/10044/1/11978.
Testo completoConnick, Owen. "The fluid mechanics of hybrid ventilation". Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/39347.
Testo completoPAULINO, RIVANIA HERMOGENES. "USING MULTIGRID TECHNIQUES ON FLUID MECHANICS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1997. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19462@1.
Testo completoEste trabalho trata da solução numérica das equações de Navier-Stokes, na forma vorticidade-função corrente, via método das Diferenças Finitas e técnicas de aceleração baseadas no uso de malhas múltiplas. Embora outras opções tenham sido consideradas, a que melhor funcionou tratou o problema de forma não acoplada: a solução da equação de vorticidade foi obtida pela uso desta aceleração e a solução da equação de função corrente, uma equação puramente elíptica, foi resolvida via método das relaxações sucessivas. O código desenvolvido foi aplicado a diversos problemas, inclusive ao problema da cavidade com tampa móvel, em diversos números de Reynolds, típico no teste de simuladores em Dinâmica dos Fluidos. Foram testados um método clássico (armazenamento da correção) e o método FAZ (Full Approximation Storage). Os resultados obtidos mostram claramente os ganhos computacionais obtidos na formulação escolhida. Expressando em percentual, valores com 80 por cento de ganho foram obtidos se comparados os resultados do método multigrid com o método iterativo básico utilizado (S.O.R.), indicando o potencial do uso desta técnica para problemas mais complexo incluindo aqueles em coordenadas generalizadas.
This works deals with the numerical solution of the Navier-Stokes equations, written in the stream function-vorticity form, by the finite difference method and acceleration techniques using multiple meshes. Although other solution schemes have been investigated, best results were obtained by treating the problem in a non-coupled form: the solution for the vorticity equation was obtained by the multigrid method and the solution of the streamfunction equation, which is purely elliptic, was solved by the S.O.R. (Successive over relaxation method). The computer code was applied to several problems, including the wall driven problem considering a wide range of Reynolds numbers, which is a typical benchmark problem for testing fluid-dynamic simulations. The classical method (storage of the correction) and the methos FAS (Full Approximation Storage) have been tested. The results obtained clearly show that a very efficient computational scheme has been achieved with the multigrid method. For example, when comparing this method with the basic S.O.R. method, relative gains in the order of 80 per cent have been obtained. This indicates that the present technique has potential use in more complicated fluid dynamics problems including those involving generalized coordinates.
Heimerdinger, Daniel John. "Fluid mechanics in a magnetoplasmadynamic thruster". Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/34030.
Testo completoLea, Patrick D. "Fluid Structure Interaction with Applications in Structural Failure". Thesis, Northwestern University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3605735.
Testo completoMethods for modeling structural failure with applications for fluid structure interaction (FSI) are developed in this work. Fracture as structural failure is modeled in this work by both the extended finite element method (XFEM) and element deletion. Both of these methods are used in simulations coupled with fluids modeled by computational fluid dynamics (CFD). The methods presented here allow the fluid to pass through the fractured areas of the structure without any prior knowledge of where fracture will occur. Fracture modeled by XFEM is compared to an experimental result as well as a test problem for two phase coupling. The element deletion results are compared with an XFEM test problem, showing the differences and similarities between the two methods.
A new method for modeling fracture is also proposed in this work. The new method combines XFEM and element deletion to provide a robust implementation of fracture modeling. This method integrates well into legacy codes that currently have element deletion functionality. The implementation allows for application by a wide variety of users that are familiar with element deletion in current analysis tools. The combined method can also be used in conjunction with the work done on fracture coupled with fluids, discussed in this work.
Structural failure via buckling is also examined in an FSI framework. A new algorithm is produced to allow for structural subcycling during the collapse of a pipe subjected to a hydrostatic load. The responses of both the structure and the fluid are compared to a non-subcycling case to determine the accuracy of the new algorithm.
Overall this work looks at multiple forms of structural failure induced by fluids modeled by CFD. The work extends what is currently possible in FSI simulations.
Woods, Andrew W. "Geophysical fluid flows". Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306472.
Testo completoBocchi, Edoardo. "Compressible-incompressible transitions in fluid mechanics : waves-structures interaction and rotating fluids". Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0279/document.
Testo completoThis manuscript deals with compressible-incompressible transitions arising in partial differential equations of fluid mechanics. We investigate two problems: floating structures and rotating fluids. In the first problem, the introduction of a floating object into water waves enforces a constraint on the fluid and the governing equations turn out to have a compressible-incompressible structure. In the second problem, the motion of geophysical compressible fluids is affected by the Earth's rotation and the study of the high rotation limit shows that the velocity vector field tends to be horizontal and with an incompressibility constraint.Floating structures are a particular example of fluid-structure interaction, in which a partially immersed solid is floating at the fluid surface. This mathematical problem models the motion of wave energy converters in sea water. In particular, we focus on heaving buoys, usually implemented in the near-shore zone, where the shallow water asymptotic models describe accurately the motion of waves. We study the two-dimensional nonlinear shallow water equations in the axisymmetric configuration in the presence of a floating object with vertical side-walls moving only vertically. The assumptions on the solid permit to avoid the free boundary problem associated with the moving contact line between the air, the water and the solid. Hence, in the domain exterior to the solid the fluid equations can be written as an hyperbolic quasilinear initial boundary value problem. This couples with a nonlinear second order ODE derived from Newton's law for the free solid motion. Local in time well-posedness of the coupled system is shown provided some compatibility conditions are satisfied by the initial data in order to generate smooth solutions.Afterwards, we address a particular configuration of this fluid-structure interaction: the return to equilibrium. It consists in releasing a partially immersed solid body into a fluid initially at rest and letting it evolve towards its equilibrium position. A different hydrodynamical model is used. In the exterior domain the equations are linearized but the nonlinear effects are taken into account under the solid. The equation for the solid motion becomes a nonlinear second order integro-differential equation which rigorously justifies the Cummins equation, assumed by engineers to govern the motion of floating objects. Moreover, the equation derived improves the linear approach of Cummins by taking into account the nonlinear effects. The global existence and uniqueness of the solution is shown for small data using the conservation of the energy of the fluid-structure system.In the second part of the manuscript, highly rotating fluids are studied. This mathematical problem models the motion of geophysical flows at large scales affected by the Earth's rotation, such as massive oceanic and atmospheric currents. The motion is also influenced by the gravity, which causes a stratification of the density in compressible fluids. The rotation generates anisotropy in viscous flows and the vertical turbulent viscosity tends to zero in the high rotation limit. Our interest lies in this singular limit problem taking into account gravitational and compressible effects. We study the compressible anisotropic Navier-Stokes-Coriolis equations with gravitational force in the horizontal infinite slab with no-slip boundary condition. Both this condition and the Coriolis force cause the apparition of Ekman layers near the boundary. They are taken into account in the analysis by adding corrector terms which decay in the interior of the domain. In this work well-prepared initial data are considered. A stability result of global weak solutions is shown for power-type pressure laws. The limit dynamics is described by a two-dimensional viscous quasi-geostrophic equation with a damping term that accounts for the boundary layers
Libri sul tema "Fluid mechanics"
H, Power, a cura di. Bio-fluid mechanics. Southampton: Computational Mechanics Publications, 1995.
Cerca il testo completoSpurk, Joseph H. Fluid mechanics. 2a ed. Berlin: Springer, 2008.
Cerca il testo completoDurst, Franz. Fluid Mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-71343-2.
Testo completoSpurk, Joseph H. Fluid Mechanics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-58277-6.
Testo completoBoxer, G. Fluid Mechanics. London: Macmillan Education UK, 1988. http://dx.doi.org/10.1007/978-1-349-09805-7.
Testo completoSpurk, Joseph H., e Nuri Aksel. Fluid Mechanics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-30259-7.
Testo completoWidden, Martin. Fluid Mechanics. London: Macmillan Education UK, 1996. http://dx.doi.org/10.1007/978-1-349-11334-7.
Testo completoDouglas, J. F. Fluid mechanics. 3a ed. Harlow: Longman Scientific & Technical, 1995.
Cerca il testo completoBrewster, Hilary D. Fluid mechanics. Jaipur, India: Oxford Book Co., 2009.
Cerca il testo completoWhite, Frank M. Fluid mechanics. 7a ed. New York, N.Y: McGraw Hill, 2011.
Cerca il testo completoCapitoli di libri sul tema "Fluid mechanics"
Larson, Mats G., e Fredrik Bengzon. "Fluid Mechanics". In Texts in Computational Science and Engineering, 289–325. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33287-6_12.
Testo completoBetounes, David. "Fluid Mechanics". In Partial Differential Equations for Computational Science, 245–98. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2198-2_10.
Testo completoLawson, Thomas B. "Fluid Mechanics". In Fundamentals of Aquacultural Engineering, 84–110. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-7047-9_6.
Testo completoNg, Xian Wen. "Fluid Mechanics". In Engineering Problems for Undergraduate Students, 579–728. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13856-1_5.
Testo completoKaviany, M. "Fluid Mechanics". In Mechanical Engineering Series, 17–118. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4254-3_2.
Testo completoKaviany, M. "Fluid Mechanics". In Mechanical Engineering Series, 429–508. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4254-3_8.
Testo completoKnudson, Duane. "Fluid Mechanics". In Fundamentals of Biomechanics, 191–209. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-5298-4_8.
Testo completoKuwana, Kazunori. "Fluid Mechanics". In Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires, 1–8. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-51727-8_149-1.
Testo completoKaviany, M. "Fluid Mechanics". In Mechanical Engineering Series, 15–113. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-0412-8_2.
Testo completoKaviany, M. "Fluid Mechanics". In Mechanical Engineering Series, 385–463. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-0412-8_8.
Testo completoAtti di convegni sul tema "Fluid mechanics"
MANOFF, S. "LAGRANGIAN FLUID MECHANICS". In Proceedings of the 5th International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810144_0017.
Testo completoVradis, George C. "Heat Transfer and Fluid Mechanics of Herschel-Bulkley Fluids". In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0452.
Testo completo"Fluid mechanics, turbulence, wind power". In CONV-09. Proceedings of International Symposium on Convective Heat and Mass Transfer in Sustainable Energy. Connecticut: Begellhouse, 2009. http://dx.doi.org/10.1615/ichmt.2009.conv.910.
Testo completoBoettcher, Konrad, Marcel Schade, Claudius Terkowsky e Tobias R. Ortelt. "Virtual Labs in Fluid Mechanics". In 2023 6th Experiment@ International Conference (exp.at'23). IEEE, 2023. http://dx.doi.org/10.1109/exp.at2358782.2023.10545825.
Testo completoRedekopp, L. "The resonantly-forced Korteweg-DeVries equation and sediment resuspension". In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2147.
Testo completoSobieczky, Helmut. "Theoretical knowledge base for accelerated transonic design". In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2115.
Testo completoCramer, M. "Transonic flows of arbitrary gases". In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2116.
Testo completoCole, J., L. Cook e G. Schleiniger. "An unsteady transonic flow - Flow about a suddenly deflected wedge". In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2117.
Testo completoKluwick, A., e G. Lindner. "Perturbation analysis of steady and unsteady transonic flow through cascades". In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2118.
Testo completoMalmuth, Norman, e Julian Cole. "Asymptotic theory of slender configurations in and out of wind tunnels". In Theroretical Fluid Mechanics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2119.
Testo completoRapporti di organizzazioni sul tema "Fluid mechanics"
Monin, A. S., e A. M. Yaglom. Statistical Fluid Mechanics: The Mechanics of Turbulence. Fort Belvoir, VA: Defense Technical Information Center, settembre 1999. http://dx.doi.org/10.21236/ada398728.
Testo completoPuterbaugh, Steven L., David Car e S. Todd Bailie. Turbomachinery Fluid Mechanics and Control. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2010. http://dx.doi.org/10.21236/ada514567.
Testo completoMartinez-Sanchez, Manuel. Physical Fluid Mechanics in MPD Thrusters. Fort Belvoir, VA: Defense Technical Information Center, settembre 1987. http://dx.doi.org/10.21236/ada190309.
Testo completoAnderson, D. M., G. B. McFadden e A. A. Wheeler. Diffuse-interface methods in fluid mechanics. Gaithersburg, MD: National Institute of Standards and Technology, 1997. http://dx.doi.org/10.6028/nist.ir.6018.
Testo completoCar, David, e Steven L. Puterbaugh. Fluid Mechanics of Compression System Flow Control. Fort Belvoir, VA: Defense Technical Information Center, luglio 2005. http://dx.doi.org/10.21236/ada444617.
Testo completoBdzil, John Bohdan. Fluid Mechanics of an Obliquely Mounted MIV Gauge. Office of Scientific and Technical Information (OSTI), marzo 2018. http://dx.doi.org/10.2172/1429987.
Testo completoLipfert, F., M. Daum, G. Hendrey e K. Lewin. Fluid mechanics and spatial performance of face arrays. Office of Scientific and Technical Information (OSTI), maggio 1989. http://dx.doi.org/10.2172/5292902.
Testo completoSeume, J., G. Friedman e T. W. Simon. Fluid mechanics experiments in oscillatory flow. Volume 1. Office of Scientific and Technical Information (OSTI), marzo 1992. http://dx.doi.org/10.2172/10181069.
Testo completoLeidermark, Daniel, e Magnus Andersson, a cura di. Reports in Applied Mechanics 2022. Linköping University Electronic Press, febbraio 2024. http://dx.doi.org/10.3384/9789180754156.
Testo completoEriksson, Robert, e Magnus Andersson. Reports in Applied Mechanics 2023. A cura di Daniel Leidermark. Linköping University Electronic Press, agosto 2024. http://dx.doi.org/10.3384/9789180755917.
Testo completo