Articoli di riviste sul tema "Flow in porous media"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Flow in porous media.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Flow in porous media".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Jaakko, Miettinen, e Ilvonen Mikko. "ICONE15-10291 SOLVING POROUS MEDIA FLOW FOR LWR COMPONENTS". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2007.15 (2007): _ICONE1510. http://dx.doi.org/10.1299/jsmeicone.2007.15._icone1510_146.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Blokhra, R. L., e J. Joshi. "Flow through Porous Media". Journal of Colloid and Interface Science 160, n. 1 (ottobre 1993): 260–61. http://dx.doi.org/10.1006/jcis.1993.1393.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Whitaker, Stephen. "Flow in porous media III: Deformable media". Transport in Porous Media 1, n. 2 (1986): 127–54. http://dx.doi.org/10.1007/bf00714689.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

STANLEY, H. E., A. D. ARAÚJO, U. M. S. COSTA e J. S. ANDRADE. "FLUID FLOW THROUGH DISORDERED POROUS MEDIA". Fractals 11, supp01 (febbraio 2003): 301–12. http://dx.doi.org/10.1142/s0218348x03001963.

Testo completo
Abstract (sommario):
This talk briefly reviews the subject of fluid flow through disordered media. First, we use two-dimensional percolation networks as a simple model for porous media to investigate the dynamics of viscous penetration when the ratio between the viscosities of displaced and injected fluids is very large. The results indicate the possibility that viscous displacement through critical percolation networks constitutes a single universality class, independent of the viscosity ratio. We also focus on the sorts of considerations that may be necessary to move statistical physics from the description of idealized flows in the limit of zero Reynolds number to more realistic flows of real fluids moving at a nonzero velocity, when inertia effects may become relevant. We discuss several intriguing features, such as the surprisingly change in behavior from a "localized" to a "delocalized" flow structure (distribution of flow velocities) that seems to occur at a critical value of Re which is significantly smaller than the critical value of Re where turbulence sets in.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Higdon, J. J. L. "Multiphase flow in porous media". Journal of Fluid Mechanics 730 (30 luglio 2013): 1–4. http://dx.doi.org/10.1017/jfm.2013.296.

Testo completo
Abstract (sommario):
AbstractMultiphase flows in porous media represent fluid dynamics problems of great complexity involving a wide range of physical phenomena. These flows have attracted the attention of an impressive group of renowned researchers and have spawned a number of classic problems in fluid dynamics. These multiphase flows are perhaps best known for their importance in oil recovery from petroleum reservoirs, but they also find application in novel areas such as hydrofracturing for natural gas recovery. In a recent article, Zinchenko & Davis (J. Fluid Mech. 2013, vol. 725, pp. 611–663) present computational simulations that break new ground in the study of emulsions flowing through porous media. These simulations provide sufficient scale to capture the disordered motion and complex break-up patterns of individual droplets while providing sufficient statistical samples for estimating meaningful macroscopic properties of technical interest.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Paillat, T., E. Moreau e G. Touchard. "Flow electrification through porous media". Journal of Loss Prevention in the Process Industries 14, n. 2 (marzo 2001): 91–93. http://dx.doi.org/10.1016/s0950-4230(00)00031-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Geindreau, Christian, e Jean-Louis Auriault. "Magnetohydrodynamic flow through porous media". Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics 329, n. 6 (giugno 2001): 445–50. http://dx.doi.org/10.1016/s1620-7742(01)01354-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Chan, Derek Y. C., Barry D. Hughes, Lincoln Paterson e Christina Sirakoff. "Simulating flow in porous media". Physical Review A 38, n. 8 (1 ottobre 1988): 4106–20. http://dx.doi.org/10.1103/physreva.38.4106.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Feder, Jens, e Torstein Jøssang. "Fractal Flow in Porous Media". Physica Scripta T29 (1 gennaio 1989): 200–205. http://dx.doi.org/10.1088/0031-8949/1989/t29/037.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Adler, P. M., e H. Brenner. "Multiphase Flow in Porous Media". Annual Review of Fluid Mechanics 20, n. 1 (gennaio 1988): 35–59. http://dx.doi.org/10.1146/annurev.fl.20.010188.000343.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Koponen, A., M. Kataja e J. Timonen. "Tortuous flow in porous media". Physical Review E 54, n. 1 (1 luglio 1996): 406–10. http://dx.doi.org/10.1103/physreve.54.406.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Rojas, Sergio, e Joel Koplik. "Nonlinear flow in porous media". Physical Review E 58, n. 4 (1 ottobre 1998): 4776–82. http://dx.doi.org/10.1103/physreve.58.4776.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Barr, Douglas W. "Turbulent Flow Through Porous Media". Ground Water 39, n. 5 (settembre 2001): 646–50. http://dx.doi.org/10.1111/j.1745-6584.2001.tb02353.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Adler, P. M., C. G. Jacquin e J. A. Quiblier. "Flow in simulated porous media". International Journal of Multiphase Flow 16, n. 4 (luglio 1990): 691–712. http://dx.doi.org/10.1016/0301-9322(90)90025-e.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Nazari Moghaddam, Rasoul, e Mahmoud Jamiolahmady. "Slip flow in porous media". Fuel 173 (giugno 2016): 298–310. http://dx.doi.org/10.1016/j.fuel.2016.01.057.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Layton, William J., Friedhelm Schieweck e Ivan Yotov. "Coupling Fluid Flow with Porous Media Flow". SIAM Journal on Numerical Analysis 40, n. 6 (gennaio 2002): 2195–218. http://dx.doi.org/10.1137/s0036142901392766.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Gruais, Isabelle, e Dan Poliševski. "Thermal flows in fractured porous media". ESAIM: Mathematical Modelling and Numerical Analysis 55, n. 3 (maggio 2021): 789–805. http://dx.doi.org/10.1051/m2an/2020087.

Testo completo
Abstract (sommario):
We consider the thermal flow problem occuring in a fractured porous medium. The incompressible filtration flow in the porous matrix and the viscous flow in the fractures obey the Boussinesq approximation of Darcy-Forchheimer law and respectively, the Stokes system. They are coupled by the Saffman’s variant of the Beavers–Joseph condition. Existence and uniqueness properties are presented. The use of the energy norm in describing the Darcy-Forchheimer law proves to be appropriate. In the ε-periodic framework, we find the two-scale homogenized system which governs their asymptotic behaviours when ε → 0 and the Forchheimer effect vanishes. The limit problem is mainly a model of two coupled thermal flows, neither of them being incompressible.
Gli stili APA, Harvard, Vancouver, ISO e altri
18

NAKAI, Hirotaka, Nobuhiro KIMURA, Masahide MURAKAMI, Tomiyoshi HARUYAMA e Akira YAMAMOTO. "Superfluid Helium Flow through Porous Media." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 31, n. 9 (1996): 474–80. http://dx.doi.org/10.2221/jcsj.31.474.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Nakai, H., N. Kimura, M. Murakami, T. Haruyama e A. Yamamoto. "Superfluid helium flow through porous media". Cryogenics 36, n. 9 (settembre 1996): 667–73. http://dx.doi.org/10.1016/0011-2275(96)00030-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Dodson, C. T. J., e W. W. Sampson. "Flow Simulation in Stochastic Porous Media". SIMULATION 74, n. 6 (giugno 2000): 351–58. http://dx.doi.org/10.1177/003754970007400604.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Watson, A. Ted, Raghavendra Kulkarni, Jan-Erik Nordtvedt, Andre Sylte e Hege Urkedal. "Estimation of porous media flow functions". Measurement Science and Technology 9, n. 6 (1 giugno 1998): 898–905. http://dx.doi.org/10.1088/0957-0233/9/6/006.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Kordulová, P. "Hysteresis in flow through porous media". Journal of Physics: Conference Series 268 (1 gennaio 2011): 012014. http://dx.doi.org/10.1088/1742-6596/268/1/012014.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Sochi, Taha. "Non-Newtonian flow in porous media". Polymer 51, n. 22 (ottobre 2010): 5007–23. http://dx.doi.org/10.1016/j.polymer.2010.07.047.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Winter, C. L., e Daniel M. Tartakovsky. "Mean Flow in composite porous media". Geophysical Research Letters 27, n. 12 (15 giugno 2000): 1759–62. http://dx.doi.org/10.1029/1999gl011030.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

DENTZ, M., D. M. TARTAKOVSKY, E. ABARCA, A. GUADAGNINI, X. SANCHEZ-VILA e J. CARRERA. "Variable-density flow in porous media". Journal of Fluid Mechanics 561 (agosto 2006): 209. http://dx.doi.org/10.1017/s0022112006000668.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

LIU, SHIJIE, e JACOB H. MASLIYAH. "SINGLE FLUID FLOW IN POROUS MEDIA". Chemical Engineering Communications 148-150, n. 1 (giugno 1996): 653–732. http://dx.doi.org/10.1080/00986449608936537.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

FABRIE, PIERRE, e THIERRY GALLOUËT. "MODELING WELLS IN POROUS MEDIA FLOW". Mathematical Models and Methods in Applied Sciences 10, n. 05 (luglio 2000): 673–709. http://dx.doi.org/10.1142/s0218202500000367.

Testo completo
Abstract (sommario):
In this paper, we prove the existence of weak solutions for mathematical models of miscible and immiscible flow through porous medium. An important difficulty comes from the modelization of the wells, which does not allow us to use classical variational formulations of the equations.
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Moura, M., K. J. Måløy e R. Toussaint. "Critical behavior in porous media flow". EPL (Europhysics Letters) 118, n. 1 (1 aprile 2017): 14004. http://dx.doi.org/10.1209/0295-5075/118/14004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Dejam, Morteza, Hassan Hassanzadeh e Zhangxin Chen. "Pre-Darcy Flow in Porous Media". Water Resources Research 53, n. 10 (ottobre 2017): 8187–210. http://dx.doi.org/10.1002/2017wr021257.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Farinato, Raymond S., e Wei S. Yen. "Polymer degradation in porous media flow". Journal of Applied Polymer Science 33, n. 7 (20 maggio 1987): 2353–68. http://dx.doi.org/10.1002/app.1987.070330708.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Dullien, Francis A. L. "Two-phase flow in porous media". Chemical Engineering & Technology - CET 11, n. 1 (1988): 407–24. http://dx.doi.org/10.1002/ceat.270110153.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Massmann, Joel, e Lisa Johnson. "Exercises Illustrating Flow in Porous Media". Ground Water 39, n. 4 (luglio 2001): 499–503. http://dx.doi.org/10.1111/j.1745-6584.2001.tb02338.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Reinson, Jeff R., Delwyn G. Fredlund e G. Ward Wilson. "Unsaturated flow in coarse porous media". Canadian Geotechnical Journal 42, n. 1 (1 febbraio 2005): 252–62. http://dx.doi.org/10.1139/t04-070.

Testo completo
Abstract (sommario):
Design of effective capillary barrier systems requires a thorough understanding of the soil–water interactions that take place in both coarse- and fine-grained unsaturated soils. Experimental observations of water flow through coarse porous media are presented to gain greater understanding of the processes and mechanisms that contribute to the movement and retention of water in coarse-grained unsaturated soils. The use of pendular ring theory to describe how water is held within a porous material with relatively low volumetric water contents is explored. Experimental measurements of seepage velocity and volumetric water content were obtained for columns of 12 mm glass beads using digital videography to capture the movement of a dye tracer front at several infiltration rates. An estimated curve for hydraulic conductivity versus matric suction is shown and compared to a theoretical curve. The method is shown to provide a reasonable predictive tool.Key words: soil-water characteristic curve, hydraulic conductivity curve, water permeability function, capillary barrier, matric suction.
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Entov, V. M. "Micromechanics of flow through porous media". Fluid Dynamics 27, n. 6 (1993): 824–33. http://dx.doi.org/10.1007/bf01051359.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Hamdan, M. H., e K. D. Sawalha. "Dusty gas flow through porous media". Applied Mathematics and Computation 75, n. 1 (marzo 1996): 59–73. http://dx.doi.org/10.1016/0096-3003(95)00104-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Gun, Wei Jin, e Alexander F. Routh. "Microcapsule flow behaviour in porous media". Chemical Engineering Science 102 (ottobre 2013): 309–14. http://dx.doi.org/10.1016/j.ces.2013.08.028.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Adler, Pierre M. "Multiphase flow in porous media ? Preface". Transport in Porous Media 20, n. 1-2 (agosto 1995): 1. http://dx.doi.org/10.1007/bf00616922.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Zhu, Tao, e Michael Manhart. "Oscillatory Darcy Flow in Porous Media". Transport in Porous Media 111, n. 2 (14 dicembre 2015): 521–39. http://dx.doi.org/10.1007/s11242-015-0609-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

El Tawil, M. A., e M. H. Kamel. "MHD flow under stochastic porous media". Energy Conversion and Management 35, n. 11 (novembre 1994): 991–97. http://dx.doi.org/10.1016/0196-8904(94)90030-2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Du Plessis, J. Prieur, e Jacob H. Masliyah. "Flow through isotropic granular porous media". Transport in Porous Media 6, n. 3 (giugno 1991): 207–21. http://dx.doi.org/10.1007/bf00208950.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Sauveplane, Claude M. "Flow in porous or fractured media". Journal of Hydrology 97, n. 3-4 (febbraio 1988): 353–55. http://dx.doi.org/10.1016/0022-1694(88)90125-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Buyevich, Yu A., e V. S. Nustrov. "Nonlinear flow in fractured porous media". Transport in Porous Media 12, n. 1 (luglio 1993): 1–17. http://dx.doi.org/10.1007/bf00616358.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Mahadevan, Jagannathan, Mukul M. Sharma e Yannis C. Yortsos. "Flow-through drying of porous media". AIChE Journal 52, n. 7 (2006): 2367–80. http://dx.doi.org/10.1002/aic.10859.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Gayubov, A. T. "Non-Darcy Flow Through Porous Media". Proceedings of Gubkin Russian State University of Oil and Gas, n. 1 (2021): 19–28. http://dx.doi.org/10.33285/2073-9028-2021-1(302)-19-28.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Liu, Hai Long, Junfeng Wang e Wook Ryol Hwang. "Flow resistance of viscoelastic flows in fibrous porous media". Journal of Non-Newtonian Fluid Mechanics 246 (agosto 2017): 21–30. http://dx.doi.org/10.1016/j.jnnfm.2017.05.004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

GRAHAM, D. R., e J. J. L. HIGDON. "Oscillatory forcing of flow through porous media. Part 1. Steady flow". Journal of Fluid Mechanics 465 (25 agosto 2002): 213–35. http://dx.doi.org/10.1017/s0022112002001155.

Testo completo
Abstract (sommario):
Oscillatory forcing of a porous medium may have a dramatic effect on the mean flow rate produced by a steady applied pressure gradient. The oscillatory forcing may excite nonlinear inertial effects leading to either enhancement or retardation of the mean flow. Here, in Part 1, we consider the effects of non-zero inertial forces on steady flows in porous media, and investigate the changes in the flow character arising from changes in both the strength of the inertial terms and the geometry of the medium. The steady-state Navier–Stokes equations are solved via a Galerkin finite element method to determine the velocity fields for simple two-dimensional models of porous media. Two geometric models are considered based on constricted channels and periodic arrays of circular cylinders. For both geometries, we observe solution multiplicity yielding both symmetric and asymmetric flow patterns. For the cylinder arrays, we demonstrate that inertial effects lead to anisotropy in the effective permeability, with the direction of minimum resistance dependent on the solid volume fraction. We identify nonlinear flow phenomena which might be exploited by oscillatory forcing to yield a net increase in the mean flow rate. In Part 2, we take up the subject of unsteady flows governed by the full time-dependent Navier–Stokes equations.
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Christie, M. A. "Flow in porous media — scale up of multiphase flow". Current Opinion in Colloid & Interface Science 6, n. 3 (giugno 2001): 236–41. http://dx.doi.org/10.1016/s1359-0294(01)00087-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Kawale, Durgesh, Gelmer Bouwman, Shaurya Sachdev, Pacelli L. J. Zitha, Michiel T. Kreutzer, William R. Rossen e Pouyan E. Boukany. "Polymer conformation during flow in porous media". Soft Matter 13, n. 46 (2017): 8745–55. http://dx.doi.org/10.1039/c7sm00817a.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Sakamoto, H., e F. A. Kulacki. "Buoyancy Driven Flow in Saturated Porous Media". Journal of Heat Transfer 129, n. 6 (24 settembre 2006): 727–34. http://dx.doi.org/10.1115/1.2717937.

Testo completo
Abstract (sommario):
Measurements are reported of heat transfer coefficients in steady natural convection on a vertical constant flux plate embedded in a saturated porous medium. Results show that heat transfer coefficients can be adequately determined via a Darcy-based model, and our results confirm a correlation proposed by Bejan [Int. J. Heat Mass Transfer. 26(9), 1339–1346 (1983)]. It is speculated that the reason that the Darcy model works well in the present case is that the porous medium has a lower effective Prandtl number near the wall than in the bulk medium. The factors that contribute to this effect include the thinning of the boundary layer near the wall and an increase of effective thermal conductivity.
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Haward, Simon J., Cameron C. Hopkins e Amy Q. Shen. "Stagnation points control chaotic fluctuations in viscoelastic porous media flow". Proceedings of the National Academy of Sciences 118, n. 38 (14 settembre 2021): e2111651118. http://dx.doi.org/10.1073/pnas.2111651118.

Testo completo
Abstract (sommario):
Viscoelastic flows through porous media become unstable and chaotic beyond critical flow conditions, impacting widespread industrial and biological processes such as enhanced oil recovery and drug delivery. Understanding the influence of the pore structure or geometry on the onset of flow instability can lead to fundamental insights into these processes and, potentially, to their optimization. Recently, for viscoelastic flows through porous media modeled by arrays of microscopic posts, Walkama et al. [D. M. Walkama, N. Waisbord, J. S. Guasto, Phys. Rev. Lett. 124, 164501 (2020)] demonstrated that geometric disorder greatly suppressed the strength of the chaotic fluctuations that arose as the flow rate was increased. However, in that work, disorder was only applied to one originally ordered configuration of posts. Here, we demonstrate experimentally that, given a slightly modified ordered array of posts, introducing disorder can also promote chaotic fluctuations. We provide a unifying explanation for these contrasting results by considering the effect of disorder on the occurrence of stagnation points exposed to the flow field, which depends on the nature of the originally ordered post array. This work provides a general understanding of how pore geometry affects the stability of viscoelastic porous media flows.
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia