Letteratura scientifica selezionata sul tema "Finite-time thermodynamics"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Finite-time thermodynamics".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Finite-time thermodynamics"
Andresen, Bjarne. "Finite-time thermodynamics and thermodynamic length". Revue Générale de Thermique 35, n. 418-419 (novembre 1996): 647–50. http://dx.doi.org/10.1016/s0035-3159(96)80060-2.
Testo completoTsirlin, Anatoly, e Larisa Gagarina. "Finite-Time Thermodynamics in Economics". Entropy 22, n. 8 (13 agosto 2020): 891. http://dx.doi.org/10.3390/e22080891.
Testo completoTsirlin, Anatoly M., Michail A. Sofiev e Vladimir Kazakov. "Finite-time thermodynamics. Active potentiostatting". Journal of Physics D: Applied Physics 31, n. 18 (21 settembre 1998): 2264–68. http://dx.doi.org/10.1088/0022-3727/31/18/011.
Testo completoFeidt, Michel, e Monica Costea. "From Finite Time to Finite Physical Dimensions Thermodynamics: The Carnot Engine and Onsager’s Relations Revisited". Journal of Non-Equilibrium Thermodynamics 43, n. 2 (25 aprile 2018): 151–61. http://dx.doi.org/10.1515/jnet-2017-0047.
Testo completoTsirlin, Anatoly, e Ivan Sukin. "Averaged Optimization and Finite-Time Thermodynamics". Entropy 22, n. 9 (20 agosto 2020): 912. http://dx.doi.org/10.3390/e22090912.
Testo completoBejan, Adrian. "Engineering advances on finite‐time thermodynamics". American Journal of Physics 62, n. 1 (gennaio 1994): 11–12. http://dx.doi.org/10.1119/1.17730.
Testo completoAndresen, Bjarne. "Current Trends in Finite‐Time Thermodynamics". Angewandte Chemie International Edition 50, n. 12 (14 marzo 2011): 2690–704. http://dx.doi.org/10.1002/anie.201001411.
Testo completoDe Vos, Alexis, e Bart Desoete. "Equipartition Principles in Finite-Time Thermodynamics". Journal of Non-Equilibrium Thermodynamics 25, n. 1 (23 gennaio 2000): 1–13. http://dx.doi.org/10.1515/jnetdy.2000.001.
Testo completoWu, C., R. L. Kiang, V. J. Lopardo e G. N. Karpouzian. "Finite-Time Thermodynamics and Endoreversible Heat Engines". International Journal of Mechanical Engineering Education 21, n. 4 (ottobre 1993): 337–46. http://dx.doi.org/10.1177/030641909302100404.
Testo completoDelvenne, Jean-Charles, e Henrik Sandberg. "Finite-time thermodynamics of port-Hamiltonian systems". Physica D: Nonlinear Phenomena 267 (gennaio 2014): 123–32. http://dx.doi.org/10.1016/j.physd.2013.07.017.
Testo completoTesi sul tema "Finite-time thermodynamics"
K, Manikandan Sreekanth. "Finite-time non-equilibrium thermodynamics of a colloidal particle". Licentiate thesis, Stockholms universitet, Fysikum, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-155316.
Testo completoSchneider, Thomas. "An experimental investigation of the finite time efficiency of a Peltier refrigeration device". PDXScholar, 1991. https://pdxscholar.library.pdx.edu/open_access_etds/4261.
Testo completoWalters, Joseph D. "Optimization and Thermodynamic Performance Measures of a Class of Finite Time Thermodynamic Cycles". PDXScholar, 1990. https://pdxscholar.library.pdx.edu/open_access_etds/1186.
Testo completoHumphrey, Tammy Ellen Physics Faculty of Science UNSW. "Mesoscopic quantum ratchets and the thermodynamics of energy selective electron heat engines". Awarded by:University of New South Wales. Physics, 2003. http://handle.unsw.edu.au/1959.4/19186.
Testo completoApertet, Yann. "Réflexions sur l’optimisation thermodynamique des générateurs thermoélectriques". Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112322/document.
Testo completoThermoelectric phenomena are a way to directly convert thermal energy into electrical energy; they thus are at the heart of several researches in the field of energy conversion. The optimization of the thermoelectric generators includes materials improvement but a reflection on their working conditions is also mandatory. The contribution of the thermal contacts between the generator and the heat reservoirs is a factor that will change the optimum operating conditions of the generator. Using the concept of convective heat flow, developed by Thomson more than 150 years ago, we generalize the classical expression of maximum power conditions. Moreover, we note that these conditions may be reduced to impedance matching conditions, both thermal and electrical. In addition to its practical interest, the thermoelectric generator is also an ideal model system to study the theory of coupled transport and of irreversible phenomena. Using the description of this system given by Ioffe, we show that the maximum power efficiency, a coefficient of performance at the heart of finite time thermodynamics, expressed as a simple function of the system parameters. The novelty of this work is based on a proper consideration of internal dissipation associated with the energy conversion process. The results are then generalized to other thermal engines such as the Feynman ratchet
Boldt, Frank. "A Framework for Modeling Irreversible Processes Based on the Casimir Companion". Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-145179.
Testo completoThermodynamische Prozesse in endlicher Zeit sind im Allgemeinen irreversibel. Es gibt jedoch Möglichkeiten, diese Irreversibilität zu umgehen. Ein kanonisches Ensemble eines speziellen quantenmechanischen Systems kann zum Beispiel auf eine ganz spezielle Art und Weise gesteuert werden, sodass nach endlicher Zeit T wieder eine kanonische Besetzungverteilung hergestellt ist, sich aber dennoch die Energie des Systems geändert hat (E(0) ungleich E(T)). Solche Prozesse erlauben das Ändern thermodynamischer Größen (Ensemblemittelwerte) der erwähnten speziellen Systeme in endlicher Zeit und auf eine adiabatische und reversible Art. Man nennt diese Art von speziellen Prozessen Shortcuts to Adiabaticity und die speziellen Systeme hamiltonsche Systeme mit dynamischer Algebra. Die vorliegende Dissertation hat zum Ziel den Ursprung dieser Shortcuts to Adiabaticity zu analysieren und eine Methodik zu entwickeln, die es erlaubt irreversible thermodynamische Prozesse adequat mittels dieser speziellen Systeme zu modellieren. Dazu wird deren besondere Eigenschaft ausgenutzt, die kanonische Invarianz, d.h. ein kanonisches Ensemble bleibt kanonisch bezüglich hamiltonscher Dynamik. Der Ursprung dieser Invarianz liegt in der dynamischen Algebra, die mit Hilfe der Theorie der Lie-Gruppen näher betrachtet wird. Dies erlaubt, eine weitere besondere Eigenschaft abzuleiten: Die Ensemblemittelwerte unterliegen ebenfalls den Symmetrien, die die dynamische Algebra widerspiegelt. Bei näherer Betrachtung befinden sich alle Trajektorien der Ensemblemittelwerte auf einer Mannigfaltigkeit, die durch den sogenannten Casimir Companion beschrieben wird. Darüber hinaus wird nicht-hamiltonsche/dissipative Dynamik betrachtet, welche zu einer Deformation der Mannigfaltigkeit führt. Abschließend wird eine Zusammenfassung der grundlegenden Methodik zur Modellierung irreversibler Prozesse mittels hamiltonscher Systeme mit dynamischer Algebra gegeben. Zum besseren Verständnis wird ein ausführliches Anwendungsbeispiel dieser Methodik präsentiert, in dem die zeitoptimale Steuerung eines Ensembles des harmonischen Oszillators zwischen zwei Gleichgewichtszuständen sowie zwischen Gleichgewichts- und Nichtgleichgewichtszuständen abgeleitet wird
Beckstein, Pascal. "Methodenentwicklung zur Simulation von Strömungen mit freier Oberfläche unter dem Einfluss elektromagnetischer Wechselfelder". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-232474.
Testo completoCheng, Ching-Yang, e 鄭慶陽. "Applications of finite-time thermodynamics in thermodynamic cycles". Thesis, 1996. http://ndltd.ncl.edu.tw/handle/15497210648904347515.
Testo completo國立成功大學
機械工程研究所
84
In this study, a steady-flow approach in finite-time thermo- dynamics has been used to study on the performance optimizations of heat engines and heat pumps from the viewpoints of various ob- jective functions. The topics studied include: (1) ecological- criterion-function optimizations of endoreversible Brayton heat engines with isothermal heat sources, (2) power optimiztions of endoreversible regenerative Brayton heat engines with isothermal heat sources, (3) power optimizations of endoreversible inter- cooled Brayton heat engines with isothermal heat sources, (4) performance-of- coefficient optimizations of irreversible Carnot heat pumps with isothermal heat sources, (5) power optimizations of irreversible Brayton heat engines with isothermal heat sour- ces,(6) efficiency optimizations of irreversible Brayton heat en- gines with isothermal heat sources, (7) ecological- criterion- function optimizations of irreversible Carnot heat engines with variable-temperature heat sources. The results obtained are: (1) The better design point of a heat engine is positioned between the maximum-power point and the maximum- efficiency point, and with ecological criterion functions as objective functions, a heat engine has a balance between its power output, thermal efficiency and entropy gene- ration rate. (2) The irreversible models consider three types of irreversibilities: finite thermal conductance between the working fluid and reservoirs, heat leaks between the resevoirs and irreversibilities in the processes of expansion and com- pression, and the power-efficiency relationship obtained by this model is a closed loop-like curve, similar to the charac- terisitic curves of real heat engines.
Qiu, Jian-Ying, e 邱建穎. "Analyses on Impinging Heat Transfer and Finite-Time Thermodynamics". Thesis, 2003. http://ndltd.ncl.edu.tw/handle/u5ncgm.
Testo completo崑山科技大學
機械工程研究所
91
First, the flow and heat transfer characteristics of an impinging laminar slot-jet, twin impinging laminar slot-jets, and heat sinks with sloped plate fins as well as with an inclined confinement surface are investigated by using the Star-CD software. Parameters examined for a single jet include the width of the jet, Reynolds number, the separation distance between the slot-jet exit plane and the impingement surface, free-jet impingement or semiconfined-jet impingement, uniform inlet flow or fully-developed inlet flow. An additional parameter, the separation distance between the twin jets is examined for the analysis on the dual jets. In addition, the effects of the titling of the crests of the plate fins relative to the approaching flow and the inclined confinement surface are found to be indeed the two important heat transfer augmentation features. Secondly, a steady-flow approach in finite-time thermodynamics is employed to investigate the ecological-criterion function optimizations of the endoreversible Diesel, Otto, and Atkinson heat engines with isothermal heat sources. The results show that adopting the ecological-criterion function as the objective function, a heat engine may achieve the balance among the power output, thermal efficiency and entropy generation rate.
Wei-ChingYeh e 葉蔚青. "Maximum Power Output Analysis of Finite-Time Thermodynamics Stirling Engine". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/04816570316678015078.
Testo completo國立成功大學
機械工程學系碩博士班
98
This study present finite time thermodynamic analysis of Stirling heat engine and obtained the maximum power output by using Genetic Algorithm (GA). The thermodynamic models include an endoreversible Stirling engine and an irreversible Stirling engine with imperfect regeneration and heat loss. Each one of those models has two cases which respectively are heat source by convection transfer and by radiation transfer. The relationship between maximum power output and thermal efficiency, moreover, the optimum working temperature of working fluid can be obtained. The case of heat source by convection transfer shows the accuracy of this method by comparing with analytic solution. The second case is about heat source by radiation transfer. We simulated solar driven Stirling engines in the second case and analyzed the effects of various parameters on maximum power output (i.e., times of regeneration process, compression ratio, temperature of heat source…) In the last case, we have build a model of solar thermal power system, including heat transfer model of collector and endoreversible Stirling engine. The effects of various solar intensity on maximum power output have been discussed.
Libri sul tema "Finite-time thermodynamics"
Kaushik, Shubhash C., Sudhir K. Tyagi e Pramod Kumar. Finite Time Thermodynamics of Power and Refrigeration Cycles. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7.
Testo completoEntropy generation minimization: The method of thermodynamic optimization of finite-size systems and finite-time processes. Boca Raton: CRC Press, 1996.
Cerca il testo completoStanislaw, Sieniutycz, e Salamon Peter 1950-, a cura di. Finite-time thermodynamics and thermoeconomics. New York: Taylor & Francis, 1990.
Cerca il testo completo1936-, Wu Chih, Chen Lingen e Chen Jincan, a cura di. Recent advances in finite-time thermodynamics. Commack, NY: Nova Science Publishers, 1999.
Cerca il testo completo1931-, Berry R. Stephen, a cura di. Thermodynamic optimization of finite-time processes. Chichester: Wiley, 2000.
Cerca il testo completoCarrera-Patiño, Martin E. Theoretical and applied contributions to finite-time thermodynamics. 1989.
Cerca il testo completoKumar, Pramod, Shubhash C. Kaushik e Sudhir K. Tyagi. Finite Time Thermodynamics of Power and Refrigeration Cycles. Springer, 2017.
Cerca il testo completo(Editor), Lingen Chen, e Fengrui Sun (Editor), a cura di. Advances in Finite Time Thermodynamics:: Analysis and Optimization. Nova Science Publishers, 2004.
Cerca il testo completoHoring, Norman J. Morgenstern. Thermodynamic Green’s Functions and Spectral Structure. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0007.
Testo completoCapitoli di libri sul tema "Finite-time thermodynamics"
Berry, R. Stephen. "Finite-Time Thermodynamics". In Thermodynamics and Fluctuations far from Equilibrium, 131–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74555-6_14.
Testo completoKaushik, Shubhash C., Sudhir K. Tyagi e Pramod Kumar. "Finite Time Thermodynamics of Brayton Refrigeration Cycle". In Finite Time Thermodynamics of Power and Refrigeration Cycles, 219–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_10.
Testo completoAndresen, B. "Minimizing Losses — Tools of Finite-Time Thermodynamics". In Thermodynamic Optimization of Complex Energy Systems, 411–20. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4685-2_30.
Testo completoKaushik, Shubhash C., Sudhir K. Tyagi e Pramod Kumar. "Finite Time Thermodynamic Analysis of Brayton Cycle". In Finite Time Thermodynamics of Power and Refrigeration Cycles, 37–55. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_3.
Testo completoKaushik, Shubhash C., Sudhir K. Tyagi e Pramod Kumar. "Finite Time Thermodynamics of Stirling/Ericsson Refrigeration Cycles". In Finite Time Thermodynamics of Power and Refrigeration Cycles, 241–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_11.
Testo completoHoffmann, Karl Heinz, Bjarne Andresen e Peter Salamon. "Finite-Time Thermodynamics Tools to Analyze Dissipative Processes". In Advances in Chemical Physics, 57–67. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118959602.ch5.
Testo completoKaushik, Shubhash C., Sudhir K. Tyagi e Pramod Kumar. "Finite Time Thermodynamic Analysis of Modified Brayton Cycle". In Finite Time Thermodynamics of Power and Refrigeration Cycles, 57–84. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_4.
Testo completoKaushik, Shubhash C., Sudhir K. Tyagi e Pramod Kumar. "Finite Time Thermodynamic Analysis of Complex Brayton Cycle". In Finite Time Thermodynamics of Power and Refrigeration Cycles, 85–113. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_5.
Testo completoKaushik, Shubhash C., Sudhir K. Tyagi e Pramod Kumar. "General Introduction and the Concept of Finite Time Thermodynamics". In Finite Time Thermodynamics of Power and Refrigeration Cycles, 1–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_1.
Testo completoKaushik, Shubhash C., Sudhir K. Tyagi e Pramod Kumar. "Finite Time Thermodynamics of Cascaded Refrigeration and Heat Pump Cycles". In Finite Time Thermodynamics of Power and Refrigeration Cycles, 181–201. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62812-7_8.
Testo completoAtti di convegni sul tema "Finite-time thermodynamics"
Gruber, Christine. "Black hole thermodynamics in finite time". In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0164.
Testo completoGerlach, David, e Xiaohong Liao. "Finite Time Thermodynamics Model of an Absorption Chiller". In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38777.
Testo completoAndresen, Bjarne, Gian Paolo Beretta, Ahmed Ghoniem e George Hatsopoulos. "The Need for Entropy in Finite-Time Thermodynamics and Elsewhere". In MEETING THE ENTROPY CHALLENGE: An International Thermodynamics Symposium in Honor and Memory of Professor Joseph H. Keenan. AIP, 2008. http://dx.doi.org/10.1063/1.2979032.
Testo completoGu, Weili, Hanqing Wang, Guangxiao Kou e Qinghai Luo. "The Energy-Saving Optimization of the Organic Heat Transfer Material Heater Based on Finite Time Thermodynamics". In 2009 International Conference on Energy and Environment Technology. IEEE, 2009. http://dx.doi.org/10.1109/iceet.2009.107.
Testo completoAkhremenkov, Andrei A., Anatoliy M. Tsirlin e Vladimir Kazakov. "Thermodynamic Estimate of Minimal Dissipation for Heat Exchange System". In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66883.
Testo completoMcGovern, Jim, Barry Cullen, Michel Feidt e Stoian Petrescu. "Validation of a Simulation Model for a Combined Otto and Stirling Cycle Power Plant". In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90220.
Testo completoChen, Z., C. D. Copeland, B. Ceen, S. Jones e A. A. Goya. "Modelling and Simulation of an Inverted Brayton Cycle as an Exhaust-Gas Heat-Recovery System". In ASME 2016 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icef2016-9363.
Testo completoWu, Chih, Lingen Chen e Fengrui Sun. "Finite-Time Thermodynamic Performance for a Class of Irreversible Heat Pumps". In ASME 1997 Turbo Asia Conference. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-aa-027.
Testo completoMa, Zheshu, e Ali Turan. "Finite Time Thermodynamic Modeling of a Indirectly Fired Gas Turbine Cycle". In 2010 Asia-Pacific Power and Energy Engineering Conference. IEEE, 2010. http://dx.doi.org/10.1109/appeec.2010.5448475.
Testo completoSCHÖN, J. CHRISTIAN, e BJARNE ANDRESEN. "FINITE-TIME OPTIMIZATION OF CHEMICAL REACTIONS AND CONNECTIONS TO THERMODYNAMIC SPEED". In 101st WE-Heraeus-Seminar. WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814503648_0009.
Testo completoRapporti di organizzazioni sul tema "Finite-time thermodynamics"
Walters, Joseph. Optimization and Thermodynamic Performance Measures of a Class of Finite Time Thermodynamic Cycles. Portland State University Library, gennaio 2000. http://dx.doi.org/10.15760/etd.1185.
Testo completoThermodynamics of finite-time processes: Final report, 1986--89. Office of Scientific and Technical Information (OSTI), gennaio 1989. http://dx.doi.org/10.2172/5830514.
Testo completo