Letteratura scientifica selezionata sul tema "Finite-Temperature properties"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Finite-Temperature properties".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Finite-Temperature properties"
Ishii, Noriyoshi, Hideo Suganuma e Hideo Matsufuru. "Glueball properties at finite temperature". Nuclear Physics B - Proceedings Supplements 106-107 (marzo 2002): 516–18. http://dx.doi.org/10.1016/s0920-5632(01)01765-0.
Testo completoDrabold, David A., P. A. Fedders, Stefan Klemm e Otto F. Sankey. "Finite-temperature properties of amorphous silicon". Physical Review Letters 67, n. 16 (14 ottobre 1991): 2179–82. http://dx.doi.org/10.1103/physrevlett.67.2179.
Testo completoSeibert, David, e Charles Gale. "Measuring hadron properties at finite temperature". Physical Review C 52, n. 2 (1 agosto 1995): R490—R494. http://dx.doi.org/10.1103/physrevc.52.r490.
Testo completoJaklič, J., e P. Prelovšek. "Finite-temperature properties of doped antiferromagnets". Advances in Physics 49, n. 1 (gennaio 2000): 1–92. http://dx.doi.org/10.1080/000187300243381.
Testo completoLiu, Hanbin, e Kenneth D. Jordan. "Finite Temperature Properties of (CO2)nClusters". Journal of Physical Chemistry A 107, n. 30 (luglio 2003): 5703–9. http://dx.doi.org/10.1021/jp0345295.
Testo completoHAN, FUXIANG, e YONGMEI ZHANG. "FINITE TEMPERATURE PROPERTIES OF OPTICAL LATTICES". International Journal of Modern Physics B 19, n. 31 (20 dicembre 2005): 4567–86. http://dx.doi.org/10.1142/s0217979205032942.
Testo completoJu, Nengjiu, e Aurel Bulgac. "Finite-temperature properties of sodium clusters". Physical Review B 48, n. 4 (15 luglio 1993): 2721–32. http://dx.doi.org/10.1103/physrevb.48.2721.
Testo completoWu, K. L., S. K. Lai e W. D. Lin. "Finite temperature properties for zinc nanoclusters". Molecular Simulation 31, n. 6-7 (maggio 2005): 399–403. http://dx.doi.org/10.1080/08927020412331332749.
Testo completode Oliveira, N. A., e A. A. Gomes. "Laves phase pseudobinaries: finite temperature properties". Journal of Magnetism and Magnetic Materials 117, n. 1-2 (novembre 1992): 169–74. http://dx.doi.org/10.1016/0304-8853(92)90307-a.
Testo completoYang, Jie, Jue-lian Shen e Hai-qing Lin. "Finite Temperature Properties of The FrustratedJ1-J2Model". Journal of the Physical Society of Japan 68, n. 7 (15 luglio 1999): 2384–89. http://dx.doi.org/10.1143/jpsj.68.2384.
Testo completoTesi sul tema "Finite-Temperature properties"
Burnett, Mark Michael Stoddard Elizabeth P. "Single-particle properties of nuclear matter at finite temperature". Diss., UMK access, 2007.
Cerca il testo completo"A thesis in physics." Typescript. Advisor: Elizabeth P. Stoddard. Vita. Title from "catalog record" of the print edition Description based on contents viewed Dec. 18, 2007. Includes bibliographical references (leaf 23). Online version of the print edition.
Moretto, Therese. "Structure and properties of hadrons at zero and finite temperature". Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.335764.
Testo completoRobaina, Fernandez Daniel [Verfasser]. "Static and dynamic properties of QCD at finite temperature / Daniel Robaina Fernandez". Mainz : Universitätsbibliothek Mainz, 2016. http://d-nb.info/1106573382/34.
Testo completoWilliams, Michael Eric. "Ab-initio elastic and thermodynamic properties of high-temperature cubic intermetallics at finite temperatures". [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2779.
Testo completoZhong, Anruo. "Machine learning and adaptive sampling to predict finite-temperature properties in metallic materials at the atomic scale". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP107.
Testo completoThe properties and behaviors of materials under extreme conditions are essential for energy systems such as fission and fusion reactors. However, accurately predicting the properties of materials at high temperatures remains challenging. Direct measurements of these properties are constrained by experimental instrument limitations, and atomic-scale simulations based on empirical force fields are often unreliable due to a lack of accuracy. This problem can be addressed using machine learning techniques, which have recently become widely used in materials research. Machine learning force fields achieve the accuracy of ab initio calculations; however, their implementation in sampling methods is limited by high computational costs, typically several orders of magnitude greater than those of traditional force fields. To overcome this limitation, this thesis has two objectives: (i) developing machine learning force fields with a better accuracy-efficiency trade-off, and (ii) creating accelerated sampling methods to facilitate the use of computationally expensive machine learning force fields and accurately estimate free energy. For the first objective, we enhance the construction of machine learning force fields by focusing on three key factors: the database, the descriptor of local atomic environments, and the regression model. Within the framework of Gaussian process regression, we propose and optimize descriptors based on Fourier-sampled kernels and novel sparse points selection methods for kernel regression. For the second objective, we develop a fast and robust Bayesian sampling scheme for estimating the fully anharmonic free energy, which is crucial for understanding temperature effects in crystalline solids, utilizing an improved adaptive biasing force method. This method performs a thermodynamic integration from a harmonic reference system, where numerical instabilities associated with zero frequencies are screened off. The proposed sampling method significantly improves convergence speed and overall accuracy. We demonstrate the efficiency of the improved method by calculating the second-order derivatives of the free energy, such as the elastic constants, which are computed several hundred times faster than with standard methods. This approach enables the prediction of the thermodynamic properties of tungsten and Ta-Ti-V-W high-entropy alloys at temperatures that cannot be investigated experimentally, up to their melting point, with ab initio accuracy by employing accurate machine learning force fields. An extension of this method allows for the sampling of a specified metastable state without transitions between different energy basins, thereby providing the formation and binding free energies of defective configurations. This development helps to explain the mechanism behind the observation of voids in tungsten, which cannot be explained by existing ab initio calculations. The free energy profile of vacancies in the Ta-Ti-V-W system is also computed for the first time. Finally, we validate the application of this free energy sampling method to liquids. The accuracy and numerical efficiency of the proposed computational framework, which combines machine learning force fields and enhanced sampling methods, opens up numerous possibilities for the reliable prediction of finite-temperature material properties
Moomaw, Peter. "Drooped Strings and Dressed Mesons: Implications of Gauge-Gravity Duality for the Properties of Heavy-Light Mesons at Finite Temperature". University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1250538856.
Testo completoWalander, Tomas. "Influences of temperature, fatigue and mixed mode loading on the cohesive properties of adhesive layers". Doctoral thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-10972.
Testo completoSeru, Vikas Vineeth, e Venkata Ramana Murthy Polinati. "Modelling and Simulation of Hydrogen Diffusion in High Strength Steel". Thesis, Blekinge Tekniska Högskola, Institutionen för maskinteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-21128.
Testo completoCaraballo, Simon. "Thermo-Mechanical Beam Element for Analyzing Stresses in Functionally Graded Materials". Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3024.
Testo completoRahmanian, Ima. "Thermal and mechanical properties of gypsum boards and their influences on fire resistance of gypsum board based systems". Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/thermal-and-mechanical-properties-of-gypsum-boards-and-their-influences-on-fire-resistance-of-gypsum-board-based-systems(d8eb4bf5-706a-4264-911f-9584ebfbbc83).html.
Testo completoLibri sul tema "Finite-Temperature properties"
C, Robinson James, e Langley Research Center, a cura di. Procedure for imolementation of temperature-dependent mechanical property capability in the Engineering Analysis Language (EAL) system. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Cerca il testo completoCenter, Langley Research, a cura di. Micromechanics analysis of space simulated thermal deformations and stresses in continuous fiber reinforced composites. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Cerca il testo completoA, Miller Robert, e Lewis Research Center, a cura di. Determination of creep behavior of thermal barrier coatings under laser imposed temperature and stress gradients. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.
Cerca il testo completoEckle, Hans-Peter. Models of Quantum Matter. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.001.0001.
Testo completoEriksson, Olle, Anders Bergman, Lars Bergqvist e Johan Hellsvik. Atomistic Spin Dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.001.0001.
Testo completoCapitoli di libri sul tema "Finite-Temperature properties"
Calles, A., e A. Cabrera. "Finite Temperature Properties for the Electron Gas with Localization up to 3 Dimensions". In Condensed Matter Theories, 37–46. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0605-4_5.
Testo completoFang, Miaomiao, Yuqi Wang, Jiaxin Liu e Fan Sun. "Research on Support Damage of Highway Bridge Based on Midas". In Lecture Notes in Civil Engineering, 330–37. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1260-3_30.
Testo completoRabhi, F., G. Cheng e T. Barriere. "Modeling of Viscoelasticity of Thermoplastic Polymers Employed in the Hot Embossing Process". In Lecture Notes in Mechanical Engineering, 251–60. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-58006-2_19.
Testo completoLi, Xu, Weiqin Liu, Jinxi Qin, Xiuxing Zhao e Jie Chen. "Study on Strain Characteristics of Long Longitudinal Slope Asphalt Pavement Surface". In Lecture Notes in Civil Engineering, 421–30. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4355-1_39.
Testo completoNayak, Soumyaranjan, Abhishek Kumar Singh, Hina Gokhale, M. J. N. V. Prasad e K. Narasimhan. "A Numerical Study to Analyze the Effect of Process Parameters on Ring Rolling of Ti-6Al-4V Alloy by Response Surface Methodology". In Lecture Notes in Mechanical Engineering, 315–35. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-58006-2_25.
Testo completoYang, Zhaochun. "Influence of Temperature on Material Properties". In Material Modeling in Finite Element Analysis, 35–42. 2a ed. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003436317-6.
Testo completoXu, Yangjian, Daihui Tu e Chunping Xiao. "Nonlinear Finite Element Analysis of Convective Heat Transfer Steady Thermal Stresses in a ZrO2 /FGM/Ti-6Al-4V Composite EFBF Plate with Temperature-Dependent Material Properties". In Ceramic Transactions Series, 265–71. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470640845.ch37.
Testo completoBetts, D. D., S. Masui e N. Vats. "Enhancement of the Finite Lattice Method for Estimating the Zero Temperature Properties of Quantum Spin Systems in Two Dimensions with Application to the S = 1/2 XY Ferromagnet on the Square Lattice". In Recent Progress in Many-Body Theories, 255–61. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1937-9_23.
Testo completoWerzner, Eric, Miguel A. A. Mendes, Cornelius Demuth, Dimosthenis Trimis e Subhashis Ray. "Simulation of Fluid Flow, Heat Transfer and Particle Transport Inside Open-Cell Foam Filters for Metal Melt Filtration". In Multifunctional Ceramic Filter Systems for Metal Melt Filtration, 301–33. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-40930-1_13.
Testo completoZinn-Justin, Jean. "Quantum field theory (QFT) at finite temperature: Equilibrium properties". In Quantum Field Theory and Critical Phenomena, 786–830. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834625.003.0033.
Testo completoAtti di convegni sul tema "Finite-Temperature properties"
Ryan, Thomas P., Robert C. Platt, Jeffery S. Dadd e Stanley Humphries. "Tissue Electrical Properties As a Function of Thermal Dose for Use in a Finite Element Model". In ASME 1997 International Mechanical Engineering Congress and Exposition, 167–71. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1330.
Testo completoHumphries, Stanley, Robert C. Platt e Thomas P. Ryan. "Finite-Element Codes to Model Electrical Heating and Non-Linear Thermal Transport in Biological Media". In ASME 1997 International Mechanical Engineering Congress and Exposition, 131–34. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1324.
Testo completoTorres-Rincon, Juan, Glòria Montaña, Angels Ramos e Laura Tolos. "Finite-temperature effects on D-meson properties". In 10th International Workshop on Charm Physics. Trieste, Italy: Sissa Medialab, 2021. http://dx.doi.org/10.22323/1.385.0040.
Testo completoAprilia, A., e A. Sulaksono. "Properties of fermionic dark stars at finite temperature". In PROCEEDINGS OF THE 5TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0007856.
Testo completoColò, Gianluca, Pier Francesco Bortignon, Nguyen Van Giai, Angela Bracco e Ricardo A. Broglia. "Properties of giant resonances at zero and finite temperature". In Future Directions in Nuclear Physics with 4π Gamma Detection Systems of the New Generation. AIP, 1992. http://dx.doi.org/10.1063/1.42584.
Testo completoOhno, Hiroshi, Heng-Tong Ding e Olaf Kaczmarek. "Quark mass dependence of quarkonium properties at finite temperature". In The 32nd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.214.0219.
Testo completoSator, Ladislav, e Miroslav Repka. "Analysis of Temperature Fields in FGM Micro/Nano Solids by Moving Finite Element Method". In 2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP). IEEE, 2023. http://dx.doi.org/10.1109/nap59739.2023.10310824.
Testo completoLee, Geoff M., Ashton S. Bradley e Matthew J. Davis. "Coherence Properties of a Continuously Pumped Atom Laser at Finite Temperature". In Quantum-Atom Optics Downunder. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/qao.2007.qwe26.
Testo completoPapa, Alessandro, Oleg Borisenko, Vladimir Chelnokov, Gennaro Cortese, Mario Gravina e Ivan Surzhikov. "Critical properties of 3D Z(N) lattice gauge theories at finite temperature". In 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0463.
Testo completoManjang, Salama, e Bidayatul Armynah. "The Radial Distribution of Temperature in XLPE Cable an Analysis The Finite Element Numerical Method". In 2006 IEEE 8th International Conference on Properties and applications of Dielectric Materials. IEEE, 2006. http://dx.doi.org/10.1109/icpadm.2006.284209.
Testo completoRapporti di organizzazioni sul tema "Finite-Temperature properties"
Lui, Rui, Cheng Zhu, John Schmalzel, Daniel Offenbacker, Yusuf Mehta, Benjamin Barrowes, Danney Glaser e Wade Lein. Experimental and numerical analyses of soil electrical resistivity under subfreezing conditions. Engineer Research and Development Center (U.S.), aprile 2024. http://dx.doi.org/10.21079/11681/48430.
Testo completoJung. L52232 Weld Metal Cooling Rate Prediction of Narrow Groove Pipeline Girth Welds FEA Modeling. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), gennaio 2008. http://dx.doi.org/10.55274/r0011321.
Testo completoKamai, Tamir, Gerard Kluitenberg e Alon Ben-Gal. Development of heat-pulse sensors for measuring fluxes of water and solutes under the root zone. United States Department of Agriculture, gennaio 2016. http://dx.doi.org/10.32747/2016.7604288.bard.
Testo completoLOW-TEMPERATURE COMPRESSION BEHAVIOUR OF CIRCULAR STUB STAINLESS-STEEL TUBULAR COLUMNS. The Hong Kong Institute of Steel Construction, settembre 2022. http://dx.doi.org/10.18057/ijasc.2022.18.3.4.
Testo completo