Segui questo link per vedere altri tipi di pubblicazioni sul tema: Finite groups.

Articoli di riviste sul tema "Finite groups"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Finite groups".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

A. Jund, Asaad, e Haval M. Mohammed Salih. "Result Involution Graphs of Finite Groups". Journal of Zankoy Sulaimani - Part A 23, n. 1 (20 giugno 2021): 113–18. http://dx.doi.org/10.17656/jzs.10846.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Zhang, Jinshan, Zhencai Shen e Jiangtao Shi. "Finite groups with few vanishing elements". Glasnik Matematicki 49, n. 1 (8 giugno 2014): 83–103. http://dx.doi.org/10.3336/gm.49.1.07.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Kondrat'ev, A. S., A. A. Makhnev e A. I. Starostin. "Finite groups". Journal of Soviet Mathematics 44, n. 3 (febbraio 1989): 237–318. http://dx.doi.org/10.1007/bf01676868.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Andruskiewitsch, N., e G. A. García. "Extensions of Finite Quantum Groups by Finite Groups". Transformation Groups 14, n. 1 (18 novembre 2008): 1–27. http://dx.doi.org/10.1007/s00031-008-9039-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Conrad, Paul F., e Jorge Martinez. "Locally finite conditions on lattice-ordered groups". Czechoslovak Mathematical Journal 39, n. 3 (1989): 432–44. http://dx.doi.org/10.21136/cmj.1989.102314.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Chen, Yuanqian, Paul Conrad e Michael Darnel. "Finite-valued subgroups of lattice-ordered groups". Czechoslovak Mathematical Journal 46, n. 3 (1996): 501–12. http://dx.doi.org/10.21136/cmj.1996.127311.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Kniahina, V. N., e V. S. Monakhov. "Finite groups with semi-subnormal Schmidt subgroups". Algebra and Discrete Mathematics 29, n. 1 (2020): 66–73. http://dx.doi.org/10.12958/adm1376.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Cao, Jian Ji, e Xiu Yun Guo. "Finite NPDM-groups". Acta Mathematica Sinica, English Series 37, n. 2 (febbraio 2021): 306–14. http://dx.doi.org/10.1007/s10114-021-8047-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Burn, R. P., L. C. Grove e C. T. Benson. "Finite Reflection Groups". Mathematical Gazette 70, n. 451 (marzo 1986): 77. http://dx.doi.org/10.2307/3615867.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Stonehewer, S. E. "FINITE SOLUBLE GROUPS". Bulletin of the London Mathematical Society 25, n. 5 (settembre 1993): 505–6. http://dx.doi.org/10.1112/blms/25.5.505.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

MCIVER, ANNABELLE, e PETER M. NEUMANN. "ENUMERATING FINITE GROUPS". Quarterly Journal of Mathematics 38, n. 4 (1987): 473–88. http://dx.doi.org/10.1093/qmath/38.4.473.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Cherlin, Gregory, e Ulrich Felgner. "Homogeneous Finite Groups". Journal of the London Mathematical Society 62, n. 3 (dicembre 2000): 784–94. http://dx.doi.org/10.1112/s0024610700001484.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Blackburn, Norman, Marian Deaconescu e Avinoam Mann. "Finite equilibrated groups". Mathematical Proceedings of the Cambridge Philosophical Society 120, n. 4 (novembre 1996): 579–88. http://dx.doi.org/10.1017/s0305004100001560.

Testo completo
Abstract (sommario):
If H, K are subgroups of a group G, then HK is a subgroup of G if and only if HK = KH. This condition certainly holds if H ≤ NG(K) or K ≤ NG(H). But the majority of groups can also be expressed as HK, where neither H nor K is normal. In this paper we consider groups G for which no subgroup G1 can be expressed as the product of non-normal subgroups of G1. Such a group is said to be equilibrated. Thus G is equilibrated if and only if either H ≤ NG(K) or K ≤ NG(H) whenever H, K and HK are subgroups of G.
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Heineken, Hermann. "Finite complete groups". Rendiconti del Seminario Matematico e Fisico di Milano 54, n. 1 (dicembre 1985): 29–34. http://dx.doi.org/10.1007/bf02924848.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Starostin, A. I. "Finite p-groups". Journal of Mathematical Sciences 88, n. 4 (febbraio 1998): 559–85. http://dx.doi.org/10.1007/bf02365317.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Myl’nikov, A. L. "Finite tangled groups". Siberian Mathematical Journal 48, n. 2 (marzo 2007): 295–99. http://dx.doi.org/10.1007/s11202-007-0030-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Myasnikov, Alexei, e Denis Osin. "Algorithmically finite groups". Journal of Pure and Applied Algebra 215, n. 11 (novembre 2011): 2789–96. http://dx.doi.org/10.1016/j.jpaa.2011.03.019.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Huang, Hua-Lin, Yuping Yang e Yinhuo Zhang. "On nondiagonal finite quasi-quantum groups over finite abelian groups". Selecta Mathematica 24, n. 5 (7 giugno 2018): 4197–221. http://dx.doi.org/10.1007/s00029-018-0420-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Reid, J. D. "On Finite Groups and Finite Fields". American Mathematical Monthly 98, n. 6 (giugno 1991): 549. http://dx.doi.org/10.2307/2324878.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

WILSON, JOHN S. "FINITE AXIOMATIZATION OF FINITE SOLUBLE GROUPS". Journal of the London Mathematical Society 74, n. 03 (dicembre 2006): 566–82. http://dx.doi.org/10.1112/s0024610706023106.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Lubotzky, Alexander, e Avinoam Mann. "Residually finite groups of finite rank". Mathematical Proceedings of the Cambridge Philosophical Society 106, n. 3 (novembre 1989): 385–88. http://dx.doi.org/10.1017/s0305004100068110.

Testo completo
Abstract (sommario):
The recent constructions, by Rips and Olshanskii, of infinite groups with all proper subgroups of prime order, and similar ‘monsters’, show that even under the imposition of apparently very strong finiteness conditions, the structure of infinite groups can be rather weird. Thus it seems reasonable to impose the type of condition that enables us to apply the theory of finite groups. Two such conditions are local finiteness and residual finiteness, and here we are interested in the latter. Specifically, we consider residually finite groups of finite rank, where a group is said to have rank r, if all finitely generated subgroups of it can be generated by r elements. Recall that a group is said to be virtually of some property, if it has a subgroup of finite index with this property. We prove the following result:Theorem 1. A residually finite group of finite rank is virtually locally soluble.
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Reid, J. D. "On Finite Groups and Finite Fields". American Mathematical Monthly 98, n. 6 (giugno 1991): 549–51. http://dx.doi.org/10.1080/00029890.1991.11995756.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Wei, X., A. Kh Zhurtov, D. V. Lytkina e V. D. Mazurov. "Finite groups close to Frobenius groups". Sibirskii matematicheskii zhurnal 60, n. 5 (30 agosto 2019): 1035–40. http://dx.doi.org/10.33048/smzh.2019.60.504.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Sozutov, A. I. "Groups Saturated with Finite Frobenius Groups". Mathematical Notes 109, n. 1-2 (gennaio 2021): 270–79. http://dx.doi.org/10.1134/s0001434621010314.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Wei, X., A. Kh Zhurtov, D. V. Lytkina e V. D. Mazurov. "Finite Groups Close to Frobenius Groups". Siberian Mathematical Journal 60, n. 5 (settembre 2019): 805–9. http://dx.doi.org/10.1134/s0037446619050045.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Lubotzky, Alexander, e Avinoam Mann. "Powerful p-groups. I. Finite groups". Journal of Algebra 105, n. 2 (febbraio 1987): 484–505. http://dx.doi.org/10.1016/0021-8693(87)90211-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Lytkina, D. V. "Groups saturated by finite simple groups". Algebra and Logic 48, n. 5 (settembre 2009): 357–70. http://dx.doi.org/10.1007/s10469-009-9063-z.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Pettet, Martin R. "Locally finite groups as automorphism groups". Archiv der Mathematik 48, n. 1 (gennaio 1987): 1–9. http://dx.doi.org/10.1007/bf01196346.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Hussain, Muhammad Tanveer, e Shamsher Ullah. "On nearly SΦ-normal subgroups of finite groups". Algebra and Discrete Mathematics 36, n. 2 (2023): 151–65. http://dx.doi.org/10.12958/adm2007.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Li, Changwen. "On weakly s-normal subgroups of finite groups". Algebra and Discrete Mathematics 36, n. 2 (2023): 179–87. http://dx.doi.org/10.12958/adm1673.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Trofimuk, Alexander. "FINITE GROUPS WITH GIVEN SYSTEMS OF PROPERMUTABLE SUBGROUPS". Eurasian Mathematical Journal 15, n. 1 (2024): 91–97. http://dx.doi.org/10.32523/2077-9879-2024-15-1-91-97.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Zimmerman, Jay. "Finite Groups Which are Automorphism Groups of Infinite Groups Only". Canadian Mathematical Bulletin 28, n. 1 (1 marzo 1985): 84–90. http://dx.doi.org/10.4153/cmb-1985-008-4.

Testo completo
Abstract (sommario):
AbstractThe object of this paper is to exhibit an infinite set of finite semisimple groups H, each of which is the automorphism group of some infinite group, but of no finite group. We begin the construction by choosing a finite simple group S whose outer automorphism group and Schur multiplier possess certain specified properties. The group H is a certain subgroup of Aut S which contains S. For example, most of the PSL's over a non-prime finite field are candidates for S, and in this case, H is generated by all of the inner, diagonal and graph automorphisms of S.
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Bandman, Tatiana, Gert-Martin Greuel, Fritz Grunewald, Boris Kunyavskii, Gerhard Pfister e Eugene Plotkin. "Identities for finite solvable groups and equations in finite simple groups". Compositio Mathematica 142, n. 03 (maggio 2006): 734–64. http://dx.doi.org/10.1112/s0010437x0500179x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Kozhukhov, S. F. "FINITE AUTOMORPHISM GROUPS OF TORSION-FREE ABELIAN GROUPS OF FINITE RANK". Mathematics of the USSR-Izvestiya 32, n. 3 (30 giugno 1989): 501–21. http://dx.doi.org/10.1070/im1989v032n03abeh000778.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Durakov, B. E., e A. I. Sozutov. "On Periodic Groups Saturated with Finite Frobenius Groups". Bulletin of Irkutsk State University. Series Mathematics 35 (2021): 73–86. http://dx.doi.org/10.26516/1997-7670.2021.35.73.

Testo completo
Abstract (sommario):
A group is called weakly conjugate biprimitively finite if each its element of prime order generates a finite subgroup with any of its conjugate elements. A binary finite group is a periodic group in which any two elements generate a finite subgroup. If $\mathfrak{X}$ is some set of finite groups, then the group $G$ saturated with groups from the set $\mathfrak{X}$ if any finite subgroup of $G$ is contained in a subgroup of $G$, isomorphic to some group from $\mathfrak{X}$. A group $G = F \leftthreetimes H$ is a Frobenius group with kernel $F$ and a complement $H$ if $H \cap H^f = 1$ for all $f \in F^{\#}$ and each element from $G \setminus F$ belongs to a one conjugated to $H$ subgroup of $G$. In the paper we prove that a saturated with finite Frobenius groups periodic weakly conjugate biprimitive finite group with a nontrivial locally finite radical is a Frobenius group. A number of properties of such groups and their quotient groups by a locally finite radical are found. A similar result was obtained for binary finite groups with the indicated conditions. Examples of periodic non locally finite groups with the properties above are given, and a number of questions on combinatorial group theory are raised.
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Borovik, Alexandre, e Ulla Karhumäki. "Locally finite groups of finite centralizer dimension". Journal of Group Theory 22, n. 4 (1 luglio 2019): 729–40. http://dx.doi.org/10.1515/jgth-2018-0109.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Zimmermann, Bruno. "Finite groups of outer automorphisms of free groups". Glasgow Mathematical Journal 38, n. 3 (settembre 1996): 275–82. http://dx.doi.org/10.1017/s0017089500031700.

Testo completo
Abstract (sommario):
Let Fr denote the free group of rank r and Out Fr: = AutFr/Inn Fr the outer automorphism group of Fr (automorphisms modulo inner automorphisms). In [10] we determined the maximal order 2rr! (for r > 2) for finite subgroups of Out Fr as well as the finite subgroup of that order which, for r > 3, is unique up to conjugation. In the present paper we determine all maximal finite subgroups (that is not contained in a larger finite subgroup) of Out F3, up to conjugation (Theorem 2 in Section 3). Here the considered case r = 3 serves as a model case: our method can be applied for other small values of r (in principle for any value of r) but the computations become considerably longer and are more apt for a computer then; the method can also be applied to determine the maximal finite subgroups of the automorphism group Aut Fr of Fr. Note that the canonical projection Aut Fr ⃗ Out Fr is injective on finite subgroups of Aut Fr; however, not all finite subgroups of Out Fr lift to finite subgroups of Aut Fr.
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Cheung, K., e M. Mosca. "Decomposing finite Abelian groups". Quantum Information and Computation 1, n. 3 (ottobre 2001): 26–32. http://dx.doi.org/10.26421/qic1.3-2.

Testo completo
Abstract (sommario):
This paper describes a quantum algorithm for efficiently decomposing finite Abelian groups into a product of cyclic groups. Such a decomposition is needed in order to apply the Abelian hidden subgroup algorithm. Such a decomposition (assuming the Generalized Riemann Hypothesis) also leads to an efficient algorithm for computing class numbers (known to be at least as difficult as factoring).
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Leavitt, J. L., G. J. Sherman e M. E. Walker. "Rewriteability in Finite Groups". American Mathematical Monthly 99, n. 5 (maggio 1992): 446. http://dx.doi.org/10.2307/2325089.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Witbooi, Peter. "Finite images of groups". Quaestiones Mathematicae 23, n. 3 (settembre 2000): 279–85. http://dx.doi.org/10.2989/16073600009485977.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Gil, Antoni, e José R. Martínez. "Mutations in finite groups". Bulletin of the Belgian Mathematical Society - Simon Stevin 1, n. 4 (1994): 491–506. http://dx.doi.org/10.36045/bbms/1103408606.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Huang, J., B. Hu e A. N. Skiba. "Finite generalized soluble groups". Algebra i logika 58, n. 2 (9 luglio 2019): 252–70. http://dx.doi.org/10.33048/alglog.2019.58.207.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Chuang, Joseph, Markus Linckelmann, Gunter Malle e Jeremy Rickard. "Representations of Finite Groups". Oberwolfach Reports 9, n. 1 (2012): 963–1019. http://dx.doi.org/10.4171/owr/2012/16.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Chuang, Joseph, Meinolf Geck, Markus Linckelmann e Gabriel Navarro. "Representations of Finite Groups". Oberwolfach Reports 12, n. 2 (2015): 971–1027. http://dx.doi.org/10.4171/owr/2015/18.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Chuang, Joseph, Meinolf Geck, Radha Kessar e Gabriel Navarro. "Representations of Finite Groups". Oberwolfach Reports 16, n. 1 (26 febbraio 2020): 841–95. http://dx.doi.org/10.4171/owr/2019/14.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Sun, Zhi-Wei. "Finite coverings of groups". Fundamenta Mathematicae 134, n. 1 (1990): 37–53. http://dx.doi.org/10.4064/fm-134-1-37-53.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Chupordia, V. A. "On finite-finitary groups". Researches in Mathematics 15 (15 febbraio 2021): 154. http://dx.doi.org/10.15421/240723.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Broto, Carles, e Jesper Møller. "Chevalleyp–local finite groups". Algebraic & Geometric Topology 7, n. 4 (18 dicembre 2007): 1809–919. http://dx.doi.org/10.2140/agt.2007.7.1809.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Deaconescu, Marian, e Gary L. Walls. "Finite Groups with Poles". Algebra Colloquium 13, n. 03 (settembre 2006): 507–12. http://dx.doi.org/10.1142/s1005386706000459.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Attar, M. Shabani. "Semicomplete Finite p-Groups". Algebra Colloquium 18, spec01 (dicembre 2011): 937–44. http://dx.doi.org/10.1142/s1005386711000812.

Testo completo
Abstract (sommario):
Let G be a group and G' be its commutator subgroup. An automorphism α of G is called an IA-automorphism if x-1α (x) ∈ G' for each x ∈ G. The set of all IA-automorphisms of G is denoted by IA (G). A group G is called semicomplete if and only if IA (G)= Inn (G), where Inn (G) is the inner automorphism group of G. In this paper we characterize semicomplete finite p-groups of class 2, give some necessary conditions for finite p-groups to be semicomplete, and characterize semicomplete non-abelian groups of orders p4 and p5.
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia