Letteratura scientifica selezionata sul tema "Federated network"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Federated network".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Federated network"
Шубин, Б., Т. Максимюк, О. Яремко, Л. Фабрі e Д. Мрозек. "МОДЕЛЬ ІНТЕГРАЦІЇ ФЕДЕРАТИВНОГО НАВЧАННЯ В МЕРЕЖІ МОБІЛЬНОГО ЗВ’ЯЗКУ 5-ГО ПОКОЛІННЯ". Information and communication technologies, electronic engineering 2, n. 1 (agosto 2022): 26–35. http://dx.doi.org/10.23939/ictee2022.01.026.
Testo completoZhang, Kainan, Zhipeng Cai e Daehee Seo. "Privacy-Preserving Federated Graph Neural Network Learning on Non-IID Graph Data". Wireless Communications and Mobile Computing 2023 (3 febbraio 2023): 1–13. http://dx.doi.org/10.1155/2023/8545101.
Testo completoHang, Yifei. "Federated learning-based neural network for hotel cancellation prediction". Applied and Computational Engineering 45, n. 1 (15 marzo 2024): 190–95. http://dx.doi.org/10.54254/2755-2721/45/20241092.
Testo completoYu, Yun William, e Griffin M. Weber. "Balancing Accuracy and Privacy in Federated Queries of Clinical Data Repositories: Algorithm Development and Validation". Journal of Medical Internet Research 22, n. 11 (3 novembre 2020): e18735. http://dx.doi.org/10.2196/18735.
Testo completoKostenko, Valery Alekseevich, e Alisa Evgenievna Selezneva. "Types of Attacks on Federated Neural Networks and Methods of Protection". Proceedings of the Institute for System Programming of the RAS 36, n. 1 (2024): 35–44. http://dx.doi.org/10.15514/ispras-2024-36(1)-3.
Testo completoMa, Xiaoyu, e Lize Gu. "Research and Application of Generative-Adversarial-Network Attacks Defense Method Based on Federated Learning". Electronics 12, n. 4 (15 febbraio 2023): 975. http://dx.doi.org/10.3390/electronics12040975.
Testo completoTian, Mengmeng. "An Contract Theory based Federated Learning Aggregation Algorithm in IoT Network". Journal of Physics: Conference Series 2258, n. 1 (1 aprile 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2258/1/012008.
Testo completoAl-Tameemi, M., M. B. Hassan e S. A. Abass. "Federated Learning (FL) – Overview". LETI Transactions on Electrical Engineering & Computer Science 17, n. 5 (2024): 74–82. http://dx.doi.org/10.32603/2071-8985-2024-17-5-74-82.
Testo completoRizzato, Matteo, Youssef Laarouchi e Christophe Geissler. "Using Federated Learning for Collaborative Intrusion Detection Systems". Journal of Systemics, Cybernetics and Informatics 21, n. 3 (giugno 2023): 29–36. http://dx.doi.org/10.54808/jsci.21.03.29.
Testo completoWang, Shuangzhong, e Ying Zhang. "Multi-Level Federated Network Based on Interpretable Indicators for Ship Rolling Bearing Fault Diagnosis". Journal of Marine Science and Engineering 10, n. 6 (28 maggio 2022): 743. http://dx.doi.org/10.3390/jmse10060743.
Testo completoTesi sul tema "Federated network"
Kulkarni, Shweta Samir. "SECURE MIDDLEWARE FOR FEDERATED NETWORK PERFORMANCE MONITORING". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366333088.
Testo completoMaka, Stephan. "Design and Implementation of a Federated Social Network". Master's thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-75477.
Testo completoFelt, Aaron J. "Federated ground station network model and interface specification". Thesis, Monterey, California: Naval Postgraduate School, 2014. http://hdl.handle.net/10945/44558.
Testo completoThis thesis solves the problem of a lack of a complete, simple ground station network interface standard. A federated satellite ground station network (FGN) model and computer interface are developed that extend the use of ground stations to external users across the Internet. This should allow for reuse of existing ground stations, reducing costs and complexity of space missions. An improved model describing FGNs is proposed that defines a hierarchy of the components of the network, allowing for scalability and unified interfaces, and simplifying the process of using FGN resources. This model, which we call the Improved FGN model, is used to develop security schemes that are simple but effective. Simple but effective security schemes are then developed for this Improved FGN model, along with a standardized SOFtware interface. This interface connects external users to the network in order to extend ground station hardware to remote users as well as to simplify scheduling for the resource owners in a network. Different middleware frameworks are compared, and Apache Thrift is selected as the best fit for an FGN. This interface is then described and demonstrated with a reference implementation in Python. Recommendations for future improvements of this interface standard are discussed.
Demirci, Turan. "Federated Simulation Of Network Performance Using Packet Flow Modeling". Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/2/12611704/index.pdf.
Testo completoCetin, Burak. "Wireless Network Intrusion Detection and Analysis using Federated Learning". Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1588778320687729.
Testo completoXu, Ran. "Federated Sensor Network architectural design for the Internet of Things (IoT)". Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13453.
Testo completoLu, Zonghao. "A case study about different network architectures in Federated Machine Learning". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-425193.
Testo completoSani, Lorenzo. "Unsupervised clustering of MDS data using federated learning". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25591/.
Testo completoGopalakrishnan, Aravind. "Network and Middleware Security for Enterprise Network Monitoring". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1339742304.
Testo completoVikström, Johan. "Comparing decentralized learning to Federated Learning when training Deep Neural Networks under churn". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-300391.
Testo completoDecentraliserad Maskinginlärning kan lösa några problematiska aspekter med Federated Learning. Det finns ingen central server som agerar som domare för vilka som får gagna av Maskininlärningsmodellerna skapad av den stora mäng data som blivit tillgänglig på senare år. Det skulle också kunna öka pålitligheten och skalbarheten av Maskininlärningssystem och därav dra nytta av att mer data är tillgänglig. Gossip Learning är ett sånt protokoll, men det är primärt designat med linjära modeller i åtanke. Hur presterar Gossip Learning när man tränar Djupa Neurala Nätverk? Kan det vara ett möjligt alternativ till Federated Learning? I det här exjobbet implementerar vi Gossip Learning med två olika modelsammanslagningstekniker. Vi designar och implementerar även två tillägg till protokollet med målet att uppnå bättre prestanda när man tränar i system där noder går ner och kommer up. Träningsmetoderna jämförs på två uppgifter: bildklassificering på Federated Extended MNIST datauppsättningen och tidsserieprognostisering på NN5 datauppsättningen. Dessutom har vi även experiment då noder alternerar mellan att vara tillgängliga och otillgängliga. Vi finner att Gossip Learning presterar marginellt bättre i miljöer då noder alltid är tillgängliga men är kraftigt överträffade i miljöer då noder alternerar mellan att vara tillgängliga och otillgängliga.
Libri sul tema "Federated network"
Hong, Choong Seon, Latif U. Khan, Mingzhe Chen, Dawei Chen, Walid Saad e Zhu Han. Federated Learning for Wireless Networks. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4963-9.
Testo completoProgram, Yap Community Action. A rapid ecological assessment to inform the establishment of a network of marine protected areas for biodiversity and fisheries conservation for Yap State, Federated States of Micronesia. [Yap, Federated States of Micronesia]: Yap Community Action Program, 2008.
Cerca il testo completoLim, Wei Yang Bryan, Jer Shyuan Ng, Zehui Xiong, Dusit Niyato e Chunyan Miao. Federated Learning Over Wireless Edge Networks. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07838-5.
Testo completoChen, Mingzhe, e Shuguang Cui. Communication Efficient Federated Learning for Wireless Networks. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-51266-7.
Testo completo1931-, Steinmann Heinrich, a cura di. Solutions for networked databases: How to move from heterogeneous structures to federated concepts. San Diego: Academic Press, 1993.
Cerca il testo completoInternational Business Machines Corporation. International Technical Support Organization, a cura di. Certification Study Guide Series: IBM Tivoli Federated Identity Manager 6.1. Poughkeepsie, NY: IBM, International Technical Support Organization, 2009.
Cerca il testo completoInternational Workshop on Engineering Federated Information Systems (4th 2001 Berlin, Germany). Engineering federated information systems: Proceedings of the 4th workshop, EFIS 2001, Oct 9-10, 2001, Berlin (Germany). Berlin: Akademische Verlagsgesellschaft Aka, 2001.
Cerca il testo completoInternational Workshop on Engineering Federated Information Systems (3rd 2000 Dublin, Ireland). Engineering federated information systems: Proceedings of the 3rd workshop, EFIS 2000, June 19-20, 2000, Dublin (Ireland). Amsterdam: IOS Press, 2000.
Cerca il testo completoDowling, Jim. Distributed Applications and Interoperable Systems: 13th IFIP WG 6.1 International Conference, DAIS 2013, Held as Part of the 8th International Federated Conference on Distributed Computing Techniques, DisCoTec 2013, Florence, Italy, June 3-5, 2013. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Cerca il testo completoNicola, Rocco. Coordination Models and Languages: 15th International Conference, COORDINATION 2013, Held as Part of the 8th International Federated Conference on Distributed Computing Techniques, DisCoTec 2013, Florence, Italy, June 3-5, 2013. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Cerca il testo completoCapitoli di libri sul tema "Federated network"
Rodrigues, Thiago Gomes, Patricia Takako Endo, David W. S. C. Beserra, Djamel Sadok e Judith Kelner. "Accountability for Federated Clouds". In Computer and Network Security Essentials, 569–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58424-9_33.
Testo completoBhoj, P., D. Caswell, S. Chutani, G. Gopal e M. Kosarchyn. "Management of New Federated Services". In Integrated Network Management V, 327–40. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-0-387-35180-3_25.
Testo completoPrabhugaonkar, Gargi Gopalkrishna, Xiaoyan Sun, Xuyu Wang e Jun Dai. "Deep IoT Monitoring: Filtering IoT Traffic Using Deep Learning". In Silicon Valley Cybersecurity Conference, 120–36. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-24049-2_8.
Testo completoChoraś, Michał, Rafał Kozik, Rafał Piotrowski, Juliusz Brzostek e Witold Hołubowicz. "Network Events Correlation for Federated Networks Protection System". In Towards a Service-Based Internet, 100–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24755-2_9.
Testo completoKong, Lingwei, Hengtao Tao, Jianzong Wang, Zhangcheng Huang e Jing Xiao. "Network Coding for Federated Learning Systems". In Neural Information Processing, 546–57. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63833-7_46.
Testo completoPeratikou, Adamantini, Constantinos Louca, Stavros Shiaeles e Stavros Stavrou. "On Federated Cyber Range Network Interconnection". In Selected Papers from the 12th International Networking Conference, 117–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64758-2_9.
Testo completoDhiyanesh, B., G. Kiruthiga, P. Saraswathi, S. Gomathi e R. Radha. "Federated Learning for Efficient Cardiac Disease Prediction based on Hyper Spectral Feature Selection using Deep Spectral Convolution Neural Network". In Handbook on Federated Learning, 245–63. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003384854-11.
Testo completoGu, Shiqiao, Liu Yang, Siqi Deng e Zhengyi Xu. "Two-Stream Communication-Efficient Federated Pruning Network". In Lecture Notes in Computer Science, 185–96. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-20868-3_14.
Testo completoIrfan, Muhammad Maaz, Lin Wang, Sheraz Ali, Shan Jing e Chuan Zhao. "FL-DP: Differential Private Federated Neural Network". In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 271–81. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96791-8_20.
Testo completoIdoje, Godwin, Tasos Dagiuklas e Muddesar Iqbal. "On the Performance of Federated Learning Network". In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 41–56. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-54531-3_3.
Testo completoAtti di convegni sul tema "Federated network"
Gao, Shangqian, Junyi Li, Zeyu Zhang, Yanfu Zhang, Weidong Cai e Heng Huang. "Device-Wise Federated Network Pruning". In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 12342–52. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.01173.
Testo completoGao, Tianli, Jiahong Lin, Congduan Li, Chee Wei Tan e Jun Gao. "Federated Learning Meets Network Coding: Efficient Coded Hierarchical Federated Learning". In 2024 IEEE Information Theory Workshop (ITW), 241–46. IEEE, 2024. https://doi.org/10.1109/itw61385.2024.10806940.
Testo completoBehera, Sadananda, Saroj Kumar Panda, Tania Panayiotou e Georgios Ellinas. "Federated Learning for Network Traffic Prediction". In 2024 IFIP Networking Conference (IFIP Networking), 781–85. IEEE, 2024. http://dx.doi.org/10.23919/ifipnetworking62109.2024.10619909.
Testo completoMu, Xianyu, Youliang Tian, Zhou Zhou e Jinbo Xiong. "Lightweight Federated Learning Secure Aggregation Protocols". In 2024 International Conference on Networking and Network Applications (NaNA), 438–43. IEEE, 2024. http://dx.doi.org/10.1109/nana63151.2024.00079.
Testo completoWu, Chen, Sencun Zhu, Prasenjit Mitra e Wei Wang. "Unlearning Backdoor Attacks in Federated Learning". In 2024 IEEE Conference on Communications and Network Security (CNS), 1–9. IEEE, 2024. http://dx.doi.org/10.1109/cns62487.2024.10735680.
Testo completoBusnel, Yann, e Léo Lavaur. "Tutorial: Federated Learning × Security for Network Monitoring". In 2024 IEEE 44th International Conference on Distributed Computing Systems Workshops (ICDCSW), 13–16. IEEE, 2024. http://dx.doi.org/10.1109/icdcsw63686.2024.00008.
Testo completoJin, Dongzi, Yingyu Li e Yong Xiao. "Federated Generative Learning for Digital Twin Network Modeling". In 2024 IEEE 99th Vehicular Technology Conference (VTC2024-Spring), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/vtc2024-spring62846.2024.10683000.
Testo completoSingh, Jagdeep, Sanjay Kumar Dhurandher e Isaac Woungang. "Federated Learning Empowered Routing for Opportunistic Network Environments". In 2024 IEEE International Conference on Communications Workshops (ICC Workshops), 1998–2004. IEEE, 2024. http://dx.doi.org/10.1109/iccworkshops59551.2024.10615288.
Testo completoFu, Xiao. "Network Traffic Classification Based on Personalized Federated Learning". In 2024 IEEE 6th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), 1359–62. IEEE, 2024. https://doi.org/10.1109/iccasit62299.2024.10827950.
Testo completoYoon, Heeyong, Kang-Wook Chon e Min-Soo Kim. "FedSTGNN: A Federated Spatio-Temporal Graph Neural Network". In 2024 15th International Conference on Information and Communication Technology Convergence (ICTC), 1863–68. IEEE, 2024. https://doi.org/10.1109/ictc62082.2024.10826762.
Testo completoRapporti di organizzazioni sul tema "Federated network"
Martinez, Richard G., Steven Polliard e Robert Flo. Distributed Training Network Guard Trusted Bridge Federate Initial Capabilities Demonstration: After Action Report. Fort Belvoir, VA: Defense Technical Information Center, ottobre 2002. http://dx.doi.org/10.21236/ada408651.
Testo completoAfrican Open Science Platform Part 1: Landscape Study. Academy of Science of South Africa (ASSAf), 2019. http://dx.doi.org/10.17159/assaf.2019/0047.
Testo completo