Articoli di riviste sul tema "Fast multipolar method"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Fast multipolar method.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Fast multipolar method".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Makino, Junichiro. "Yet Another Fast Multipole Method without Multipoles—Pseudoparticle Multipole Method". Journal of Computational Physics 151, n. 2 (maggio 1999): 910–20. http://dx.doi.org/10.1006/jcph.1999.6226.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Gu, Kaihao, Yiheng Wang, Shengjie Yan e Xiaomei Wu. "Modeling Analysis of Thermal Lesion Characteristics of Unipolar/Bipolar Ablation Using Circumferential Multipolar Catheter". Applied Sciences 10, n. 24 (18 dicembre 2020): 9081. http://dx.doi.org/10.3390/app10249081.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The circumferential multipolar catheter (CMC) facilitates pulmonary vein isolation (PVI) for the treatment of atrial fibrillation by catheter ablation. However, the ablation characteristics of CMC are not well understood. This study uses the finite element method to conduct a comprehensive analysis of the ablation characteristics of multielectrode unipolar/bipolar (MEU/MEB) modes of the CMC. A three-dimensional computational model of the CMC, including blood, myocardium, connective tissue, lung, and muscle, was constructed. The method was validated by comparing the results of an in vitro experiment with the simulation. Both ablation modes could create contiguous effective lesions, but the MEU mode created a deeper and broader lesion volume than the MEB mode. The MEB mode had an overall higher average temperature field and allowed faster formation of the effective contiguous lesion. The lesion shape tended to be symmetric and spread downward and superficially in the MEU mode and MEB mode, respectively. Results from the simulation for validation agreed with the in vitro experiment. Different ablation trends of the MEU and MEB modes provide different solutions for specific ablation requirements in clinical applications. The MEU mode suits transmural lesion in thick tissue around pulmonary veins (PVs). The MEB mode profits fast and durable creation of circumferential PVI. This study provides a detailed performance analysis of CMC, thereby contributing to the theoretical knowledge base of application of PVI with this emerging technology.
3

Anderson, Christopher R. "An Implementation of the Fast Multipole Method without Multipoles". SIAM Journal on Scientific and Statistical Computing 13, n. 4 (luglio 1992): 923–47. http://dx.doi.org/10.1137/0913055.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Sun, Yingchao, Zailin Yang, Lei Chen e Duanhua Mao. "Scattering of a scalene trapezoidal hill with a shallow cavity to SH waves". Journal of Mechanics 38 (2022): 88–111. http://dx.doi.org/10.1093/jom/ufac010.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract Both surface ground motion and cavity stress concentration have always been considered in the designs of earthquake engineering. In this paper, a theoretical approach is used to study the scattering problem of circular holes under a scalene trapezoidal hill. The wave displacement function was obtained by solving the Helmholtz equation that meets the zero-stress boundary conditions by the variable separation method and the image method. Based on the complex function, the multipolar coordinate method and the region-matching technique, algebraic equations were established at auxiliary boundaries and free boundary conditions in the complex domain. Auxiliary circles were used to solve the singularity of the reflex angle at the trapezoidal corner. Then, according to the sample statistics, instead of the Fourier expansion method, the least-squares method was used to solve the undetermined coefficient of the algebraic equations by discrete boundaries. Frequency responses for some parameters were calculated and discussed. The numerical results demonstrate that the continuity of the auxiliary boundaries and the accuracy of the zero-stress boundary are good; the displacement of the free surface and the stress of the circular hole are related to the shape of the trapezoid, the position of the circular hole, the direction of the incident wave and the frequency content of the excitation. Finally, time-domain responses were calculated by inverse fast Fourier transform based on the frequency domain theory, and the results have revealed the wave propagation mechanism in the complicated structure.
5

Sahary, Fitry Taufiq, Rizal Mutaqin, Ghani Mutaqin e Dwi Shinta Dharmopadni. "Transformation of Indonesian Army Personnel to Produce Experts Soldiers in the Field of Technology". Jurnal Pertahanan: Media Informasi ttg Kajian & Strategi Pertahanan yang Mengedepankan Identity, Nasionalism & Integrity 9, n. 1 (30 aprile 2023): 167. http://dx.doi.org/10.33172/jp.v9i1.3264.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
<p>The development of a fast-moving and dynamic strategic environment has an impact on the increasing situation of tension between countries. The visible phenomenon is the atmosphere of increasing the strength of the Armed Forces in regional countries (Arms Race) which then makes the threat dimension increasingly multipolar. On the other hand, the regional security situation, especially in Indonesia, is characterized by an increase in terrorism activities and other dangerous additives (Drugs) into the country, and boundary disputes related to the struggle for the use of increasingly massive natural resources. Flowing from the development of the strategic environment that gave birth to the complexity of threats to the sovereignty and integrity of the Republic of Indonesia. The study objective of this research is to provide advice to the leadership of the TNI AD regarding the transformation of TNI AD personnel development. So that this research uses the method of direct observation of the field. Besides observation, this research also uses the literature study method. Based on research results, obtained research results in the form the Army's personnel development has not been able to answer the dynamics of the strategic environment, the nature of threats, and organizational needs. Thus, it is necessary to make arrangements, especially in the recruitment system, education, and career development. </p>
6

Greengard, L., e S. Wandzura. "Fast Multipole Methods". IEEE Computational Science and Engineering 5, n. 3 (luglio 1998): 16–18. http://dx.doi.org/10.1109/mcse.1998.714588.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Létourneau, Pierre-David, Cristopher Cecka e Eric Darve. "Generalized fast multipole method". IOP Conference Series: Materials Science and Engineering 10 (1 giugno 2010): 012230. http://dx.doi.org/10.1088/1757-899x/10/1/012230.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

TANAKA, Masataka, e Jianming ZHANG. "406 ADVANCED SIMULATION OF CNT COMPOSITES BY A FAST MULTIPOLE HYBRID BOUNDARY NODE METHOD". Proceedings of The Computational Mechanics Conference 2005.18 (2005): 535–36. http://dx.doi.org/10.1299/jsmecmd.2005.18.535.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Vedovato, G., E. Milotti, G. A. Prodi, S. Bini, M. Drago, V. Gayathri, O. Halim et al. "Minimally-modeled search of higher multipole gravitational-wave radiation in compact binary coalescences". Classical and Quantum Gravity 39, n. 4 (24 gennaio 2022): 045001. http://dx.doi.org/10.1088/1361-6382/ac45da.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract As the Advanced LIGO and Advanced Virgo interferometers, soon to be joined by the KAGRA interferometer, increase their sensitivity, they detect an ever-larger number of gravitational waves with a significant presence of higher multipoles (HMs) in addition to the dominant (2, 2) multipole. These HMs can be detected with different approaches, such as the minimally-modeled burst search methods, and here we discuss one such approach based on the coherent WaveBurst (cWB) pipeline. During the inspiral phase the HMs produce chirps whose instantaneous frequency is a multiple of the dominant (2, 2) multipole, and here we describe how cWB can be used to detect these spectral features. The search is performed within suitable regions of the time-frequency representation; their shape is determined by optimizing the receiver operating characteristics. This novel method has already been used in the GW190814 discovery paper (Abbott et al 2020 Astrophys. J. Lett. 896 L44) and is very fast and flexible. Here we describe in full detail the procedure used to detect the (3, 3) multipole in GW190814 as well as searches for other HMs during the inspiral phase, and apply it to another event that displays HMs, GW190412, replicating the results obtained with different methods. The procedure described here can be used for the fast analysis of HMs and to support the findings obtained with the model-based Bayesian parameter estimates.
10

Schanz, Martin. "Fast multipole method for poroelastodynamics". Engineering Analysis with Boundary Elements 89 (aprile 2018): 50–59. http://dx.doi.org/10.1016/j.enganabound.2018.01.014.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Petersen, H. G., D. Soelvason, J. W. Perram e E. R. Smith. "The very fast multipole method". Journal of Chemical Physics 101, n. 10 (15 novembre 1994): 8870–76. http://dx.doi.org/10.1063/1.468079.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

White, Christopher A., Benny G. Johnson, Peter M. W. Gill e Martin Head-Gordon. "The continuous fast multipole method". Chemical Physics Letters 230, n. 1-2 (novembre 1994): 8–16. http://dx.doi.org/10.1016/0009-2614(94)01128-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Schmidt, K. E., e Michael A. Lee. "Multipole Ewald sums for the fast multipole method". Journal of Statistical Physics 89, n. 1-2 (ottobre 1997): 411–24. http://dx.doi.org/10.1007/bf02770773.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Choi, Chang-Yong. "Algorithm and Implementation of Fast Multipole Boundary Element Method with Theoretical Analysis for Two-Dimensional Heat Conduction Problems". Transactions of the Korean Society of Mechanical Engineers B 37, n. 5 (1 maggio 2013): 441–48. http://dx.doi.org/10.3795/ksme-b.2013.37.5.441.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Сумбатян, Межлум Альбертович, e Андрей Сергеевич Пискунов. "Development of the discrete vortex method in combination with the fast multipole method in hydrodynamic problems". Computational Continuum Mechanics 17, n. 1 (12 maggio 2024): 75–86. http://dx.doi.org/10.7242/1999-6691/2024.17.1.7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
In this paper, the flow of a non-viscous incompressible fluid is discussed in terms of vorticity. In the framework of the discrete vortex method, each material particle of the fluid is considered in Lagrange variables; in this case, the velocities are determined by the Biot-Savard law. Thus, the influence of vortices on each other is taken into account. The aim of the work is to construct a numerical method of different orders of accuracy in the problems of vortex dynamics. The fast multipole method used in combination with the standard midpoint and fourth order Runge-Kutta methods significantly reduces the algorithmic complexity. In the fast multipole method, any vortex system is represented by discrete vortices. The fluid domain, determined by the motion of vortices, is divided into several ring-type subdomains, in each of which the velocities are calculated sequentially. To verify the combinability of the numerical methods, three test cases are considered: the dynamics of the symmetric and asymmetric Lamb-Chaplygin dipoles, as well as the rotation of the fluid occupying a cylindrical region of finite radius. It is known that the latter example is rather complex for direct numerical calculations in contrast to the elementary representation of its analytical solution. In fact, the performed calculations confirm that, without the Fast Multipole Method, the numerical treatment for this test case is hardly possible at a sufficiently large number of discrete vortices within a reasonable amount of time. The results of the test calculations are presented in the form of graphs and tables. The application of the standard discrete vortex methods combined with the fast multipole method shows that, due to the optimal number of subdomains and discrete vortices, the time of calculations can be significantly reduced.
16

Buchau, André, Wolfgang Rieger e Wolfgang M. Rucker. "Fast field computations with the fast multipole method". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 20, n. 2 (giugno 2001): 547–61. http://dx.doi.org/10.1108/03321640110383861.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

LIM, K. M., E. T. ONG, H. P. LEE e S. P. LIM. "A FAST BOUNDARY ELEMENT METHOD FOR UNDERWATER ACOUSTICS". Modern Physics Letters B 19, n. 28n29 (20 dicembre 2005): 1679–82. http://dx.doi.org/10.1142/s0217984905010207.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
A fast algorithm for the boundary element method is developed to handle problems in underwater acoustics. The algorithm employs the multipole and local expansions to approximate far-field potentials, and exploits the discrete convolution nature of mapping multipole to local expansions to accelerate the potential evaluation process. The speedup in the solution process is achieved by fast Fourier transform on the multipole and local expansion coefficients on a regular grid. The method is demonstrated by a three-dimensional underwater acoustics scattering problem, and it is found to achieve accurate results with relatively low order of expansion.
18

Bokanowski, Olivier, e Mohammed Lemou. "Fast Multipole Method for Multivariable Integrals". SIAM Journal on Numerical Analysis 42, n. 5 (gennaio 2005): 2098–117. http://dx.doi.org/10.1137/s0036142902409690.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Dachsel, Holger. "An error-controlled fast multipole method". Journal of Chemical Physics 131, n. 24 (28 dicembre 2009): 244102. http://dx.doi.org/10.1063/1.3264952.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Benson, Austin R., Jack Poulson, Kenneth Tran, Björn Engquist e Lexing Ying. "A Parallel Directional Fast Multipole Method". SIAM Journal on Scientific Computing 36, n. 4 (gennaio 2014): C335—C352. http://dx.doi.org/10.1137/130945569.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Bokanowski, Oliver, e Mohammed Lemou. "Fast multipole method for multidimensional integrals". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326, n. 1 (gennaio 1998): 105–10. http://dx.doi.org/10.1016/s0764-4442(97)82721-8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Darve, Eric. "Fast-multipole method: a mathematical study". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 325, n. 9 (novembre 1997): 1037–42. http://dx.doi.org/10.1016/s0764-4442(97)89101-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Fong, William, e Eric Darve. "The black-box fast multipole method". Journal of Computational Physics 228, n. 23 (dicembre 2009): 8712–25. http://dx.doi.org/10.1016/j.jcp.2009.08.031.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Darve, Eric. "The Fast Multipole Method: Numerical Implementation". Journal of Computational Physics 160, n. 1 (maggio 2000): 195–240. http://dx.doi.org/10.1006/jcph.2000.6451.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Lee, Hyunsoo, Jae-Won Rim, Il-Suek Koh e Seung-Mo Seo. "Computational Complexity of BiCGstab(l) in Multi-Level Fast Multipole Method(MLFMM) and Efficient Choice of l". Journal of Korean Institute of Electromagnetic Engineering and Science 29, n. 3 (marzo 2018): 167–70. http://dx.doi.org/10.5515/kjkiees.2018.29.3.167.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Zhang, Bing Rong, Jian Chen, Li Tao Chen e Wu Zhang. "Fast Multipole Boundary Element Method for 3-Dimension Acoustic Radiation Problem". Applied Mechanics and Materials 130-134 (ottobre 2011): 80–85. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.80.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
In order to reduce computational complexity and memory requirements using conventional boundary element method (CBEM) for large scale acoustical analysis, a fast solving algorithm called the Fast Multipole BEM (FMBEM) based on the fast multipole algorithm and GMRES iterative solver is developed without composing the dense influence coefficient matrices. The multipole level structure is introduced to accelerate the solution of large-scale acoustical problems, by employing a concept of cells clustering boundary elements and hierarchical cell structure. To further improve the efficiency of the FMBEM with iterative solvers, a block diagonal matrix method is used in the system of equations as the left pre-conditioner. Numerical examples are presented to further demonstrate the efficiency, accuracy and potentials of the fast multipole BEM for solving large-scale acoustical problems.
27

Sumbatyan, Mezhlum A., e Andrei S. Piskunov. "FAST MULTIPOLE ALGORITHM IN THE MESHLESS DISCRETE VORTEX METHOD FOR FLOWS OF NON-VISCOUS FLUID". UNIVERSITY NEWS. NORTH-CAUCASIAN REGION. NATURAL SCIENCES SERIES, n. 3 (215) (30 settembre 2022): 29–37. http://dx.doi.org/10.18522/1026-2237-2022-3-29-37.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
In this paper, we present a method for calculating the flows of a non-viscous fluid using the fast multipole method. The method is based on the fact that the computational complexity can be reduced to the level of O(N log N) . A two-dimensional problem of the flow of a non-viscous incompressible fluid is formulated in terms of vorticity and velocity. Further, the authors describe in detail the scheme, principles, as well as the positive and negative aspects of using the fast multipole method in the hydrodynamic problems. As a test of the algorithm, the authors consider an example of the Chaplygin-Lamb dipole. The results of numerical simulation of the dipole motion are presented, being implemented on C++ and Python platforms. Some conclusions are drawn about the motion of the vortex structure on the basis of the calculated results.
28

Antonini, G., e A. E. Ruehli. "Fast multipole and multifunction peec methods". IEEE Transactions on Mobile Computing 2, n. 4 (ottobre 2003): 288–98. http://dx.doi.org/10.1109/tmc.2003.1255644.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Gumerov, Nail A., e Ramani Duraiswami. "Fast multipole methods on graphics processors". Journal of Computational Physics 227, n. 18 (settembre 2008): 8290–313. http://dx.doi.org/10.1016/j.jcp.2008.05.023.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Kurzak, J., e B. M. Pettitt. "Fast multipole methods for particle dynamics". Molecular Simulation 32, n. 10-11 (settembre 2006): 775–90. http://dx.doi.org/10.1080/08927020600991161.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Wolf, William R., e Sanjiva K. Lele. "Aeroacoustic Integrals Accelerated by Fast Multipole Method". AIAA Journal 49, n. 7 (luglio 2011): 1466–77. http://dx.doi.org/10.2514/1.j050861.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Buchau, A., e W. M. Rucker. "Preconditioned fast adaptive multipole boundary-element method". IEEE Transactions on Magnetics 38, n. 2 (marzo 2002): 461–64. http://dx.doi.org/10.1109/20.996122.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Brown, G., T. C. Schulthess, D. M. Apalkov e P. B. Visscher. "Flexible Fast Multipole Method for Magnetic Simulations". IEEE Transactions on Magnetics 40, n. 4 (luglio 2004): 2146–48. http://dx.doi.org/10.1109/tmag.2004.829023.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Rudberg, Elias, e Paweł Sałek. "Efficient implementation of the fast multipole method". Journal of Chemical Physics 125, n. 8 (28 agosto 2006): 084106. http://dx.doi.org/10.1063/1.2244565.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Schmitt, H. "Contour Dynamics and the Fast Multipole Method". SIAM Journal on Scientific Computing 15, n. 4 (luglio 1994): 997–1001. http://dx.doi.org/10.1137/0915060.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Visscher, P. B., e D. M. Apalkov. "Simple recursive implementation of fast multipole method". Journal of Magnetism and Magnetic Materials 322, n. 2 (gennaio 2010): 275–81. http://dx.doi.org/10.1016/j.jmmm.2009.09.033.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

White, Christopher A., e Martin Head-Gordon. "Fractional tiers in fast multipole method calculations". Chemical Physics Letters 257, n. 5-6 (agosto 1996): 647–50. http://dx.doi.org/10.1016/0009-2614(96)00574-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Hoyler, G., e R. Unbehauen. "The fast multipole method for EMC problems". Electrical Engineering 80, n. 6 (dicembre 1997): 403–11. http://dx.doi.org/10.1007/bf01232931.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Sølvason, Dorth, e Henrik G. Petersen. "Error estimates for the fast multipole method". Journal of Statistical Physics 86, n. 1-2 (gennaio 1997): 391–420. http://dx.doi.org/10.1007/bf02180212.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Gavrilyuk, I. P. "Book Review: Fast multipole boundary element method". Mathematics of Computation 80, n. 275 (23 febbraio 2011): 1867–69. http://dx.doi.org/10.1090/s0025-5718-2011-02516-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Zhang, J. M., e Masa Tanaka. "Adaptive spatial decomposition in fast multipole method". Journal of Computational Physics 226, n. 1 (settembre 2007): 17–28. http://dx.doi.org/10.1016/j.jcp.2007.03.032.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Song, J. M., e W. C. Chew. "Fast multipole method solution using parametric geometry". Microwave and Optical Technology Letters 7, n. 16 (novembre 1994): 760–65. http://dx.doi.org/10.1002/mop.4650071612.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Hafla, W., A. Buchau, F. Groh e W. M. Rucker. "Fast Multipole Method Applied to Volume Integral Equation Method". Advances in Radio Science 3 (12 maggio 2005): 195–98. http://dx.doi.org/10.5194/ars-3-195-2005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Abstract. The Volume Integral Equation Method (VIEM) has been used for the solution of three-dimensional non-linear magnetostatic field problems. The number of unknowns is minimal as only the magnetic material has to be discretized. For accurate solutions of problems where the magnetic field is small compared to the excitation field a difference field formulation has been developed. To reduce computational costs the fast multipole method is applied both on compression of the system matrix and during post processing. The efficiency of the formulation is demonstrated in several examples.
44

Buchau, A., C. J. Huber, W. Rieger e W. M. Rucker. "Fast BEM computations with the adaptive multilevel fast multipole method". IEEE Transactions on Magnetics 36, n. 4 (luglio 2000): 680–84. http://dx.doi.org/10.1109/20.877540.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

MACDONALD, P. A., e T. ITOH. "FAST SIMULATION OF MICROSTRIP STRUCTURES USING THE FAST MULTIPOLE METHOD". International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 9, n. 5 (settembre 1996): 345–57. http://dx.doi.org/10.1002/(sici)1099-1204(199609)9:5<345::aid-jnm244>3.0.co;2-q.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Nishimura, N. "Fast multipole accelerated boundary integral equation methods". Applied Mechanics Reviews 55, n. 4 (1 luglio 2002): 299–324. http://dx.doi.org/10.1115/1.1482087.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Fundamentals of Fast Multipole Method (FMM) and FMM accelerated Boundary Integral Equation Method (BIEM) are presented. Developments of FMM accelerated BIEM in the Laplace and Helmholtz equations, wave equation, and heat equation are reviewed. Applications of these methods in computational mechanics are surveyed. This review article contains 173 references.
47

Wu, C. H., e C. N. Wang. "Application of Fast Multipole Method for Parallel Mufflers". Journal of Mechanics 28, n. 1 (marzo 2012): 153–62. http://dx.doi.org/10.1017/jmech.2012.16.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
ABSTRACTThe purpose of this study is to examine the acoustic performance of parallel simple expansion mufflers by a new approach for an acceleration of computational time required. The fast multipole method separated the field points and source points into two terms by means of addition theorem. When the boundary is divided into uniform meshes, the integration of source element can be calculated fast. Therefore, the fast multipole method, when compared with the boundary element method, reduces CPU time from an order of N2 to NlogγN, where N is the number of unknowns and γ is a constant. The numerical results have been compared with experiments and analytical approaches based on pressure and velocity continuity, as well as the modal meshing approach; the results clearly show that the agreements are good.
48

Nam, Jeong-Hun, Jeong-Un You e Il-Suek Koh. "Large Complex Impedance and Dielectric Inhomogeneous Structure Scattering Analysis Based on Multi-Level Fast Multipole Method and Iterative Physical Optics". Journal of Korean Institute of Electromagnetic Engineering and Science 32, n. 10 (ottobre 2021): 916–24. http://dx.doi.org/10.5515/kjkiees.2021.32.10.916.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Wang, Jie, Changjun Zheng, Leilei Chen e Haibo Chen. "Acoustic Shape Optimization Based on Isogeometric Wideband Fast Multipole Boundary Element Method with Adjoint Variable Method". Journal of Theoretical and Computational Acoustics 28, n. 02 (giugno 2020): 2050015. http://dx.doi.org/10.1142/s2591728520500152.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
A shape optimization approach based on isogeometric wideband fast multipole boundary element method (IGA WFMBEM) in 2D acoustics is developed in this study. The key treatment is shape sensitivity analysis by using the adjoint variable method under isogeometric analysis (IGA) conditions. A set of efficient parameters of the wideband fast multipole method has been identified for IGA boundary element method. Shape optimization is performed by applying the method of moving asymptotes. IGA WFMBEM is validated through an acoustic scattering example. The proposed optimization approach is tested on a sound barrier and two multiple structures to demonstrate its potential for engineering problems.
50

Gui, Hai Lian, Qiang Li, Yu Gui Li, Xia Yang e Qing Xue Huang. "A New Fast Multipole Boundary Element Method for Solving 3-D Elastic Problem". Advanced Materials Research 813 (settembre 2013): 387–90. http://dx.doi.org/10.4028/www.scientific.net/amr.813.387.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
In this paper, a new fast multipole boundary element method is presented. By using Taylor series expansion and a new mapping in boundary cell, the efficiency of calculation about influence coefficients has been improved. Compare with the old fast multipole boundary element method, this new method is easier to be suitable for the large-scale numerical calculus request.

Vai alla bibliografia