Letteratura scientifica selezionata sul tema "Fano fourfolds of K3 type"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Fano fourfolds of K3 type".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Fano fourfolds of K3 type"
Fu, Lie, Robert Laterveer e Charles Vial. "Multiplicative Chow–Künneth decompositions and varieties of cohomological K3 type". Annali di Matematica Pura ed Applicata (1923 -) 200, n. 5 (1 giugno 2021): 2085–126. http://dx.doi.org/10.1007/s10231-021-01070-0.
Testo completoLaterveer, Robert. "On the Chow ring of certain Fano fourfolds". Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 19, n. 1 (1 dicembre 2020): 39–52. http://dx.doi.org/10.2478/aupcsm-2020-0004.
Testo completoMongardi, Giovanni. "On symplectic automorphisms of hyper-Kähler fourfolds of K3[2] type". Michigan Mathematical Journal 62, n. 3 (settembre 2013): 537–50. http://dx.doi.org/10.1307/mmj/1378757887.
Testo completoLaza, Radu, e Kieran O’Grady. "Birational geometry of the moduli space of quartic surfaces". Compositio Mathematica 155, n. 9 (2 agosto 2019): 1655–710. http://dx.doi.org/10.1112/s0010437x19007516.
Testo completoTanimoto, Sho, e Anthony Várilly-Alvarado. "Kodaira dimension of moduli of special cubic fourfolds". Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, n. 752 (1 luglio 2019): 265–300. http://dx.doi.org/10.1515/crelle-2016-0053.
Testo completoPym, Brent. "Elliptic singularities on log symplectic manifolds and Feigin–Odesskii Poisson brackets". Compositio Mathematica 153, n. 4 (13 marzo 2017): 717–44. http://dx.doi.org/10.1112/s0010437x16008174.
Testo completoKonovalov, V. A. "THE USE OF MARKOV ALGORITHMS FOR THE STUDY OF l-VOIDS IN BIG DATA OF SOCIO-ECONOMIC SYSTEMS. PART 2". Vestnik komp'iuternykh i informatsionnykh tekhnologii, n. 217 (luglio 2022): 30–41. http://dx.doi.org/10.14489/vkit.2022.07.pp.030-041.
Testo completoKretschmer, Andreas. "The Chow ring of hyperkähler varieties of $$K3^{[2]}$$-type via Lefschetz actions". Mathematische Zeitschrift, 9 settembre 2021. http://dx.doi.org/10.1007/s00209-021-02846-z.
Testo completoHuybrechts, Daniel. "Chow groups of surfaces of lines in cubic fourfolds". Épijournal de Géométrie Algébrique Special volume in honour of... (30 luglio 2023). http://dx.doi.org/10.46298/epiga.2023.10425.
Testo completoGounelas, Frank, e Alexis Kouvidakis. "On some invariants of cubic fourfolds". European Journal of Mathematics 9, n. 3 (11 luglio 2023). http://dx.doi.org/10.1007/s40879-023-00651-y.
Testo completoTesi sul tema "Fano fourfolds of K3 type"
Hernandez, Gomez Jordi Emanuel. "Transformations spéciales des quadriques". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES086.
Testo completoIn this thesis we study special self-birational transformations of smooth quadrics. We obtain a classification result in dimensions 3 and 4. In these two cases, we prove that there is only one example. In the case of dimension 3, it is given by the linear system of quadrics passing through a rational normal quartic curve. In the case of dimension 4, it is given by the linear system of cubic complexes passing through a non-minimal K3 surface of degree 10 with 2 skew (-1)-lines that is not contained in any other quadric. The base locus scheme of the inverse map is in general a smooth surface of the same type. Moreover, we prove that the corresponding pair of K3 surfaces are non-isomorphic Fourier-Mukai parters. These surfaces are also related to special cubic fourfolds. More precisely, we show that a general cubic in the Hassett divisor of special cubic fourfolds of discriminant 14 contains such a surface. This is the first example of a family of non-rational surfaces characterizing cubics in this divisor. The study of special birational transformations of quadrics is motivated by an example described by M. Bernardara, E. Fatighenti, L. Manivel, et F. Tanturri, who provided a list of 64 new families of Fano fourfolds of K3 type. Many examples in their list give varieties that admit multiple birational contractions realized as blow-ups of Fano manifolds along non-minimal K3 surfaces. The nature of the constructions implies that the corresponding K3 surfaces have equivalent derived categories. We partially answer the natural question: for which families the corresponding K3 surfaces are isomorphic, and for which families they are not?
Capitoli di libri sul tema "Fano fourfolds of K3 type"
Huybrechts, Daniel. "Hodge Theory of Cubic Fourfolds, Their Fano Varieties, and Associated K3 Categories". In Lecture Notes of the Unione Matematica Italiana, 165–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18638-8_5.
Testo completo