Letteratura scientifica selezionata sul tema "Fair combinatorial optimization"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Fair combinatorial optimization".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Fair combinatorial optimization"
Bourdache, Nadjet, e Patrice Perny. "Active Preference Learning Based on Generalized Gini Functions: Application to the Multiagent Knapsack Problem". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 luglio 2019): 7741–48. http://dx.doi.org/10.1609/aaai.v33i01.33017741.
Testo completoWang, Kai, Haoyu Liu, Zhipeng Hu, Xiaochuan Feng, Minghao Zhao, Shiwei Zhao, Runze Wu, Xudong Shen, Tangjie Lv e Changjie Fan. "EnMatch: Matchmaking for Better Player Engagement via Neural Combinatorial Optimization". Proceedings of the AAAI Conference on Artificial Intelligence 38, n. 8 (24 marzo 2024): 9098–106. http://dx.doi.org/10.1609/aaai.v38i8.28760.
Testo completoMOULIN, HERVÉ. "COST SHARING IN NETWORKS: SOME OPEN QUESTIONS". International Game Theory Review 15, n. 02 (giugno 2013): 1340001. http://dx.doi.org/10.1142/s021919891340001x.
Testo completoAdubi, Stephen A., Olufunke O. Oladipupo e Oludayo O. Olugbara. "Evolutionary Algorithm-Based Iterated Local Search Hyper-Heuristic for Combinatorial Optimization Problems". Algorithms 15, n. 11 (31 ottobre 2022): 405. http://dx.doi.org/10.3390/a15110405.
Testo completoMaleš, Uroš, Dušan Ramljak, Tatjana Jakšić Krüger, Tatjana Davidović, Dragutin Ostojić e Abhay Haridas. "Controlling the Difficulty of Combinatorial Optimization Problems for Fair Proof-of-Useful-Work-Based Blockchain Consensus Protocol". Symmetry 15, n. 1 (3 gennaio 2023): 140. http://dx.doi.org/10.3390/sym15010140.
Testo completoWang, Zhenzhong, Qingyuan Zeng, Wanyu Lin, Min Jiang e Kay Chen Tan. "Generating Diagnostic and Actionable Explanations for Fair Graph Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 38, n. 19 (24 marzo 2024): 21690–98. http://dx.doi.org/10.1609/aaai.v38i19.30168.
Testo completoRokbani, Nizar, Pavel Kromer, Ikram Twir e Adel M. Alimi. "A Hybrid Hierarchical Heuristic-ACO With Local Search Applied to Travelling Salesman Problem, AS-FA-Ls". International Journal of System Dynamics Applications 9, n. 3 (luglio 2020): 58–73. http://dx.doi.org/10.4018/ijsda.2020070104.
Testo completoLujak, Marin, Stefano Giordani, Andrea Omicini e Sascha Ossowski. "Decentralizing Coordination in Open Vehicle Fleets for Scalable and Dynamic Task Allocation". Complexity 2020 (16 luglio 2020): 1–21. http://dx.doi.org/10.1155/2020/1047369.
Testo completoLi, Xia, e Buhong Wang. "Thinned Virtual Array for Cramer Rao Bound Optimization in MIMO Radar". International Journal of Antennas and Propagation 2021 (15 gennaio 2021): 1–13. http://dx.doi.org/10.1155/2021/1408498.
Testo completoKhaled, Smail, e Djebbar Bachir. "Electromagnetism-like mechanism algorithm for hybrid flow-shop scheduling problems". Indonesian Journal of Electrical Engineering and Computer Science 32, n. 3 (1 dicembre 2023): 1614. http://dx.doi.org/10.11591/ijeecs.v32.i3.pp1614-1620.
Testo completoTesi sul tema "Fair combinatorial optimization"
Vo, Thi Quynh Trang. "Algorithms and Machine Learning for fair and classical combinatorial optimization". Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0035.
Testo completoCombinatorial optimization is a field of mathematics that searches for an optimal solution in a finite set of objects. It has crucial applications in many fields, including applied mathematics, software engineering, theoretical computer science, and machine learning. extit{Branch-and-cut} is one of the most widely-used algorithms for solving combinatorial optimization problems exactly. In this thesis, we focus on the computational aspects of branch-and-cut when studying two critical dimensions of combinatorial optimization: extit{the fairness of solutions} and extit{the integration of machine learning}.In Partef{part:1} (Chaptersef{chap:bnc-btsp} andef{chap:owa}), we study two common approaches to deal with the issue of fairness in combinatorial optimization, which has gained significant attention in the past decades. The first approach is extit{balanced combinatorial optimization}, which finds a fair solution by minimizing the difference between the largest and smallest components used. Due to the difficulties in bounding these components, to the best of our knowledge, no general exact framework based on mixed-integer linear programming (MILP) has been proposed for balanced combinatorial optimization. To address this gap, in Chapteref{chap:bnc-btsp}, we present a branch-and-cut algorithm and a novel class of local cutting planes tailored for balanced combinatorial optimization problems. We demonstrate the effectiveness of the proposed framework in the Balanced Traveling Salesman Problem. Additionally, we introduce bounding algorithms and mechanisms to fix variables to accelerate performance further.The second approach to handling the issue of fairness is extit{Ordered Weighted Average (OWA) combinatorial optimization}, which integrates the OWA operator into the objective function. Due to the ordering operator, OWA combinatorial optimization is nonlinear, even if its original constraints are linear. Two MILP formulations of different sizes have been introduced in the literature to linearize the OWA operator. However, which formulation performs best for OWA combinatorial optimization remains uncertain, as integrating the linearization methods may introduce additional difficulties. In Chapteref{chap:owa}, we provide theoretical and empirical comparisons of the two MILP formulations for OWA combinatorial optimization. In particular, we prove that the formulations are equivalent in terms of the linear programming relaxation. We empirically show that for OWA combinatorial optimization problems, the formulation with more variables can be solved faster with branch-and-cut.In Partef{part:2} (Chapteref{chap:mlbnc}), we develop methods for applying machine learning to enhance fundamental decision problems in branch-and-cut, with a focus on cut generation. Cut generation refers to the decision of whether to generate cuts or to branch at each node of the search tree. We empirically demonstrate that this decision significantly impacts branch-and-cut performance, especially for combinatorial cuts that exploit the facial structure of the convex hull of feasible solutions. We then propose a general framework combining supervised and reinforcement learning to learn effective strategies for generating combinatorial cuts in branch-and-cut. Our framework has two components: a cut detector to predict cut existence and a cut evaluator to choose between generating cuts and branching. Finally, we provide experimental results showing that the proposed method outperforms commonly used strategies for cut generation, even on instances larger than those used for training
Gliesch, Alex Zoch. "A genetic algorithm for fair land allocation". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/174950.
Testo completoThe goal of agrarian reform projects is the redistribution of farmland from large latifundia to smaller, often family farmers. One of the main problems the Brazilian National Institute of Colonization and Agrarian Reform (INCRA) has to solve is to subdivide a large parcel of land into smaller lots that are balanced with respect to certain attributes. This problem is difficult since it considers several constraints originating from legislation as well as ethical considerations. Current solutions are computer-assisted, but manual, time-consuming and error-prone, leading to rectangular lots of similar areas which are unfair with respect to soil aptitude and access to hydric resources. In this thesis, we propose a genetic algorithm to produce fair land subdivisions automatically. We present a greedy randomized constructive heuristic based on location-allocation to generate initial solutions, as well as mutation and recombination operators that consider specifics of the problem. Experiments on 5 real-world and 25 artificial instances confirm the effectiveness of the different components of our method, and show that it leads to fairer solutions than those currently applied in practice.
Capitoli di libri sul tema "Fair combinatorial optimization"
Armaselu, Bogdan, e Ovidiu Daescu. "Algorithms for Fair Partitioning of Convex Polygons". In Combinatorial Optimization and Applications, 53–65. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12691-3_5.
Testo completoJia, Xinrui, Kshiteej Sheth e Ola Svensson. "Fair Colorful k-Center Clustering". In Integer Programming and Combinatorial Optimization, 209–22. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45771-6_17.
Testo completoNguyen, Viet Hung, e Paul Weng. "An Efficient Primal-Dual Algorithm for Fair Combinatorial Optimization Problems". In Combinatorial Optimization and Applications, 324–39. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71150-8_28.
Testo completoHansen, Thomas Dueholm, e Orestis A. Telelis. "Improved Bounds for Facility Location Games with Fair Cost Allocation". In Combinatorial Optimization and Applications, 174–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02026-1_16.
Testo completoBlum, Christian, e Pedro Pinacho-Davidson. "Application of Negative Learning Ant Colony Optimization to the Far from Most String Problem". In Evolutionary Computation in Combinatorial Optimization, 82–97. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30035-6_6.
Testo completoBlum, Christian, e Paola Festa. "A Hybrid Ant Colony Optimization Algorithm for the Far From Most String Problem". In Evolutionary Computation in Combinatorial Optimisation, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44320-0_1.
Testo completo"Combinatorial Materials and Catalysts Development: Where Are We and How Far Can We Go?" In Combinatorial and High-Throughput Discovery and Optimization of Catalysts and Materials, 23–36. CRC Press, 2006. http://dx.doi.org/10.1201/9781420005387-7.
Testo completoLi, Chu Min, e Felip Manyà. "Chapter 23. MaxSAT, Hard and Soft Constraints". In Frontiers in Artificial Intelligence and Applications. IOS Press, 2021. http://dx.doi.org/10.3233/faia201007.
Testo completoKaiwartya, Omprakash, Pawan Kumar Tiwari, Sushil Kumar e Mukesh Prasad. "Dynamic Vehicle Routing Solution in the Framework of Nature-Inspired Algorithms". In Designing and Implementing Global Supply Chain Management, 36–50. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9720-1.ch003.
Testo completoAtti di convegni sul tema "Fair combinatorial optimization"
Golrezaei, Negin, Rad Niazadeh, Kumar Kshitij Patel e Fransisca Susan. "Online Combinatorial Optimization with Group Fairness Constraints". In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/44.
Testo completoMartin, Hugo, e Patrice Perny. "BiOWA for Preference Aggregation with Bipolar Scales: Application to Fair Optimization in Combinatorial Domains". In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/252.
Testo completoXu, Huanle, Yang Liu, Wing Cheong Lau e Rui Li. "Combinatorial Multi-Armed Bandits with Concave Rewards and Fairness Constraints". In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/354.
Testo completoComlek, Yigitcan, Liwei Wang e Wei Chen. "Mixed-Variable Global Sensitivity Analysis With Applications to Data-Driven Combinatorial Materials Design". In ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/detc2023-110756.
Testo completoDai, Zuo, e Jianzhong Cha. "A Hybrid Approach of Heuristic and Neural Network for Packing Problems". In ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0119.
Testo completoPetkov, Hristo, Colin Hanley e Feng Dong. "DAG-WGAN: Causal Structure Learning with Wasserstein Generative Adversarial Networks". In 11th International Conference on Embedded Systems and Applications (EMSA 2022). Academy and Industry Research Collaboration Center (AIRCC), 2022. http://dx.doi.org/10.5121/csit.2022.120611.
Testo completoHuang, Mingyu, e Ke Li. "Exploring Structural Similarity in Fitness Landscapes via Graph Data Mining: A Case Study on Number Partitioning Problems". In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/621.
Testo completoJiang, Chunheng, Jianxi Gao e Malik Magdon-Ismail. "Inferring Degrees from Incomplete Networks and Nonlinear Dynamics". In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/457.
Testo completoLiao, Yanfen, Jiejin Cai e Xiaoqian Ma. "Study and Application on Real Time Optimum Operation for Plant Units". In ASME 2005 Power Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pwr2005-50311.
Testo completoBarros, E. G. D., S. P. Szklarz, J. Hopman, K. Hopstaken, J. P. Gonçalves da Silva, O. P. Bjørlykke, V. Rios, J. Videla, R. Oliveira e R. G. Hanea. "Well Swapping and Conversion Optimization Under Uncertainty Based on Extended Well Priority Parametrization". In Offshore Technology Conference Brasil. OTC, 2023. http://dx.doi.org/10.4043/32960-ms.
Testo completo