Segui questo link per vedere altri tipi di pubblicazioni sul tema: Face recognition.

Articoli di riviste sul tema "Face recognition"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Face recognition".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Deshmukh, Sagar, Sanjay Rawat e Shubhangi Patil. "Face Recognition Technology". International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (30 giugno 2018): 1612–13. http://dx.doi.org/10.31142/ijtsrd14331.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Yadav, Rakeshkumar H., Brajgopal Agarwal e Sheeba James. "Face Recognition System". International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (30 giugno 2018): 1815–18. http://dx.doi.org/10.31142/ijtsrd14453.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Ounachad, Khalid, Mohamed Oualla, Abdelalim Sadiq e Abdelghani Sohar. "Face Sketch Recognition: Gender Classification and Recognition". International Journal of Psychosocial Rehabilitation 24, n. 03 (18 febbraio 2020): 1073–85. http://dx.doi.org/10.37200/ijpr/v24i3/pr200860.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

V, Prathama, e Thippeswamy G. "Age Invariant Face Recognition". International Journal of Trend in Scientific Research and Development Volume-3, Issue-4 (30 giugno 2019): 971–76. http://dx.doi.org/10.31142/ijtsrd23572.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Patel, Ibrahim, Raghavendra Kulkarni e Dr P. Nageswar Rao. "Robust Singular Value Decomposition Algorithm for Unique Faces". INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 4, n. 2 (21 giugno 2018): 596–603. http://dx.doi.org/10.24297/ijct.v4i2c1.4178.

Testo completo
Abstract (sommario):
It has been read and also seen by physical encounters that there found to be seven near resembling humans by appearance .Many a times one becomes confused with respect to identification of such near resembling faces when one encounters them. The recognition of familiar faces plays a fundamental role in our social interactions. Humans are able to identify reliably a large number of faces and psychologists are interested in understanding the perceptual and cognitive mechanisms at the base of the face recognition process. As it is needed that an automated face recognition system should be faces specific, it should effectively use features that discriminate a face from others by preferably amplifying distinctive characteristics of face. Face recognition has drawn wide attention from researchers in areas of machine learning, computer vision, pattern recognition, neural networks, access control, information security, law enforcement and surveillance, smart cards etc. The paper shows that the most resembling faces can be recognized by having a unique value per face under different variations. Certain image transformations, such as intensity negation, strange viewpoint changes, and changes in lighting direction can severely disrupt human face recognition. It has been said again and again by research scholars that SVD algorithm is not good enough to classify faces under large variations but this paper proves that the SVD algorithm is most robust algorithm and can be proved effective in identifying faces under large variations as applicable to unique faces. This paper works on these aspects and tries to recognize the unique faces by applying optimized SVD algorithm.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Reddy, Mr B. Ravinder, V. Akhil e G. Sai Preetham P. Sai Poojitha. "Profile Identification through Face Recognition". International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (30 aprile 2019): 1482–83. http://dx.doi.org/10.31142/ijtsrd23439.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Garg, Deepika. "Face Recognition". IOSR Journal of Engineering 02, n. 07 (luglio 2012): 128–33. http://dx.doi.org/10.9790/3021-0271128133.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Zhao, W., R. Chellappa, P. J. Phillips e A. Rosenfeld. "Face recognition". ACM Computing Surveys 35, n. 4 (dicembre 2003): 399–458. http://dx.doi.org/10.1145/954339.954342.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Gross, Charles G., e Justine Sergent. "Face recognition". Current Biology 2, n. 5 (maggio 1992): 235. http://dx.doi.org/10.1016/0960-9822(92)90354-d.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

.Gross, Charles G., e Justine Sergent. "Face recognition". Current Opinion in Neurobiology 2, n. 2 (aprile 1992): 156–61. http://dx.doi.org/10.1016/0959-4388(92)90004-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Xiong, Yijie. "Face recognition based on machine learning". Applied and Computational Engineering 6, n. 1 (14 giugno 2023): 1100–1105. http://dx.doi.org/10.54254/2755-2721/6/20230407.

Testo completo
Abstract (sommario):
Due to its widespread use, face recognition has emerged in the past 20 years as one of the most pervasive biometric identification technology disciplines. This paper briefly summarizes the history of face recognitions development, identifies the technologys present use cases, introduces the main methods of face recognition in detail from the perspective of machine learning and prospects for the future development of this technology. The result shows that this technology still faces many challenges, such as the problem of recognizing different expressions on the same face, the problem of recognizing twins and similar faces, the problem of using the color information of color face images efficiently and so on.
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Prof Sami M. Halwani, Prof M. V. Ramana Murthy e Prof S. B. Thorat. "Laplacian Faces: A Face Recognition Tool". International Journal of Networked Computing and Advanced Information Management 2, n. 1 (30 aprile 2012): 1–7. http://dx.doi.org/10.4156/ijncm.vol2.issue1.1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Schwartz, Linoy, e Galit Yovel. "Are Faces Important for Face Recognition?" Journal of Vision 15, n. 12 (1 settembre 2015): 703. http://dx.doi.org/10.1167/15.12.703.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Tovée, Martin J. "Face Recognition: What are faces for?" Current Biology 5, n. 5 (maggio 1995): 480–82. http://dx.doi.org/10.1016/s0960-9822(95)00096-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

He, Yunhui, Li Zhao e Cairong Zou. "Face recognition using common faces method". Pattern Recognition 39, n. 11 (novembre 2006): 2218–22. http://dx.doi.org/10.1016/j.patcog.2006.04.037.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

米, 勇. "Face Recognition Based on Feature Faces". Computer Science and Application 09, n. 01 (2019): 127–31. http://dx.doi.org/10.12677/csa.2019.91015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Afrin, Sadia, Maria Tasnim e Md Rafiqul Islam. "Human Face Recognition Using Eigen Vector-Based Recognition System". International Journal of Research and Scientific Innovation X, n. VI (2023): 127–34. http://dx.doi.org/10.51244/ijrsi.2023.10617.

Testo completo
Abstract (sommario):
Face recognition is an algorithm that can recognize or verify a query face among a large number of faces in the enrollment database. Face recognition is a crucial and difficult area of computer vision. This study demonstrates a system that can recognize a human face by comparing the facial structure to that of another individual or a well-known individual, which is accomplished by the use of frontal several summarizations. Many researchers have done their work on face recognition and also applied it by using different methods. We made use of an eigenvector-based recognition system as a method for recognizing faces. The face recognition system is highly accurate and is one of the most powerful surveillance tools ever made. But this face recognition technology is quite costly for developing countries like Bangladesh. In this study, we have used a face recognition system for our security purpose using an eigenvector-based face recognition system with the help of MATLAB software and a Raspberry Pi camera for security purposes which minimizes the cost, and this process we have used is quite affordable
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Abbas, Hawraa H., Bilal Z. Ahmed e Ahmed Kamil Abbas. "3D Face Factorisation for Face Recognition Using Pattern Recognition Algorithms". Cybernetics and Information Technologies 19, n. 2 (1 giugno 2019): 28–37. http://dx.doi.org/10.2478/cait-2019-0013.

Testo completo
Abstract (sommario):
Abstract The face is the preferable biometrics for person recognition or identification applications because person identifying by face is a human connate habit. In contrast to 2D face recognition, 3D face recognition is practically robust to illumination variance, facial cosmetics, and face pose changes. Traditional 3D face recognition methods describe shape variation across the whole face using holistic features. In spite of that, taking into account facial regions, which are unchanged within expressions, can acquire high performance 3D face recognition system. In this research, the recognition analysis is based on defining a set of coherent parts. Those parts can be considered as latent factors in the face shape space. Non-negative matrix Factorisation technique is used to segment the 3D faces to coherent regions. The best recognition performance is achieved when the vertices of 20 face regions are utilised as a feature vector for recognition task. The region-based 3D face recognition approach provides a 96.4% recognition rate in FRGCv2 dataset.
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Priya, B. Lakshmi, e Dr M. Pushpa Rani Rani. "Face Recognition System Techniques and Approaches". Indian Journal of Applied Research 4, n. 4 (1 ottobre 2011): 109–13. http://dx.doi.org/10.15373/2249555x/apr2014/32.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

R.S., Dr Sabeenian. "Attendance Authentication System Using Face Recognition". Journal of Advanced Research in Dynamical and Control Systems 12, SP4 (31 marzo 2020): 1235–48. http://dx.doi.org/10.5373/jardcs/v12sp4/20201599.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Mishra, K. Ravikanth, D. Brahmeswara Rao e A. Dinesh Chowdary. "Student Library Attendance using Face Recognition". International Journal of Trend in Scientific Research and Development Volume-2, Issue-3 (30 aprile 2018): 1238–40. http://dx.doi.org/10.31142/ijtsrd11281.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Malkapurkar, Anagha V., e Prof Sachin Murarka. "Using LBP histogram for Face Recognition". International Journal of Scientific Research 1, n. 7 (1 giugno 2012): 176–77. http://dx.doi.org/10.15373/22778179/dec2012/64.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Kanth, Pooja L., e Salva Biswal. "Attendance Marking System Using Face Recognition". Indian Journal of Science and Technology 12, n. 48 (20 dicembre 2019): 1–3. http://dx.doi.org/10.17485/ijst/2019/v12i48/145821.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Rhodes, Gillian. "Adaptive Coding and Face Recognition". Current Directions in Psychological Science 26, n. 3 (giugno 2017): 218–24. http://dx.doi.org/10.1177/0963721417692786.

Testo completo
Abstract (sommario):
Face adaptation generates striking face aftereffects, but is this adaptation useful? The answer appears to be yes, with several lines of evidence suggesting that it contributes to our face-recognition ability. Adaptation to face identity is reduced in a variety of clinical populations with impaired face recognition. In addition, individual differences in face adaptation are linked to face-recognition ability in typical adults. People who adapt more readily to new faces are better at recognizing faces. This link between adaptation and recognition holds for both identity and expression recognition. Adaptation updates face norms, which represent the typical or average properties of the faces we experience. By using these norms to code how faces differ from average, the visual system can make explicit the distinctive information that we need to recognize faces. Thus, adaptive norm-based coding may help us to discriminate and recognize faces despite their similarity as visual patterns.
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Yao, Min, e Hiroshi Nagahashi. "ILLUMINATION INSENSITIVE FACE REPRESENTATION FOR FACE RECOGNITION BASED ON MODIFIED WEBERFACE". International Journal of Advances in Engineering & Technology 6, n. 5 (1 novembre 2013): 1995–2005. http://dx.doi.org/10.7323/ijaet/v6_iss5_06.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Phillips, P. Jonathon, Amy N. Yates, Ying Hu, Carina A. Hahn, Eilidh Noyes, Kelsey Jackson, Jacqueline G. Cavazos et al. "Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms". Proceedings of the National Academy of Sciences 115, n. 24 (29 maggio 2018): 6171–76. http://dx.doi.org/10.1073/pnas.1721355115.

Testo completo
Abstract (sommario):
Achieving the upper limits of face identification accuracy in forensic applications can minimize errors that have profound social and personal consequences. Although forensic examiners identify faces in these applications, systematic tests of their accuracy are rare. How can we achieve the most accurate face identification: using people and/or machines working alone or in collaboration? In a comprehensive comparison of face identification by humans and computers, we found that forensic facial examiners, facial reviewers, and superrecognizers were more accurate than fingerprint examiners and students on a challenging face identification test. Individual performance on the test varied widely. On the same test, four deep convolutional neural networks (DCNNs), developed between 2015 and 2017, identified faces within the range of human accuracy. Accuracy of the algorithms increased steadily over time, with the most recent DCNN scoring above the median of the forensic facial examiners. Using crowd-sourcing methods, we fused the judgments of multiple forensic facial examiners by averaging their rating-based identity judgments. Accuracy was substantially better for fused judgments than for individuals working alone. Fusion also served to stabilize performance, boosting the scores of lower-performing individuals and decreasing variability. Single forensic facial examiners fused with the best algorithm were more accurate than the combination of two examiners. Therefore, collaboration among humans and between humans and machines offers tangible benefits to face identification accuracy in important applications. These results offer an evidence-based roadmap for achieving the most accurate face identification possible.
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Romanyuk, Olexandr N., Sergey I. Vyatkin, Sergii V. Pavlov, Pavlo I. Mykhaylov, Roman Y. Chekhmestruk e Ivan V. Perun. "FACE RECOGNITION TECHNIQUES". Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska 10, n. 1 (30 marzo 2020): 52–57. http://dx.doi.org/10.35784/iapgos.922.

Testo completo
Abstract (sommario):
The problem of face recognition is discussed. The main methods of recognition are considered. The calibrated stereo pair for the face and calculating the depth map by the correlation algorithm are used. As a result, a 3D mask of the face is obtained. Using three anthropomorphic points, then constructed a coordinate system that ensures a possibility of superposition of the tested mask.
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Said, Ebrahem, e Mona Nasr. "Face Recognition System". International Journal of Advanced Networking and Applications 12, n. 02 (2020): 4567–74. http://dx.doi.org/10.35444/ijana.2020.12205.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Rajput, Ankit. "Face Recognition Technology". International Journal for Research in Applied Science and Engineering Technology 7, n. 3 (31 marzo 2019): 859–62. http://dx.doi.org/10.22214/ijraset.2019.3150.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Sabharwal, Himani, e Akash Tayal. "Human Face Recognition". International Journal of Computer Applications 104, n. 11 (18 ottobre 2014): 1–3. http://dx.doi.org/10.5120/18243-9173.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Liu, Tongyang, Xiaoyu Xiang, Qian Lin e Jan P. Allebach. "Face Set Recognition". Electronic Imaging 2019, n. 8 (13 gennaio 2019): 400–1. http://dx.doi.org/10.2352/issn.2470-1173.2019.8.imawm-400.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Saxenna, Yasharth. "Face Recognition System". International Journal for Research in Applied Science and Engineering Technology 8, n. 7 (31 luglio 2020): 1883–85. http://dx.doi.org/10.22214/ijraset.2020.30704.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Tang, X., e X. Wang. "Face Sketch Recognition". IEEE Transactions on Circuits and Systems for Video Technology 14, n. 1 (gennaio 2004): 50–57. http://dx.doi.org/10.1109/tcsvt.2003.818353.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

S.G, Rajeshwari. "Human Face Recognition". International Journal for Research in Applied Science and Engineering Technology 8, n. 6 (30 giugno 2020): 638–43. http://dx.doi.org/10.22214/ijraset.2020.6104.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Dzhangarov, A. I., M. A. Suleymanova e A. L. Zolkin. "Face recognition methods". IOP Conference Series: Materials Science and Engineering 862 (28 maggio 2020): 042046. http://dx.doi.org/10.1088/1757-899x/862/4/042046.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Liu, Yun-Fu, Jing-Ming Guo, Po-Hsien Liu, Jiann-Der Lee e Chen-Chieh Yao. "Panoramic Face Recognition". IEEE Transactions on Circuits and Systems for Video Technology 28, n. 8 (agosto 2018): 1864–74. http://dx.doi.org/10.1109/tcsvt.2017.2693682.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Moghaddam, Baback, Tony Jebara e Alex Pentland. "Bayesian face recognition". Pattern Recognition 33, n. 11 (novembre 2000): 1771–82. http://dx.doi.org/10.1016/s0031-3203(99)00179-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Russell, R., B. Duchaine e K. Nakayama. "Extraordinary face recognition". Journal of Vision 7, n. 9 (23 marzo 2010): 629. http://dx.doi.org/10.1167/7.9.629.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Voth, D. "Face recognition technology". IEEE Intelligent Systems 18, n. 3 (maggio 2003): 4–7. http://dx.doi.org/10.1109/mis.2003.1200719.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Bruce, Vicki, e Andy Young. "Understanding face recognition". British Journal of Psychology 77, n. 3 (agosto 1986): 305–27. http://dx.doi.org/10.1111/j.2044-8295.1986.tb02199.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Kroeker, Kirk L. "Face recognition breakthrough". Communications of the ACM 52, n. 8 (agosto 2009): 18–19. http://dx.doi.org/10.1145/1536616.1536623.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

SWARUPA, N. V. S. L., e D. SUPRIYA. "Face Recognition System". International Journal of Computer Applications 1, n. 29 (25 febbraio 2010): 36–42. http://dx.doi.org/10.5120/577-314.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Kemal Ekenel, Hazim, e Bülent Sankur. "Multiresolution face recognition". Image and Vision Computing 23, n. 5 (maggio 2005): 469–77. http://dx.doi.org/10.1016/j.imavis.2004.09.002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Nagesh, Mr P. "Face Recognition Systems". International Journal for Research in Applied Science and Engineering Technology 11, n. 3 (31 marzo 2023): 962–64. http://dx.doi.org/10.22214/ijraset.2023.49567.

Testo completo
Abstract (sommario):
Abstract: Face recognition systems have become increasingly popular and important in recent years due to their various applications in security, surveillance, and human-computer interaction. These systems use algorithms to detect and recognize human faces in images or videos, and can be trained to identify individuals with high accuracy.
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Alamand, M. S., e A. F. Al-Samman. "Invariant face recognition". Microwave and Optical Technology Letters 30, n. 6 (2001): 418–23. http://dx.doi.org/10.1002/mop.1333.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Bhange, Prof Anup. "Face Detection System with Face Recognition". International Journal for Research in Applied Science and Engineering Technology 10, n. 1 (31 gennaio 2022): 1095–100. http://dx.doi.org/10.22214/ijraset.2022.39976.

Testo completo
Abstract (sommario):
Abstract: The face is one of the easiest way to distinguish the individual identity of each other. Face recognition is a personal identification system that uses personal characteristics of a person to identify the person's identity. Now a days Human Face Detection and Recognition become a major field of interest in current research because there is no deterministic algorithm to find faces in a given image. Human face recognition procedure basically consists of two phases, namely face detection, where this process takes place very rapidly in humans, except under conditions where the object is located at a short distance away, the next is recognition, which recognize (by comparing face with picture or either with image captured through webcam) a face as an individual. In face detection and recognition technology, it is mainly introduced from the OpenCV method. Face recognition is one of the much-studied biometrics technology and developed by experts. The area of this project face detection system with face recognition is Image processing. The software requirement for this project is Python. Keywords: face detection, face recognition, cascade_classifier, LBPH.
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Bo-Gun Park, Kyoung-Mu Lee e Sang-Uk Lee. "Face recognition using face-ARG matching". IEEE Transactions on Pattern Analysis and Machine Intelligence 27, n. 12 (dicembre 2005): 1982–88. http://dx.doi.org/10.1109/tpami.2005.243.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Kafai, Mehran, Le An e Bir Bhanu. "Reference Face Graph for Face Recognition". IEEE Transactions on Information Forensics and Security 9, n. 12 (dicembre 2014): 2132–43. http://dx.doi.org/10.1109/tifs.2014.2359548.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Wu, Lifang, e Lansun Shen. "Face recognition from front-view face". Journal of Electronics (China) 20, n. 1 (gennaio 2003): 45–50. http://dx.doi.org/10.1007/s11767-003-0086-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Salama, Ramiz, e Mohamed Nour. "Security Technologies Using Facial Recognition". Global Journal of Computer Sciences: Theory and Research 13, n. 1 (31 marzo 2023): 01–27. http://dx.doi.org/10.18844/gjcs.v13i1.8294.

Testo completo
Abstract (sommario):
Abstract Faces are one of the simplest methods to determine a person's identity. Face recognition is a unique identifying method that uses an individual's traits to determine the identity of that individual. The proposed recognition process is divided into two stages: face recognition and object recognition. Unless the item is very close, this procedure is very rapid for humans. The recognition of human faces is introduced next. The stage is then reproduced and used as a model for facial image recognition (face recognition). That's one of the professionally created and well-researched biometrics procedures. The eigenface approach and the Fisher face method are two common face recognition pattern algorithms that have been developed. Recognition of facial images The Eigenface approach is based on the reduction of face dimensional space for facial traits using Principal Component Analysis (PCA). The major goal of applying PCA on face recognition was to generate Eigen faces (face space) by identifying the eigenvector corresponding to the face image's biggest eigenvalue. Image processing and security systems are areas of interest in this research face recognition integrated into a security system. Keywords: face recognition, security systems, camera, python;
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia