Articoli di riviste sul tema "Explainability of machine learning models"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Explainability of machine learning models".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
S, Akshay, e Manu Madhavan. "COMPARISON OF EXPLAINABILITY OF MACHINE LEARNING BASED MALAYALAM TEXT CLASSIFICATION". ICTACT Journal on Soft Computing 15, n. 1 (1 luglio 2024): 3386–91. http://dx.doi.org/10.21917/ijsc.2024.0476.
Testo completoPark, Min Sue, Hwijae Son, Chongseok Hyun e Hyung Ju Hwang. "Explainability of Machine Learning Models for Bankruptcy Prediction". IEEE Access 9 (2021): 124887–99. http://dx.doi.org/10.1109/access.2021.3110270.
Testo completoCheng, Xueyi, e Chang Che. "Interpretable Machine Learning: Explainability in Algorithm Design". Journal of Industrial Engineering and Applied Science 2, n. 6 (1 dicembre 2024): 65–70. https://doi.org/10.70393/6a69656173.323337.
Testo completoBozorgpanah, Aso, Vicenç Torra e Laya Aliahmadipour. "Privacy and Explainability: The Effects of Data Protection on Shapley Values". Technologies 10, n. 6 (1 dicembre 2022): 125. http://dx.doi.org/10.3390/technologies10060125.
Testo completoZhang, Xueting. "Traffic Flow Prediction Based on Explainable Machine Learning". Highlights in Science, Engineering and Technology 56 (14 luglio 2023): 56–64. http://dx.doi.org/10.54097/hset.v56i.9816.
Testo completoPendyala, Vishnu, e Hyungkyun Kim. "Assessing the Reliability of Machine Learning Models Applied to the Mental Health Domain Using Explainable AI". Electronics 13, n. 6 (8 marzo 2024): 1025. http://dx.doi.org/10.3390/electronics13061025.
Testo completoKim, Dong-sup, e Seungwoo Shin. "THE ECONOMIC EXPLAINABILITY OF MACHINE LEARNING AND STANDARD ECONOMETRIC MODELS-AN APPLICATION TO THE U.S. MORTGAGE DEFAULT RISK". International Journal of Strategic Property Management 25, n. 5 (13 luglio 2021): 396–412. http://dx.doi.org/10.3846/ijspm.2021.15129.
Testo completoTOPCU, Deniz. "How to explain a machine learning model: HbA1c classification example". Journal of Medicine and Palliative Care 4, n. 2 (27 marzo 2023): 117–25. http://dx.doi.org/10.47582/jompac.1259507.
Testo completoRodríguez Mallma, Mirko Jerber, Luis Zuloaga-Rotta, Rubén Borja-Rosales, Josef Renato Rodríguez Mallma, Marcos Vilca-Aguilar, María Salas-Ojeda e David Mauricio. "Explainable Machine Learning Models for Brain Diseases: Insights from a Systematic Review". Neurology International 16, n. 6 (29 ottobre 2024): 1285–307. http://dx.doi.org/10.3390/neurolint16060098.
Testo completoBhagyashree D Shendkar. "Explainable Machine Learning Models for Real-Time Threat Detection in Cybersecurity". Panamerican Mathematical Journal 35, n. 1s (13 novembre 2024): 264–75. http://dx.doi.org/10.52783/pmj.v35.i1s.2313.
Testo completoChen, Yinhe. "Enhancing stability and explainability in reinforcement learning with machine learning". Applied and Computational Engineering 101, n. 1 (8 novembre 2024): 25–34. http://dx.doi.org/10.54254/2755-2721/101/20240943.
Testo completoBorch, Christian, e Bo Hee Min. "Toward a sociology of machine learning explainability: Human–machine interaction in deep neural network-based automated trading". Big Data & Society 9, n. 2 (luglio 2022): 205395172211113. http://dx.doi.org/10.1177/20539517221111361.
Testo completoKolarik, Michal, Martin Sarnovsky, Jan Paralic e Frantisek Babic. "Explainability of deep learning models in medical video analysis: a survey". PeerJ Computer Science 9 (14 marzo 2023): e1253. http://dx.doi.org/10.7717/peerj-cs.1253.
Testo completoPezoa, R., L. Salinas e C. Torres. "Explainability of High Energy Physics events classification using SHAP". Journal of Physics: Conference Series 2438, n. 1 (1 febbraio 2023): 012082. http://dx.doi.org/10.1088/1742-6596/2438/1/012082.
Testo completoMukendi, Christian Mulomba, Asser Kasai Itakala e Pierrot Muteba Tibasima. "Beyond Accuracy: Building Trustworthy Extreme Events Predictions Through Explainable Machine Learning". European Journal of Theoretical and Applied Sciences 2, n. 1 (1 gennaio 2024): 199–218. http://dx.doi.org/10.59324/ejtas.2024.2(1).15.
Testo completoWang, Liyang, Yu Cheng, Ningjing Sang e You Yao. "Explainability and Stability of Machine Learning Applications — A Financial Risk Management Perspective". Modern Economics & Management Forum 5, n. 5 (6 novembre 2024): 956. http://dx.doi.org/10.32629/memf.v5i5.2902.
Testo completoGupta, Gopal, Huaduo Wang, Kinjal Basu, Farahad Shakerin, Parth Padalkar, Elmer Salazar, Sarat Chandra Varanasi e Sopam Dasgupta. "Logic-Based Explainable and Incremental Machine Learning". Proceedings of the AAAI Symposium Series 2, n. 1 (22 gennaio 2024): 230–32. http://dx.doi.org/10.1609/aaaiss.v2i1.27678.
Testo completoCollin, Adele, Adrián Ayuso-Muñoz, Paloma Tejera-Nevado, Lucía Prieto-Santamaría, Antonio Verdejo-García, Carmen Díaz-Batanero, Fermín Fernández-Calderón, Natalia Albein-Urios, Óscar M. Lozano e Alejandro Rodríguez-González. "Analyzing Dropout in Alcohol Recovery Programs: A Machine Learning Approach". Journal of Clinical Medicine 13, n. 16 (15 agosto 2024): 4825. http://dx.doi.org/10.3390/jcm13164825.
Testo completoAas, Kjersti, Arthur Charpentier, Fei Huang e Ronald Richman. "Insurance analytics: prediction, explainability, and fairness". Annals of Actuarial Science 18, n. 3 (novembre 2024): 535–39. https://doi.org/10.1017/s1748499524000289.
Testo completoTocchetti, Andrea, e Marco Brambilla. "The Role of Human Knowledge in Explainable AI". Data 7, n. 7 (6 luglio 2022): 93. http://dx.doi.org/10.3390/data7070093.
Testo completoKeçeli, Tarık, Nevruz İlhanlı e Kemal Hakan Gülkesen. "Prediction of retinopathy through machine learning in diabetes mellitus". Journal of Health Sciences and Medicine 7, n. 4 (30 luglio 2024): 467–71. http://dx.doi.org/10.32322/jhsm.1502050.
Testo completoBurkart, Nadia, e Marco F. Huber. "A Survey on the Explainability of Supervised Machine Learning". Journal of Artificial Intelligence Research 70 (19 gennaio 2021): 245–317. http://dx.doi.org/10.1613/jair.1.12228.
Testo completoKulaklıoğlu, Duru. "Explainable AI: Enhancing Interpretability of Machine Learning Models". Human Computer Interaction 8, n. 1 (6 dicembre 2024): 91. https://doi.org/10.62802/z3pde490.
Testo completoNagahisarchoghaei, Mohammad, Nasheen Nur, Logan Cummins, Nashtarin Nur, Mirhossein Mousavi Karimi, Shreya Nandanwar, Siddhartha Bhattacharyya e Shahram Rahimi. "An Empirical Survey on Explainable AI Technologies: Recent Trends, Use-Cases, and Categories from Technical and Application Perspectives". Electronics 12, n. 5 (22 febbraio 2023): 1092. http://dx.doi.org/10.3390/electronics12051092.
Testo completoPrzybył, Krzysztof. "Explainable AI: Machine Learning Interpretation in Blackcurrant Powders". Sensors 24, n. 10 (17 maggio 2024): 3198. http://dx.doi.org/10.3390/s24103198.
Testo completoZubair, Md, Helge Janicke, Ahmad Mohsin, Leandros Maglaras e Iqbal H. Sarker. "Automated Sensor Node Malicious Activity Detection with Explainability Analysis". Sensors 24, n. 12 (7 giugno 2024): 3712. http://dx.doi.org/10.3390/s24123712.
Testo completoUllah, Ihsan, Andre Rios, Vaibhav Gala e Susan Mckeever. "Explaining Deep Learning Models for Tabular Data Using Layer-Wise Relevance Propagation". Applied Sciences 12, n. 1 (23 dicembre 2021): 136. http://dx.doi.org/10.3390/app12010136.
Testo completoAlsubhi, Bashayer, Basma Alharbi, Nahla Aljojo, Ameen Banjar, Araek Tashkandi, Abdullah Alghoson e Anas Al-Tirawi. "Effective Feature Prediction Models for Student Performance". Engineering, Technology & Applied Science Research 13, n. 5 (13 ottobre 2023): 11937–44. http://dx.doi.org/10.48084/etasr.6345.
Testo completoBARAJAS ARANDA, DANIEL ALEJANDRO, MIGUEL ANGEL SICILIA URBAN, MARIA DOLORES TORRES SOTO e AURORA TORRES SOTO. "COMPARISON AND EXPLANABILITY OF MACHINE LEARNING MODELS IN PREDICTIVE SUICIDE ANALYSIS". DYNA NEW TECHNOLOGIES 11, n. 1 (28 febbraio 2024): [10P.]. http://dx.doi.org/10.6036/nt11028.
Testo completoChen, Tianjie, e Md Faisal Kabir. "Explainable machine learning approach for cancer prediction through binarilization of RNA sequencing data". PLOS ONE 19, n. 5 (10 maggio 2024): e0302947. http://dx.doi.org/10.1371/journal.pone.0302947.
Testo completoVan Der Laan, Jake. "Explainability of Artificial Intelligence Models: Technical Foundations and Legal Principles". Vietnamese Journal of Legal Sciences 7, n. 2 (1 dicembre 2022): 1–38. http://dx.doi.org/10.2478/vjls-2022-0006.
Testo completoKong, Weihao, Jianping Chen e Pengfei Zhu. "Machine Learning-Based Uranium Prospectivity Mapping and Model Explainability Research". Minerals 14, n. 2 (24 gennaio 2024): 128. http://dx.doi.org/10.3390/min14020128.
Testo completoPathan, Refat Khan, Israt Jahan Shorna, Md Sayem Hossain, Mayeen Uddin Khandaker, Huda I. Almohammed e Zuhal Y. Hamd. "The efficacy of machine learning models in lung cancer risk prediction with explainability". PLOS ONE 19, n. 6 (13 giugno 2024): e0305035. http://dx.doi.org/10.1371/journal.pone.0305035.
Testo completoSatoni Kurniawansyah, Arius. "EXPLAINABLE ARTIFICIAL INTELLIGENCE THEORY IN DECISION MAKING TREATMENT OF ARITHMIA PATIENTS WITH USING DEEP LEARNING MODELS". Jurnal Rekayasa Sistem Informasi dan Teknologi 1, n. 1 (29 agosto 2022): 26–41. http://dx.doi.org/10.59407/jrsit.v1i1.75.
Testo completoChen, Xingqian, Honghui Fan, Wenhe Chen, Yaoxin Zhang, Dingkun Zhu e Shuangbao Song. "Explaining a Logic Dendritic Neuron Model by Using the Morphology of Decision Trees". Electronics 13, n. 19 (3 ottobre 2024): 3911. http://dx.doi.org/10.3390/electronics13193911.
Testo completoSarder Abdulla Al Shiam, Md Mahdi Hasan, Md Jubair Pantho, Sarmin Akter Shochona, Md Boktiar Nayeem, M Tazwar Hossain Choudhury e Tuan Ngoc Nguyen. "Credit Risk Prediction Using Explainable AI". Journal of Business and Management Studies 6, n. 2 (18 marzo 2024): 61–66. http://dx.doi.org/10.32996/jbms.2024.6.2.6.
Testo completoHong, Xianbin, Sheng-Uei Guan, Nian Xue, Zhen Li, Ka Lok Man, Prudence W. H. Wong e Dawei Liu. "Dual-Track Lifelong Machine Learning-Based Fine-Grained Product Quality Analysis". Applied Sciences 13, n. 3 (17 gennaio 2023): 1241. http://dx.doi.org/10.3390/app13031241.
Testo completoBrito, João, e Hugo Proença. "A Short Survey on Machine Learning Explainability: An Application to Periocular Recognition". Electronics 10, n. 15 (3 agosto 2021): 1861. http://dx.doi.org/10.3390/electronics10151861.
Testo completoGhadge, Nikhil. "Leveraging Machine Learning to Enhance Information Exploration". Machine Learning and Applications: An International Journal 11, n. 2 (28 giugno 2024): 17–27. http://dx.doi.org/10.5121/mlaij.2024.11203.
Testo completoVilain, Matthieu, e Stéphane Aris-Brosou. "Machine Learning Algorithms Associate Case Numbers with SARS-CoV-2 Variants Rather Than with Impactful Mutations". Viruses 15, n. 6 (24 maggio 2023): 1226. http://dx.doi.org/10.3390/v15061226.
Testo completoCao, Xuenan, e Roozbeh Yousefzadeh. "Extrapolation and AI transparency: Why machine learning models should reveal when they make decisions beyond their training". Big Data & Society 10, n. 1 (gennaio 2023): 205395172311697. http://dx.doi.org/10.1177/20539517231169731.
Testo completoSoliman, Amira, Björn Agvall, Kobra Etminani, Omar Hamed e Markus Lingman. "The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study". Journal of Medical Internet Research 25 (27 ottobre 2023): e46934. http://dx.doi.org/10.2196/46934.
Testo completoKim, Jaehun. "Increasing trust in complex machine learning systems". ACM SIGIR Forum 55, n. 1 (giugno 2021): 1–3. http://dx.doi.org/10.1145/3476415.3476435.
Testo completoAdak, Anirban, Biswajeet Pradhan e Nagesh Shukla. "Sentiment Analysis of Customer Reviews of Food Delivery Services Using Deep Learning and Explainable Artificial Intelligence: Systematic Review". Foods 11, n. 10 (21 maggio 2022): 1500. http://dx.doi.org/10.3390/foods11101500.
Testo completoKolluru, Vinothkumar, Yudhisthir Nuthakki, Sudeep Mungara, Sonika Koganti, Advaitha Naidu Chintakunta e Charan Sundar Telaganeni. "Healthcare Through AI: Integrating Deep Learning, Federated Learning, and XAI for Disease Management". International Journal of Soft Computing and Engineering 13, n. 6 (30 gennaio 2024): 21–27. http://dx.doi.org/10.35940/ijsce.d3646.13060124.
Testo completoMatara, Caroline, Simpson Osano, Amir Okeyo Yusuf e Elisha Ochungo Aketch. "Prediction of Vehicle-induced Air Pollution based on Advanced Machine Learning Models". Engineering, Technology & Applied Science Research 14, n. 1 (8 febbraio 2024): 12837–43. http://dx.doi.org/10.48084/etasr.6678.
Testo completoRadiuk, Pavlo, Olexander Barmak, Eduard Manziuk e Iurii Krak. "Explainable Deep Learning: A Visual Analytics Approach with Transition Matrices". Mathematics 12, n. 7 (29 marzo 2024): 1024. http://dx.doi.org/10.3390/math12071024.
Testo completoGao, Jingyue, Xiting Wang, Yasha Wang e Xing Xie. "Explainable Recommendation through Attentive Multi-View Learning". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 luglio 2019): 3622–29. http://dx.doi.org/10.1609/aaai.v33i01.33013622.
Testo completoLohaj, Oliver, Ján Paralič, Peter Bednár, Zuzana Paraličová e Matúš Huba. "Unraveling COVID-19 Dynamics via Machine Learning and XAI: Investigating Variant Influence and Prognostic Classification". Machine Learning and Knowledge Extraction 5, n. 4 (25 settembre 2023): 1266–81. http://dx.doi.org/10.3390/make5040064.
Testo completoAkgüller, Ömer, Mehmet Ali Balcı e Gabriela Cioca. "Functional Brain Network Disruptions in Parkinson’s Disease: Insights from Information Theory and Machine Learning". Diagnostics 14, n. 23 (4 dicembre 2024): 2728. https://doi.org/10.3390/diagnostics14232728.
Testo completo