Letteratura scientifica selezionata sul tema "Explainability of machine learning models"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Explainability of machine learning models".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Explainability of machine learning models"
S, Akshay, and Manu Madhavan. "COMPARISON OF EXPLAINABILITY OF MACHINE LEARNING BASED MALAYALAM TEXT CLASSIFICATION." ICTACT Journal on Soft Computing 15, no. 1 (2024): 3386–91. http://dx.doi.org/10.21917/ijsc.2024.0476.
Testo completoPark, Min Sue, Hwijae Son, Chongseok Hyun, and Hyung Ju Hwang. "Explainability of Machine Learning Models for Bankruptcy Prediction." IEEE Access 9 (2021): 124887–99. http://dx.doi.org/10.1109/access.2021.3110270.
Testo completoCheng, Xueyi, and Chang Che. "Interpretable Machine Learning: Explainability in Algorithm Design." Journal of Industrial Engineering and Applied Science 2, no. 6 (2024): 65–70. https://doi.org/10.70393/6a69656173.323337.
Testo completoBozorgpanah, Aso, Vicenç Torra, and Laya Aliahmadipour. "Privacy and Explainability: The Effects of Data Protection on Shapley Values." Technologies 10, no. 6 (2022): 125. http://dx.doi.org/10.3390/technologies10060125.
Testo completoZhang, Xueting. "Traffic Flow Prediction Based on Explainable Machine Learning." Highlights in Science, Engineering and Technology 56 (July 14, 2023): 56–64. http://dx.doi.org/10.54097/hset.v56i.9816.
Testo completoPendyala, Vishnu, and Hyungkyun Kim. "Assessing the Reliability of Machine Learning Models Applied to the Mental Health Domain Using Explainable AI." Electronics 13, no. 6 (2024): 1025. http://dx.doi.org/10.3390/electronics13061025.
Testo completoKim, Dong-sup, and Seungwoo Shin. "THE ECONOMIC EXPLAINABILITY OF MACHINE LEARNING AND STANDARD ECONOMETRIC MODELS-AN APPLICATION TO THE U.S. MORTGAGE DEFAULT RISK." International Journal of Strategic Property Management 25, no. 5 (2021): 396–412. http://dx.doi.org/10.3846/ijspm.2021.15129.
Testo completoTOPCU, Deniz. "How to explain a machine learning model: HbA1c classification example." Journal of Medicine and Palliative Care 4, no. 2 (2023): 117–25. http://dx.doi.org/10.47582/jompac.1259507.
Testo completoRodríguez Mallma, Mirko Jerber, Luis Zuloaga-Rotta, Rubén Borja-Rosales, et al. "Explainable Machine Learning Models for Brain Diseases: Insights from a Systematic Review." Neurology International 16, no. 6 (2024): 1285–307. http://dx.doi.org/10.3390/neurolint16060098.
Testo completoBhagyashree D Shendkar. "Explainable Machine Learning Models for Real-Time Threat Detection in Cybersecurity." Panamerican Mathematical Journal 35, no. 1s (2024): 264–75. http://dx.doi.org/10.52783/pmj.v35.i1s.2313.
Testo completoTesi sul tema "Explainability of machine learning models"
Delaunay, Julien. "Explainability for machine learning models : from data adaptability to user perception." Electronic Thesis or Diss., Université de Rennes (2023-....), 2023. http://www.theses.fr/2023URENS076.
Testo completoStanzione, Vincenzo Maria. "Developing a new approach for machine learning explainability combining local and global model-agnostic approaches." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25480/.
Testo completoAyad, Célia. "Towards Reliable Post Hoc Explanations for Machine Learning on Tabular Data and their Applications." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX082.
Testo completoRadulovic, Nedeljko. "Post-hoc Explainable AI for Black Box Models on Tabular Data." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAT028.
Testo completoWillot, Hénoïk. "Certified explanations of robust models." Electronic Thesis or Diss., Compiègne, 2024. http://www.theses.fr/2024COMP2812.
Testo completoKurasinski, Lukas. "Machine Learning explainability in text classification for Fake News detection." Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20058.
Testo completoLounici, Sofiane. "Watermarking machine learning models." Electronic Thesis or Diss., Sorbonne université, 2022. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2022SORUS282.pdf.
Testo completoMaltbie, Nicholas. "Integrating Explainability in Deep Learning Application Development: A Categorization and Case Study." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1623169431719474.
Testo completoHardoon, David Roi. "Semantic models for machine learning." Thesis, University of Southampton, 2006. https://eprints.soton.ac.uk/262019/.
Testo completoBODINI, MATTEO. "DESIGN AND EXPLAINABILITY OF MACHINE LEARNING ALGORITHMS FOR THE CLASSIFICATION OF CARDIAC ABNORMALITIES FROM ELECTROCARDIOGRAM SIGNALS." Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/888002.
Testo completoLibri sul tema "Explainability of machine learning models"
Nandi, Anirban, and Aditya Kumar Pal. Interpreting Machine Learning Models. Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-7802-4.
Testo completoBolc, Leonard. Computational Models of Learning. Springer Berlin Heidelberg, 1987.
Cerca il testo completoGalindez Olascoaga, Laura Isabel, Wannes Meert, and Marian Verhelst. Hardware-Aware Probabilistic Machine Learning Models. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74042-9.
Testo completoSingh, Pramod. Deploy Machine Learning Models to Production. Apress, 2021. http://dx.doi.org/10.1007/978-1-4842-6546-8.
Testo completoZhang, Zhihua. Statistical Machine Learning: Foundations, Methodologies and Models. John Wiley & Sons, Limited, 2017.
Cerca il testo completoRendell, Larry. Representations and models for concept learning. Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1987.
Cerca il testo completoEhteram, Mohammad, Zohreh Sheikh Khozani, Saeed Soltani-Mohammadi, and Maliheh Abbaszadeh. Estimating Ore Grade Using Evolutionary Machine Learning Models. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8106-7.
Testo completoBisong, Ekaba. Building Machine Learning and Deep Learning Models on Google Cloud Platform. Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4470-8.
Testo completoGupta, Punit, Mayank Kumar Goyal, Sudeshna Chakraborty, and Ahmed A. Elngar. Machine Learning and Optimization Models for Optimization in Cloud. Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003185376.
Testo completoSuthaharan, Shan. Machine Learning Models and Algorithms for Big Data Classification. Springer US, 2016. http://dx.doi.org/10.1007/978-1-4899-7641-3.
Testo completoCapitoli di libri sul tema "Explainability of machine learning models"
Nandi, Anirban, and Aditya Kumar Pal. "The Eight Pitfalls of Explainability Methods." In Interpreting Machine Learning Models. Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-7802-4_15.
Testo completoNandi, Anirban, and Aditya Kumar Pal. "Explainability Facts: A Framework for Systematic Assessment of Explainable Approaches." In Interpreting Machine Learning Models. Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-7802-4_6.
Testo completoKamath, Uday, and John Liu. "Pre-model Interpretability and Explainability." In Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83356-5_2.
Testo completoDessain, Jean, Nora Bentaleb, and Fabien Vinas. "Cost of Explainability in AI: An Example with Credit Scoring Models." In Communications in Computer and Information Science. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-44064-9_26.
Testo completoHenriques, J., T. Rocha, P. de Carvalho, C. Silva, and S. Paredes. "Interpretability and Explainability of Machine Learning Models: Achievements and Challenges." In IFMBE Proceedings. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-59216-4_9.
Testo completoBargal, Sarah Adel, Andrea Zunino, Vitali Petsiuk, et al. "Beyond the Visual Analysis of Deep Model Saliency." In xxAI - Beyond Explainable AI. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04083-2_13.
Testo completoStevens, Alexander, Johannes De Smedt, and Jari Peeperkorn. "Quantifying Explainability in Outcome-Oriented Predictive Process Monitoring." In Lecture Notes in Business Information Processing. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98581-3_15.
Testo completoBaniecki, Hubert, Wojciech Kretowicz, and Przemyslaw Biecek. "Fooling Partial Dependence via Data Poisoning." In Machine Learning and Knowledge Discovery in Databases. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26409-2_8.
Testo completoColosimo, Bianca Maria, and Fabio Centofanti. "Model Interpretability, Explainability and Trust for Manufacturing 4.0." In Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12402-0_2.
Testo completoSantos, Geanderson, Amanda Santana, Gustavo Vale, and Eduardo Figueiredo. "Yet Another Model! A Study on Model’s Similarities for Defect and Code Smells." In Fundamental Approaches to Software Engineering. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-30826-0_16.
Testo completoAtti di convegni sul tema "Explainability of machine learning models"
Bouzid, Mohamed, and Manar Amayri. "Addressing Explainability in Load Forecasting Using Time Series Machine Learning Models." In 2024 IEEE 12th International Conference on Smart Energy Grid Engineering (SEGE). IEEE, 2024. http://dx.doi.org/10.1109/sege62220.2024.10739606.
Testo completoBurgos, David, Ahsan Morshed, MD Mamunur Rashid, and Satria Mandala. "A Comparison of Machine Learning Models to Deep Learning Models for Cancer Image Classification and Explainability of Classification." In 2024 International Conference on Data Science and Its Applications (ICoDSA). IEEE, 2024. http://dx.doi.org/10.1109/icodsa62899.2024.10651790.
Testo completoSheikhani, Arman, Ervin Agic, Mahshid Helali Moghadam, Juan Carlos Andresen, and Anders Vesterberg. "Lithium-Ion Battery SOH Forecasting: From Deep Learning Augmented by Explainability to Lightweight Machine Learning Models." In 2024 IEEE 29th International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2024. http://dx.doi.org/10.1109/etfa61755.2024.10710794.
Testo completoMechouche, Ammar, Valerio Camerini, Caroline Del, Elsa Cansell, and Konstanca Nikolajevic. "From Dampers Estimated Loads to In-Service Degradation Correlations." In Vertical Flight Society 80th Annual Forum & Technology Display. The Vertical Flight Society, 2024. http://dx.doi.org/10.4050/f-0080-2024-1108.
Testo completoIzza, Yacine, Xuanxiang Huang, Antonio Morgado, Jordi Planes, Alexey Ignatiev, and Joao Marques-Silva. "Distance-Restricted Explanations: Theoretical Underpinnings & Efficient Implementation." In 21st International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}. International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/kr.2024/45.
Testo completoAlami, Amine, Jaouad Boumhidi, and Loqman Chakir. "Explainability in CNN based Deep Learning models for medical image classification." In 2024 International Conference on Intelligent Systems and Computer Vision (ISCV). IEEE, 2024. http://dx.doi.org/10.1109/iscv60512.2024.10620149.
Testo completoRodríguez-Barroso, Nuria, Javier Del Ser, M. Victoria Luzón, and Francisco Herrera. "Defense Strategy against Byzantine Attacks in Federated Machine Learning: Developments towards Explainability." In 2024 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2024. http://dx.doi.org/10.1109/fuzz-ieee60900.2024.10611769.
Testo completoPerikos, Isidoros. "Sensitive Content Detection in Social Networks Using Deep Learning Models and Explainability Techniques." In 2024 IEEE/ACIS 9th International Conference on Big Data, Cloud Computing, and Data Science (BCD). IEEE, 2024. http://dx.doi.org/10.1109/bcd61269.2024.10743081.
Testo completoGafur, Jamil, Steve Goddard, and William Lai. "Adversarial Robustness and Explainability of Machine Learning Models." In PEARC '24: Practice and Experience in Advanced Research Computing. ACM, 2024. http://dx.doi.org/10.1145/3626203.3670522.
Testo completoIslam, Md Ariful, Kowshik Nittala, and Garima Bajwa. "Adding Explainability to Machine Learning Models to Detect Chronic Kidney Disease." In 2022 IEEE 23rd International Conference on Information Reuse and Integration for Data Science (IRI). IEEE, 2022. http://dx.doi.org/10.1109/iri54793.2022.00069.
Testo completoRapporti di organizzazioni sul tema "Explainability of machine learning models"
Smith, Michael, Erin Acquesta, Arlo Ames, et al. SAGE Intrusion Detection System: Sensitivity Analysis Guided Explainability for Machine Learning. Office of Scientific and Technical Information (OSTI), 2021. http://dx.doi.org/10.2172/1820253.
Testo completoSkryzalin, Jacek, Kenneth Goss, and Benjamin Jackson. Securing machine learning models. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1661020.
Testo completoMartinez, Carianne, Jessica Jones, Drew Levin, Nathaniel Trask, and Patrick Finley. Physics-Informed Machine Learning for Epidemiological Models. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1706217.
Testo completoLavender, Samantha, and Trent Tinker, eds. Testbed-19: Machine Learning Models Engineering Report. Open Geospatial Consortium, Inc., 2024. http://dx.doi.org/10.62973/23-033.
Testo completoSaenz, Juan Antonio, Ismael Djibrilla Boureima, Vitaliy Gyrya, and Susan Kurien. Machine-Learning for Rapid Optimization of Turbulence Models. Office of Scientific and Technical Information (OSTI), 2020. http://dx.doi.org/10.2172/1638623.
Testo completoKulkarni, Sanjeev R. Extending and Unifying Formal Models for Machine Learning. Defense Technical Information Center, 1997. http://dx.doi.org/10.21236/ada328730.
Testo completoBanerjee, Boudhayan. Machine Learning Models for Political Video Advertisement Classification. Iowa State University, 2017. http://dx.doi.org/10.31274/cc-20240624-976.
Testo completoValaitis, Vytautas, and Alessandro T. Villa. A Machine Learning Projection Method for Macro-Finance Models. Federal Reserve Bank of Chicago, 2022. http://dx.doi.org/10.21033/wp-2022-19.
Testo completoFessel, Kimberly. Machine Learning in Python. Instats Inc., 2024. http://dx.doi.org/10.61700/s74zy0ivgwioe1764.
Testo completoOgunbire, Abimbola, Panick Kalambay, Hardik Gajera, and Srinivas Pulugurtha. Deep Learning, Machine Learning, or Statistical Models for Weather-related Crash Severity Prediction. Mineta Transportation Institute, 2023. http://dx.doi.org/10.31979/mti.2023.2320.
Testo completo