Letteratura scientifica selezionata sul tema "Experimental trials"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Experimental trials".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Experimental trials"
Bolton, Sanford. "Experimental Design in Clinical Trials". Clinical Research and Regulatory Affairs 17, n. 4 (gennaio 2000): 285–344. http://dx.doi.org/10.3109/10601330009010839.
Testo completoHamilton, E. P., G. H. Lyman, S. Kim e J. Peppercorn. "Availability of experimental therapy outside of randomized clinical trials in oncology". Journal of Clinical Oncology 27, n. 15_suppl (20 maggio 2009): 6539. http://dx.doi.org/10.1200/jco.2009.27.15_suppl.6539.
Testo completoCicchetti, Americo, Domenico Addesso, Filippo Elvino Leone, Antonino Amato, Luca Angerame, Angelo D'Aversa, Mario Fraticelli et al. "Valorization of clinical trials from the Italian National Health Service perspective: definition and first application of a model to estimate avoided costs". Global & Regional Health Technology Assessment 7, n. 1 (16 giugno 2020): 26–32. http://dx.doi.org/10.33393/grhta.2020.709.
Testo completoMenefee, Michael E., Yutao Gong, Pallavi Shruti Mishra-Kalyani, Rajeshwari Sridhara, Bindu Kanapuru, Gideon Michael Blumenthal e Richard Pazdur. "Project Switch: Docetaxel as a potential synthetic control in metastatic non-small cell lung cancer (mNSCLC) trials." Journal of Clinical Oncology 37, n. 15_suppl (20 maggio 2019): 9105. http://dx.doi.org/10.1200/jco.2019.37.15_suppl.9105.
Testo completoHamilton, Erika P., Gary H. Lyman e Jeffrey Peppercorn. "Availability of Experimental Therapy Outside Oncology Randomized Clinical Trials in the United States". Journal of Clinical Oncology 28, n. 34 (1 dicembre 2010): 5067–73. http://dx.doi.org/10.1200/jco.2010.28.6567.
Testo completoFujinaka, Hidehiko, Masanori Hara, Makoto Uchiyama, Eishin Yaoita, Katsutoshi Kawasaki, Tadashi Yamamoto e Itaru Kihara. "Therapeutic Trials of Experimental Crescentic Glomerulonephritis." Nihon Shoni Jinzobyo Gakkai Zasshi 10, n. 1 (1997): 87–91. http://dx.doi.org/10.3165/jjpn.10.87.
Testo completoSalama, Ragga H., Abd El Rahman G. Ramadan, Tasneem A. Alsanory, Mohammed O. Herdan, Omnia M. Fathallah e Aya A. Alsanory. "Experimental and Therapeutic Trials of Amygdalin". International Journal of Biochemistry and Pharmacology 1, n. 1 (28 ottobre 2019): 21–26. http://dx.doi.org/10.18689/ijbp-1000105.
Testo completoFinkel, R. "Experimental trials in spinal muscular atrophy". Neuromuscular Disorders 27 (marzo 2017): S2. http://dx.doi.org/10.1016/s0960-8966(17)30224-9.
Testo completoGibbs, Lauren. "Rethinking Eligibility for Experimental Clinical Trials". JAMA Neurology 75, n. 1 (1 gennaio 2018): 22. http://dx.doi.org/10.1001/jamaneurol.2017.3492.
Testo completoFast, Patricia E., e Mary Clare Walker. "Human trials of experimental AIDS vaccines". AIDS 7 (gennaio 1992): S147—S160. http://dx.doi.org/10.1097/00002030-199201001-00020.
Testo completoTesi sul tema "Experimental trials"
Matassa, Vincenzo. "Optimisation of experimental design and analysis for sugarcane variety trials /". [St. Lucia, Qld.], 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17336.pdf.
Testo completoKirvesoja, H. (Heli). "Experimental ergonomic evaluation with user trials: EEE product development procedures". Doctoral thesis, University of Oulu, 2001. http://urn.fi/urn:isbn:9514259378.
Testo completoXu, Bo. "Predictors of treatment means for a one factor completely randomized design". Amherst, Mass. : University of Massachusetts Amherst, 2009. http://scholarworks.umass.edu/dissertations/AAI3372284/.
Testo completoLind, Torbjörn. "Iron and zinc in infancy : results from experimental trials in Sweden and Indonesiaa". Doctoral thesis, Umeå universitet, Epidemiologi och folkhälsovetenskap, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-277.
Testo completoDhaliwal, Lesley. "Research design and effect size : a meta-analysis of mood disorder experimental trials". Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54731.
Testo completoEducation, Faculty of
Educational and Counselling Psychology, and Special Education (ECPS), Department of
Graduate
Gatch, Michael B. "An Experimental Analysis of Higher-Order Stimulus Control in Humans". DigitalCommons@USU, 1990. https://digitalcommons.usu.edu/etd/6017.
Testo completoMcBride, Ali. "Evaluating Fast Track Time Analysis of Clinical Drug Trial Phases Utilizing a Quasi-Experimental Observational Study". The University of Arizona, 2007. http://hdl.handle.net/10150/624440.
Testo completoObjectives: In this paper we analyzed the time frame for oncology drugs that were designated as a fast track drug and the time transition from a phase II to phase III clinical trial completion. Methods In our study we utilized oncology drugs that were approved between the years of 2000-2006 (FDA.gov). We then analyzed the CDER data base that provided information to Fast Track drugs that have been approved within the time period as determined by the FDA selection criteria (21 CFR 312.81(a)). Under certain circumstances, the FCA may consider reviewing portions of a marketing application in advance of the complete New Drug Application (NDA) or Biologic License Application (BLA). We will evaluate fast track designated products which may also be eligible to participate in FDA’s Continuous Marketing Applications Pilot 1 or Pilot 2 programs. For our analysis, we specifically selected oncology drugs. In particular, we analyzed 32 drugs from the stated time period. Each fast track drug was then selected and analyzed for its clinical phase development time period based on news announcements during clinical trails. For each announcement we conducted an event study analysis through lexis Nexus with respect to the announcement of a clinical trial enrollment, clinical trials news (Phase I, II, III). Results: The results of our preliminary study show that there was a shorter time to development transition for the fast track oncology drugs. The oncology clinical phase transition from II to three on average lasted 12 months with a range of 2 - 29 months The average length of the phase development had to excludes 4 drugs due to the lack of information provided from the LexisNexis database. The current timeline for fats track drugs has shown a decrease in transition from clinical trials to the market. In the example of Spyrcel, the data from our study had to be excluded, there was a definitive difference in the time to approval process for the drug as compared to other standard review entities. The approvals for dasatinib, or Sprycel, for refractory CML was shown to move through the development to approval in one of the fastest timeframes in modern development. Since its first clinical study on in Gleevec-resistant patients, the medication was decided on entering an accelerated timeline. It took us just 25 months to bring Sprycel from first-in-human dosing to a regulatory submission. In contrast, the industry average for this cycle time is 6.4 years which is three times greater than the cycle time for Sprycel. Conclusions: The new Subpart H regulations state that post-marketing studies to confirm clinical benefit that would consist usually by "studies underway” at the time of accelerated approval, this has not always been the case and is not a requirement (Dagher R, Johnson J, Williams G et al). In conclusion, the accelerated approval program in oncology has been successful in making 18 different products available to patients for 22 different cancer treatment indications since the inception of the fast track program. From the current data and transition information, there is a comparative difference between the clinical phase transitions from phase II to Phase III clinical trials. However, this preliminary data needs to be further evaluated against the standard FDA review process from oncology drugs. Moreover, further studies will be needed to interpret whether the average length of oncology studies biases the value of our study.
Bergh, Anna. "Defocused CO₂ laser irradiation in the rehabilitation of horses : an experimental and clinical study /". Uppsala : Dept. of Anatomy and Physiology, Swedish University of Agricultural Sciences, 2006. http://epsilon.slu.se/200654.pdf.
Testo completoSvensson, Jennie. "An Experimental Study to Improve the Casting Performance of Steel Grades Sensitive for Clogging". Doctoral thesis, KTH, Tillämpad processmetallurgi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-202539.
Testo completoQC 20170227
VINNOVA
Behrel, Morgan. "Investigation of kites for auxiliary ship propulsion : experimental set-up, trials, data analysis and kite specs novel identification approach". Thesis, Brest, 2017. http://www.theses.fr/2017BRES0132.
Testo completoThis study is part of the research program beyond the sea® aiming to develop kites as auxiliary propulsion devices for ships. The goal is to use the energy of the wind to save fuel and reduce harmful emissions. Such a project needs numerous developments and scientific actions, particularly to model the behavior of giant kites and associated ships. However these models must be compared to measurements to assess their validity. This study is then focus on the measurements of the interaction between kites and ships, at a limited scale in comparison to the real scope of the project. Thus measurement campaigns were carried out on a 13-meter long trawler, and on a 6-meter long experimental platform specifically designed. Another experimental campaign was also carried out onshore to assess the aerodynamic specs of the kite. Each of these three campaigns was based on a complex experimental set-up, including an automatic kite control system. In addition to provide a valuable data set for further scientific analyses, this study provided also tools which can be used by the industrial partners of the beyond the sea project®
Libri sul tema "Experimental trials"
Beer, Tomasz M. Cancer clinical trials: A commonsense guide to experimental cancer therapies and clinical trials. New York: DiaMedica Pub., 2012.
Cerca il testo completoFinn, Robert. Cancer clinical trials: Experimental treatments & how they can help you. Beijing: O'Reilly, 1999.
Cerca il testo completoCancer clinical trials: Experimental treatments & how they can help you. Beijing: O'Reilly, 1999.
Cerca il testo completoPatel, Shilpesh S. Handbook of cardiovascular clinical trials. New York, NY: Churchill Livingstone, 1997.
Cerca il testo completoRothmann, Mark D. Design and analysis of non-inferiority trials. Boca Raton: Chapman & Hall/CRC, 2011.
Cerca il testo completoWilliams, E. R. Experimental design and analysis for use in tree improvement. East Melbourne, Vic: CSIRO, 1994.
Cerca il testo completoGriffin, J. P. The textbook of pharmaceutical medicine. 6a ed. Chichester, West Sussex: Wiley-Blackwell, 2009.
Cerca il testo completoMark, Chang, a cura di. Adaptive design methods in clinical trails. Boca Raton, FL: Chapman & Hall/CRC, 2007.
Cerca il testo completoNational Research Council (U.S.). Committee on National Statistics e National Academies Press (U.S.), a cura di. The prevention and treatment of missing data in clinical trials. Washington, D.C: National Academies Press, 2010.
Cerca il testo completoClinical research and the law. Chichester, West Sussex: John Wiley & Sons, 2012.
Cerca il testo completoCapitoli di libri sul tema "Experimental trials"
McPeek, B., F. Mosteller, M. F. McKneally e E. A. M. Neugebauer. "Experimental Methods: Clinical Trials". In Principles and Practice of Research, 114–25. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-0371-8_14.
Testo completoHolmes, Laurens. "Clinical trials (human experimental designs)". In Applied Epidemiologic Principles and Concepts, 205–26. Abingdon, Oxon ; New York, NY : Routledge, 2018.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315369761-13.
Testo completoDellin, Christopher M., Kyle Strabala, G. Clark Haynes, David Stager e Siddhartha S. Srinivasa. "Guided Manipulation Planning at the DARPA Robotics Challenge Trials". In Experimental Robotics, 149–63. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23778-7_11.
Testo completoTurner, J. Rick. "Conducting Clinical Trials I: Experimental Methodology". In New Drug Development, 69–78. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6418-2_6.
Testo completoKurosaki, Takashi. "Experimental Design for Flexible Microcredit Trials". In Seasonality and Microcredit, 55–70. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55010-5_5.
Testo completoAbelson, M. B., G. W. Ousler, L. A. Nally e T. B. Emory. "Dry Eye Syndromes: Diagnosis, Clinical Trials and Pharmaceutical Treatment-‘Improving Clinical Trials’". In Advances in Experimental Medicine and Biology, 1079–86. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0717-8_152.
Testo completoDezawa, Mari. "Clinical Trials of Muse Cells". In Advances in Experimental Medicine and Biology, 305–7. Tokyo: Springer Japan, 2018. http://dx.doi.org/10.1007/978-4-431-56847-6_17.
Testo completoRoss, Allan M. "Implications of the TIMI Trials". In Advances in Experimental Medicine and Biology, 361–66. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4615-3806-6_37.
Testo completoCoates, Anthony R. M., e Gerry Halls. "Antibiotics in Phase II and III Clinical Trials". In Handbook of Experimental Pharmacology, 167–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28951-4_11.
Testo completoRobins, H. Ian, e Justin D. Cohen. "Radiant Heat Systemic Hyperthermia Clinical Trials". In Advances in Experimental Medicine and Biology, 189–96. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5766-7_17.
Testo completoAtti di convegni sul tema "Experimental trials"
Suyama, Satoshi, Jun Mashino, Yoshihisa Kishiyama e Yukihiko Okumura. "5G multi-antenna technology and experimental trials". In 2016 IEEE International Conference on Communication Systems (ICCS). IEEE, 2016. http://dx.doi.org/10.1109/iccs.2016.7833602.
Testo completoFeoktistov, Vitaliy, Stephane Pietravalle e Nicolas Heslot. "Optimal experimental design of field trials using Differential Evolution". In 2017 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2017. http://dx.doi.org/10.1109/cec.2017.7969505.
Testo completoMalanowski, M., K. Kulpa, P. Samczynski, J. Misiurewicz, J. Kulpa, P. Roszkowski, P. Dzwonkowski et al. "Experimental results of the PaRaDe passive radar field trials". In 2012 13th International Radar Symposium (IRS). IEEE, 2012. http://dx.doi.org/10.1109/irs.2012.6233290.
Testo completoBenjebbour, Anass, e Yoshihisa Kishiyama. "Combination of NOMA and MIMO: Concept and Experimental Trials". In 2018 25th International Conference on Telecommunications (ICT). IEEE, 2018. http://dx.doi.org/10.1109/ict.2018.8464916.
Testo completoZhu, Liyao, Wenbiao Wang, Zhicheng Tao, Bangchu Yang, Zhipei Chen, Han Ge e Guanjun Bao. "Full-Drive Decoupled Bionic Finger: Structure and Experimental Trials*". In 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, 2019. http://dx.doi.org/10.1109/robio49542.2019.8961507.
Testo completoMonteiro, Vítor, J. G. Pinto, J. C. Aparício Fernandes e João L. Afonso. "Experimental Comparison of Single-Phase Active Rectifiers for EV Battery Chargers". In Special Session on Sustainable mobility solutions: vehicle and traffic simulation, on-road trials and EV charging. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0006391804190425.
Testo completoIwabuchi, Masashi, Anass Benjebbour, Yoshihisa Kishiyama, Guangmei Ren, Chen Tang, Tingjian Tian, Liang Gu, Terufumi Takada e Tsuyoshi Kashima. "5G Field Experimental Trials on URLLC Using New Frame Structure". In 2017 IEEE Globecom Workshops (GC Wkshps). IEEE, 2017. http://dx.doi.org/10.1109/glocomw.2017.8269130.
Testo completoKumagai, Shinya, Morihiko Minowa, Tatsuki Okuyama, Jun Mashino, Satoshi Suyama, Yukihiko Okumura, Takaharu Kobayashi et al. "Experimental Trials of 5G Ultra High-Density Distributed Antenna Systems". In 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall). IEEE, 2019. http://dx.doi.org/10.1109/vtcfall.2019.8891604.
Testo completoGavrilin, Sergey, e Sverre Steen. "Uncertainty of Sea Trials Results Used for Validation of Ship Manoeuvring Simulation Models". In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41887.
Testo completoOctavian, Baltag, e Rau Miuta Carmina. "Experimental trials concerning the simulation of a heart-generated biomagnetic signal". In 2013 8th International Symposium on Advanced Topics in Electrical Engineering (ATEE). IEEE, 2013. http://dx.doi.org/10.1109/atee.2013.6563434.
Testo completoRapporti di organizzazioni sul tema "Experimental trials"
Ripley, Robert C., e Laura Donahue. Cylindrical Explosive Dispersal of Metal Particles: Predictive Calculations in SUpport of Experimental Trials. Fort Belvoir, VA: Defense Technical Information Center, dicembre 2007. http://dx.doi.org/10.21236/ada505351.
Testo completoCamenzind, Lauren, Molly Kafader, Rachel Schwam, Mikayla Taylor, Zoie Wilkes e Madison Williams. Space Retrieval Training for Memory Enhancement in Adults with Dementia. University of Tennessee Health Science Center, maggio 2021. http://dx.doi.org/10.21007/chp.mot2.2021.0013.
Testo completoHernández, Karla, Bridget Lynn Hoffmann, Cristóbal Ruiz-Tagle e Alejandra Schueftan. The Cost-Effectiveness of Air Pollution Information Provision Programs. Inter-American Development Bank, luglio 2021. http://dx.doi.org/10.18235/0003391.
Testo completoBracht, Juergen. Trial of the Exeter Economic Experiments. Bristol, UK: The Economics Network, gennaio 2010. http://dx.doi.org/10.53593/n985a.
Testo completoMasset, Edoardo. Combining economic modelling and randomised controlled trials: An unexploited synergyCombining economic modelling and randomised controlled trials: An unexploited synergy. A cura di Radhika Menon. Centre of Excellence for Development Impact and Learning (CEDIL), 2021. http://dx.doi.org/10.51744/cmb3.
Testo completoChassang, Sylvain, Gerard Padro Miquel e Erik Snowberg. Selective Trials: A Principal-Agent Approach to Randomized Controlled Experiments. Cambridge, MA: National Bureau of Economic Research, settembre 2010. http://dx.doi.org/10.3386/w16343.
Testo completoMcPhedran, R., K. Patel, B. Toombs, P. Menon, M. Patel, J. Disson, K. Porter, A. John e A. Rayner. Food allergen communication in businesses feasibility trial. Food Standards Agency, marzo 2021. http://dx.doi.org/10.46756/sci.fsa.tpf160.
Testo completoAfzal, Uzma, Giovanna D'Adda, Marcel Fafchamps e Farah Said. Intrahousehold Consumption Allocation and Demand for Agency: A Triple Experimental Investigation. Cambridge, MA: National Bureau of Economic Research, agosto 2018. http://dx.doi.org/10.3386/w24977.
Testo completoKowalski, Amanda. A model of a randomized experiment with an application to the PROWESS clinical trial. The IFS, marzo 2019. http://dx.doi.org/10.1920/wp.cem.2019.11.
Testo completoKowalski, Amanda. A model of a randomized experiment with an application to the PROWESS clinical trial. The IFS, marzo 2019. http://dx.doi.org/10.1920/wp.cem.2019.1119.
Testo completo