Letteratura scientifica selezionata sul tema "Ergodic Diffusion Processe"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Ergodic Diffusion Processe".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Ergodic Diffusion Processe"
Corradi, Valentina. "Comovements Between Diffusion Processes". Econometric Theory 13, n. 5 (ottobre 1997): 646–66. http://dx.doi.org/10.1017/s0266466600006113.
Testo completoKamarianakis, Yiannis. "Ergodic control of diffusion processes". Journal of Applied Statistics 40, n. 4 (aprile 2013): 921–22. http://dx.doi.org/10.1080/02664763.2012.750440.
Testo completoWong, Bernard. "On Modelling Long Term Stock Returns with Ergodic Diffusion Processes: Arbitrage and Arbitrage-Free Specifications". Journal of Applied Mathematics and Stochastic Analysis 2009 (23 settembre 2009): 1–16. http://dx.doi.org/10.1155/2009/215817.
Testo completoSwishchuk, Anatoliy, e M. Shafiqul Islam. "Diffusion Approximations of the Geometric Markov Renewal Processes and Option Price Formulas". International Journal of Stochastic Analysis 2010 (19 dicembre 2010): 1–21. http://dx.doi.org/10.1155/2010/347105.
Testo completoKutoyants, Yury A., e Nakahiro Yoshida. "Moment estimation for ergodic diffusion processes". Bernoulli 13, n. 4 (novembre 2007): 933–51. http://dx.doi.org/10.3150/07-bej1040.
Testo completoKiessler, Peter C. "Statistical Inference for Ergodic Diffusion Processes". Journal of the American Statistical Association 101, n. 474 (1 giugno 2006): 846. http://dx.doi.org/10.1198/jasa.2006.s98.
Testo completoChen, Mu Fa. "Ergodic theorems for reaction-diffusion processes". Journal of Statistical Physics 58, n. 5-6 (marzo 1990): 939–66. http://dx.doi.org/10.1007/bf01026558.
Testo completoMagdziarz, Marcin, e Aleksander Weron. "Ergodic properties of anomalous diffusion processes". Annals of Physics 326, n. 9 (settembre 2011): 2431–43. http://dx.doi.org/10.1016/j.aop.2011.04.015.
Testo completoBel, Golan, e Ilya Nemenman. "Ergodic and non-ergodic anomalous diffusion in coupled stochastic processes". New Journal of Physics 11, n. 8 (12 agosto 2009): 083009. http://dx.doi.org/10.1088/1367-2630/11/8/083009.
Testo completoDi Masp, G. B., e Ł. Stettner. "Bayesian ergodic adaptive control of diffusion processes". Stochastics and Stochastic Reports 60, n. 3-4 (aprile 1997): 155–83. http://dx.doi.org/10.1080/17442509708834104.
Testo completoTesi sul tema "Ergodic Diffusion Processe"
Wasielak, Aramian. "Various Limiting Criteria for Multidimensional Diffusion Processes". Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195115.
Testo completoMaillet, Raphaël. "Analyse statistique et probabiliste de systèmes diffusifs en présence de bruit". Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD025.
Testo completoThis thesis deals with the long-time behavior of stochastic Fokker-Planck equations with additive common noise and presents statistical methods for estimating the invariant measure of multidimensional ergodic diffusion processes from noisy data. In the first part, we analyze stochastic Fokker-Planck Partial Differential Equations (SPDEs), obtained as the mean-field limit of interacting particle systems influenced by both idiosyncratic and common Brownian noises. We establish conditions under which the addition of common noise restores uniqueness if the invariant measure. The main challenge arises from the finite-dimensional nature of the common noise, while the state variable — interpreted as the conditional marginal law of the system given the common noise — operates within an infinite-dimensional space. We demonstrate that uniqueness is restored if the mean field interaction term attracts the system towards its conditional mean given the common noise, particularly when the intensity of the idiosyncratic noise is small. In the second part, we develop a new statistical methodology using kernel density estimation to effectively approximate the invariant measure from noisy observations, highlighting the crucial role of the underlying Markov structure in the denoising process. This method involves a pre-averaging technique that proficiently reduces the intensity of the noise while maintaining the analytical characteristics and asymptotic properties of the underlying signal. We investigate the convergence rate of our estimator, which depends on the anisotropic regularity of the density and the intensity of the noise. We establish noise intensity conditions that allow for convergence rates comparable to those in noise-free environments. Additionally, we demonstrate a Bernstein concentration inequality for our estimator, leading to an adaptive procedure for selecting the kernel bandwidth
Aeckerle-Willems, Cathrine [Verfasser], e Claudia [Akademischer Betreuer] Strauch. "Nonparametric statistics for scalar ergodic diffusion processes / Cathrine Aeckerle-Willems ; Betreuer: Claudia Strauch". Mannheim : Universitätsbibliothek Mannheim, 2019. http://d-nb.info/1202012035/34.
Testo completoSera, Toru. "Functional limit theorem for occupation time processes of intermittent maps". Kyoto University, 2020. http://hdl.handle.net/2433/259719.
Testo completoMélykúti, Bence. "Theoretical advances in the modelling and interrogation of biochemical reaction systems : alternative formulations of the chemical Langevin equation and optimal experiment design for model discrimination". Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d368c04c-b611-41b2-8866-cde16b283b0d.
Testo completoKadlec, Karel. "Optimální řízení stochastických rovnic s Lévyho procesy v Hilbertových proctorech". Doctoral thesis, 2020. http://www.nusl.cz/ntk/nusl-437018.
Testo completoLibri sul tema "Ergodic Diffusion Processe"
S, Borkar Vivek, e Ghosh Mrinal K. 1956-, a cura di. Ergodic control of diffusion processes. Cambridge: Cambridge University Press, 2011.
Cerca il testo completoKutoyants, Yury A. Statistical Inference for Ergodic Diffusion Processes. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2.
Testo completoHerrmann, Samuel. Stochastic resonance: A mathematical approach in the small noise limit. Providence, Rhode Island: American Mathematical Society, 2014.
Cerca il testo completoBorkar, Vivek S., Ari Arapostathis e Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.
Cerca il testo completoBorkar, Vivek S., Ari Arapostathis e Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.
Cerca il testo completoBorkar, Vivek S., Ari Arapostathis e Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2013.
Cerca il testo completoBorkar, Vivek S., Ari Arapostathis e Mrinal K. Ghosh. Ergodic Control of Diffusion Processes. Cambridge University Press, 2011.
Cerca il testo completoKutoyants, Yury A. Statistical Inference for Ergodic Diffusion Processes. Springer London, Limited, 2013.
Cerca il testo completoStatistical Inference for Ergodic Diffusion Processes. Springer, 2003.
Cerca il testo completoKutoyants, Yury A. Statistical Inference for Ergodic Diffusion Proces. Springer London, 2010.
Cerca il testo completoCapitoli di libri sul tema "Ergodic Diffusion Processe"
Kutoyants, Yury A. "Diffusion Processes and Statistical Problems". In Statistical Inference for Ergodic Diffusion Processes, 17–110. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_2.
Testo completoKutoyants, Yury A. "Introduction". In Statistical Inference for Ergodic Diffusion Processes, 1–16. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_1.
Testo completoKutoyants, Yury A. "Parameter Estimation". In Statistical Inference for Ergodic Diffusion Processes, 111–226. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_3.
Testo completoKutoyants, Yury A. "Special Models". In Statistical Inference for Ergodic Diffusion Processes, 227–307. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_4.
Testo completoKutoyants, Yury A. "Nonparametric Estimation". In Statistical Inference for Ergodic Diffusion Processes, 309–419. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_5.
Testo completoKutoyants, Yury A. "Hypotheses Testing". In Statistical Inference for Ergodic Diffusion Processes, 421–60. London: Springer London, 2004. http://dx.doi.org/10.1007/978-1-4471-3866-2_6.
Testo completoArnold, Ludwig, e Hans Crauel. "Iterated Function Systems and Multiplicative Ergodic Theory". In Diffusion Processes and Related Problems in Analysis, Volume II, 283–305. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_13.
Testo completoKutoyants, Yury A., e Li Zhou. "Asymptotically Parameter-Free Tests for Ergodic Diffusion Processes". In Statistical Models and Methods for Reliability and Survival Analysis, 161–75. Hoboken, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118826805.ch11.
Testo completoColonius, Fritz, e Wolfgang Kliemann. "Remarks on Ergodic Theory of Stochastic Flows and Control Flows". In Diffusion Processes and Related Problems in Analysis, Volume II, 203–39. Boston, MA: Birkhäuser Boston, 1992. http://dx.doi.org/10.1007/978-1-4612-0389-6_9.
Testo completoKutoyants, Yu A. "On Parameter Estimation by Contaminated Observations of Ergodic Diffusion Processes". In Statistics for Industry and Technology, 461–72. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8206-4_28.
Testo completoAtti di convegni sul tema "Ergodic Diffusion Processe"
Piera, Francisco J., e Ravi R. Mazumdar. "An ergodic result for queue length processes of state-dependent queueing networks in the heavy-traffic diffusion limit". In 2008 46th Annual Allerton Conference on Communication, Control, and Computing. IEEE, 2008. http://dx.doi.org/10.1109/allerton.2008.4797600.
Testo completo