Letteratura scientifica selezionata sul tema "Engineering Education"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Engineering Education".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Engineering Education"

1

Ramesh, Sujatha, e Natarajan K. "Integrating Educational Technologies into Engineering Education in Indian Technical Universities". Journal of Advanced Research in Dynamical and Control Systems 11, n. 10-SPECIAL ISSUE (25 ottobre 2019): 125–31. http://dx.doi.org/10.5373/jardcs/v11sp10/20192783.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Shirko, Tatiana Ivanovna. "Educational strategies in engineering education (on the example of Tomsk Region)". New Trends and Issues Proceedings on Humanities and Social Sciences 3, n. 1 (28 giugno 2017): 58–66. http://dx.doi.org/10.18844/gjhss.v3i1.1730.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

J, Deepak T., e Venishri P. "Outcome Based Education OBE Trend Review in Engineering Education". International Journal of Trend in Scientific Research and Development Special Issue, Special Issue-ICAEIT2017 (30 novembre 2018): 41–43. http://dx.doi.org/10.31142/ijtsrd19126.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Masi, C. G. "Re-engineering engineering education". IEEE Spectrum 32, n. 9 (1995): 44–47. http://dx.doi.org/10.1109/6.406465.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

MORI, Katsunori. "Engineering Education". Journal of JSEE 55, n. 4 (2007): 167. http://dx.doi.org/10.4307/jsee.55.4_167.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Farr, John V. "Engineering Education". Journal of Management in Engineering 13, n. 6 (novembre 1997): 3–4. http://dx.doi.org/10.1061/(asce)0742-597x(1997)13:6(3).

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

ABELSON, P. H. "Engineering Education". Science 229, n. 4709 (12 luglio 1985): 121. http://dx.doi.org/10.1126/science.229.4709.121.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Rajala, Sarah A. "American Society for Engineering Education -Transforming Engineering Education". Journal of JSEE 56, n. 6 (2008): 32–35. http://dx.doi.org/10.4307/jsee.56.6_32.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Starshinova, T. A. "MULTILEVEL INTEGRATION: PROCESSES IN ENGINEERING EDUCATION". Vestnik Orenburgskogo gosudarstvennogo universiteta 236 (2022): 143–48. http://dx.doi.org/10.25198/1814-6457-236-143.

Testo completo
Abstract (sommario):
Engineering education is currently facing unprecedented challenges related both to the global trends of increasing interdisciplinarity of engineering and technical knowledge, and to the emerging economic situation that requires building new multidimensional relationships. Responses to these challenges require a systematic approach, the central link of which is pedagogical integration. It allows you to form engineering personnel in demand by the employer who have knowledge and skills in various, sometimes not even related fields and the ability to work in an interdisciplinary team. In modern conditions, we are witnessing the phenomenon of increasing the spread of such integration, which should be understood in the broadest sense, at several levels: from the global level of interaction between education, science, business, production (an example of which are advanced engineering schools), to the elementary level of interdisciplinary relations. One of the essential factors that, as our research has shown, can both contribute to and hinder the implementation of the integrative approach in practice is the understanding of its necessity on the part of the subjects of the educational process. The results of a survey conducted among students, postgraduates and teachers (mainly engineering universities) showed that not all of them are aware of the existence of interdisciplinary links, especially between humanities and technical, special disciplines. Many students do not pay enough attention even to the fact that knowledge and skills from several related, special fields of knowledge are required to perform any laboratory work. In this regard, we believe that special attention should be paid to this aspect both when teaching students, postgraduates, and when implementing teacher training programs. This will make it possible to more effectively form professional competence as a systemic neoplasm.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Hisham, Mohd Hizwan Mohd, Muhammad Sukri Saud e Yusri Kamin. "Engineering Education: A Review on Malaysian Engineering Education Model". Advanced Science Letters 24, n. 6 (1 giugno 2018): 4021–25. http://dx.doi.org/10.1166/asl.2018.11533.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Engineering Education"

1

Eastman, Michael G. "The Journey from Engineering Educator to Engineering Education Researcher". Thesis, State University of New York at Buffalo, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10279363.

Testo completo
Abstract (sommario):

Abstract Despite favorable job-growth predictions for many engineering occupations(NSB, 2010), researchers and government agencies have described a crisis in education in the United States. Several simultaneous events have conspired to sound this alarm. First, when compared to other countries, the United States is losing ground in educational rankings, and research and development output and expenditures (NSB, 2014). Second, within the disciplines of science, technology, engineering, and math (STEM) the ranks of engineering education have been identified as one of the most unwelcoming, inequitable, and homogeneous (Johri & Olds, 2014). Third, engineering educators at the university level has historically been select individuals from the dominant culture considered to be content experts in their fields, but having little or no background in educational theory (Froyd & Lohmann, 2014). Researchers and government agencies have recently claimed the changing demographics and need for more engineers in the United States signal a need for revolutionary changes in the way engineers are prepared and the need for a more welcoming and collaborative environment in engineering education (Jamieson & Lohmann, 2012; NSF, 2014). Understanding how to improve the culture of engineering education is an important and necessary ingredient for addressing national concerns with engineering and innovation.

My study seeks to explore the manifestation of the culture of engineering education in the experiences of five long-time engineering professors, who enrolled as part of a STEM PhD cohort, in a School of Education at a large research university in the northeastern United States. The overarching problem I will address is the persistent culture of engineering education that, despite decades of rhetoric about reform aimed at increasing the number of those historically underrepresented in engineering, continues to promote a hegemonic culture and has failed to take the necessary systemic steps to become more welcoming and more effective for all learners. This research involves the story, and the history, of an engineering education culture quick to identify the haves and the have-nots and dismissive of those individuals “not cut out” to become engineers.

My study is driven by the following research questions: (1) What are engineering educators’ perceptions of teaching and learning? (2) In what ways, if any, have participant experiences with constructivism and social constructivism influenced espoused beliefs, perceptions, and enactments of teaching? (3) What may be potential strategies for shifting the culture of veteran engineering educators toward reflective teaching practices and equitable access to engineering education?

Gli stili APA, Harvard, Vancouver, ISO e altri
2

Grimheden, Martin. "Mechatronics Engineering Education". Doctoral thesis, Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-569.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Bush, Sarah 1973. "Integrating engineering education". Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47457.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Cowan, J. "Education for capability in engineering education". Thesis, Heriot-Watt University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Bull, Christopher Neil. "Studios in software engineering education". Thesis, Lancaster University, 2016. http://eprints.lancs.ac.uk/79064/.

Testo completo
Abstract (sommario):
Computing has its roots in mathematics, where lectures are the dominant mode of education. Software engineering (SE) education, born from computer science, is also traditionally taught using lectures, but has grown beyond its mathematical roots; as the name implies, it is an engineering discipline. It is arguably necessary for SE to rethink its approach to education. Studio education is one alternative being explored. Studios originated from architecture and design, and are complex spaces used by collocated students to collaboratively and individually work on projects; they emphasise a physical “home” for students, problem-based and peer-based learning, and mentoring by academic staff rather than formal lectures. There are inherent similarities between SE and the original studio disciplines: e.g. we often use the architecture of buildings as metaphors when designing and describing software. This suggests that studios in SE should be further explored, despite its apparent lack of uptake across institutions worldwide. This thesis aims to provide useful information for anyone considering utilizing a studio-based approach. Initially, with no widely accepted definition for studio education available, a series of interviews with design/architecture studio educators was conducted, culminating in an understanding in the form of the ‘studio framework’. This is followed by further interviews, with SE studio educators, to determine their perspective of studio education, and exploring the SE specific elements to studio education. Finally, experiences and observations are shared of Lancaster University’s recent SE studio, comparing it to the studio framework.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Worotynska, Ewa Barbara. "Multimedia technology in engineering education". Thesis, University of Sydney, 1995. https://hdl.handle.net/2123/27604.

Testo completo
Abstract (sommario):
This thesis had been inspired by a rapid development of multimedia systems and opportunities arising for their use in engineering education. The author, being a professional developer of computer based training, has used her engineering and educational experience in the search for the optimal use of multimedia technology in engineering education at the tertiary level. Multimedia technology used for educational purposes requires not only technical expertise, but pedagogical and psychological as well. The possibility of the use of a different form in a multimedia educational system, merges a variety of disciplines that had not been considered before in tertiary education. All the above aspects are considered in the thesis, emphasising the difficulty of defining only one solution for every problem. The main goal of the project was to utilise theoretical knowledge in the practical form of working software. The multimedia educational software created by the author (recorded in the attached CD Rom) stands as a summary of her research work and professional experience in multimedia design and production. The author's software proves that it is possible nowadays to create highly efficient educational computer programs that can be used for engineering education.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Calderón, Saldierna Marco Lino. "A collection of resources for the study of educational reverse engineering activities in engineering design education". Doctoral thesis, Universitat Politècnica de Catalunya, 2015. http://hdl.handle.net/10803/348553.

Testo completo
Abstract (sommario):
Educational Reverse Engineering Activities referred to as the acronym -EREA- help engineering design students to: Acquire and develop a set of abilities that raise their awareness of the design process; expand their sources of inspiration, position their actions within the lifecycle of a product, and transform theoretical knowledge into practice. However, it was detected that although such activities sparked interest among engineering design educators, they were either absent from typical engineering design curricula or were not fully exploited. After analysing the causes for it and determining that the creation of a collection of resources for the study of educational reverse engineering activities was the best way to reach a geographically dispersed community and thus start trying to change the existing research situation, the development of such resources began with the goal to address as many of the concerns as possible found whenever trying to implement EREA into existing engineering design curricula. The contents selected for inclusion in the collection of resources then, were derived based on initial exploratory discussions with experts in academia and industry; from the feedback received from peer reviewed conference papers stemming from this doctoral research, and from the presentation of intermediate results to early reviewers of this project; for such reasons, the information presented in the different resources targets first time (or novice) instructors of reverse engineering activities and takes into account not only the technical but also the pedagogical and administrative considerations implicated in the study of academic activities, and their potential introduction into an existing engineering design curriculum Given that some relevant information about the topic already existed but it was dispersed across different areas of knowledge; rather than developing all topics from scratch again, a conscious effort was made to examine published literature and to consult with domain experts to integrate and contextualise all existing information into a coherent body that could be complemented with the original results originating from this project. The major sections comprising the collection of resources then, are listed below: - Resource 1: Fundamentals of Educational Reverse Engineering Activities - Resource 2: Reverse Engineering and Learning - Resource 3: Misconceptions about Reverse Engineering - Resource 4: Benefits of Reverse Engineering - Resource 5: A Proposed Methodology for Reverse Engineering Analysis in Engineering Design Education - Resource 6: A Suggested Pedagogy for the Teaching of Educational Reverse Engineering Activities - Resource 7: Integrated Example of an Educational Reverse Engineering Activity on a Disposable Camera - Resource 8: Conclusions and Final Remarks - Resource 9: Miscellaneous Resources for the Study of Reverse Engineering The abovementioned resources were of a self-contained nature, could be read either individually or sequentially, and were written using the "DRM" framework for research in the area of engineering design. Once finished, a number of academic institutions were contacted to measure their interest in the resources, and in the end 12 different ones in the United Kingdom, Ireland, France, Denmark and Germany showed their interest in the research project and agreed to receive the document for reading, thus helping fulfil one of the main goals of this research which was to disseminate the results from it. Other results from this project include five peer reviewed conference papers and a report presented at the Technical University of Ilmenau in Germany after spending a visiting internship abroad to learn about similar approaches to the research into reverse engineering by other schools and traditions of design
Las actividades educativas de ingeniería inversa “AEII” tambien conocidas como “EREA” por su acrónimo en inglés ayudan a los estudiantes de ingeniería de diseño a: Adquirir y desarrollar un conjunto de habilidades que elevan su conocimiento del proceso de diseño; tambien a expandir sus fuentes de inspiración, a situar sus acciones dentro del ciclo de vida de un producto, y a transformar conocimiento teórico en practico. Sin embargo, se detectó que a pesar de que tales actividades despertaban el interés de los profesores del área de ingeniería de diseño ellas estaban o ausentes de sus típicos programas de estudio o no explotadas en su totalidad Después de analizar las causas de ello y determinar que la creación de una colección de recursos para el estudio de las actividades educativas de ingeniería inversa era la mejor forma de acceder a un grupo geográficamente disperso y así intentar cambiar la situación de investigación existente, el desarrollo de tales recursos empezó con la meta de atender tantas inquietudes como fueran posible, de aquellas encontradas siempre que se intentaba implementar “AEII” en programas existentes de ingeniería de diseño Los contenidos seleccionados para formar parte de la colección de recursos, fueron definidos en base a conversaciones iniciales de exploración con expertos en la academia y la industria; en base a la retroalimentación recibida de los artículos presentados en conferencia procedentes de esta investigación doctoral, y de la presentación de resultados intermedios a los revisores preliminares de este proyecto; por tales razones, la información presentada en los diferentes recursos está dirigidas a instructores principiantes de actividades de ingeniería inversa y toma en cuenta no solo las consideraciones técnicas sino también las pedagógicas y administrativas involucradas en el estudio de actividades académicas y su potencial incorporación a un programa existente en ingeniería de diseño Dado que cierta información relevante al tema de investigación ya existía pero estaba dispersa entre varias áreas del conocimiento; en vez de desarrollar todos los temas desde cero nuevamente, se realizó un esfuerzo consciente para examinar la literatura existente y consultar con expertos en el tema, para así integrar y contextualizar toda la información disponible en un estudio coherente que pudiera ser complementado con los resultados originales producidos por esta investigación. Las secciones principales que comprenden la colección de recursos se enumeran a continuación: • Recurso 1: Fundamentos de las Actividades Educativas de Ingeniería Inversa • Recurso 2: Ingeniería Inversa y Aprendizaje • Recurso 3: Interpretaciones Equívocas acerca de la Ingeniería Inversa • Recurso 4: Beneficios de la Ingeniería Inversa • Recurso 5: Una Propuesta de Metodología para Utilizar Análisis de Ingeniería Inversa en la Enseñanza de la Ingeniería de Diseño • Recurso 6: Una Propuesta de Pedagogía para la Enseñanza de Actividades Educativas de Ingeniería Inversa • Recurso 7: Ejemplo de una Actividad Educativa de Ingeniería Inversa en una Cámara Desechable • Recurso 8: Conclusiones y Apuntes Finales • Recurso 9: Recursos Diversos para el Estudio de la Ingeniería Inversa Los recursos fueron escritos utilizando la metodología “DRM” para la investigación en el área de ingeniería de diseño y se contactó a diversas instituciones académicas para saber de su interés en tales recursos, al final 12 instituciones en el Reino Unido; Irlanda, Francia, Dinamarca y Alemania mostraron su interés en el proyecto y accedieron a recibir el documento, ayudando así a cumplir una de las metas principales de esta investigación que fue difundir sus resultados entre estudiosos de la ingenierÍa inversa educativa. Tambien como resultado final de esta investigacion se pueden contar 5 artículos presentados en conferencia y el reporte de trabajo de la estancia de investigación en el extranjero.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Tejedor, Papell Gemma. "Transdisciplinarity for sustainability in engineering education". Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/668425.

Testo completo
Abstract (sommario):
This research aims to improve engineering education in sustainability (EESD) through transdisciplinarity (td) learning approaches. The research comprised 3 phases. The first consisted of the analysis of how sustainability is approached in EE through a co-word analysis and characterization of the keywords networks of three relevant journals in the field of EESD over two decades. The journal networks evolution analysis suggested that the concern was growing to move to society. Td and related keywords constantly dripped along the ten years in all the journals and gained relevance, especially in International Journal of Sustainability in Higher Education (IJSHE) and Journal of Cleaner Production (JCLP). Additionally the IJSHE showed a will of reinforcing relationships beyond the university; the International Journal of Engineering Education (IJEE) gave relevance to real case studies with a North-South component and to students’ representativeness; and the JCLP contributed aspects on competences and educational strategies. The characterisation brought as relevant categories towards sustainability those related to cross-boundary schemes (i.e. td, ethics, networking), institutional aspects, faculty professional development training and learning strategies. Finally, keywords related to td and collaborative networking spread throughout all the areas of knowledge addressed by the journals, indicating a widening interest. The second phase studied how emergent EESD initiatives were approached from td as valued competence for sustainability. The research indicated that most of the initiatives fitted in the problem solving discourse, where co-production of knowledge and method-driven aspects are relevant. Deepening this discourse, most initiatives corresponded to the real-world argument promoting science-society collaboration to solve societal problems (EU contexts); others looked for convergence of all sciences (life, human, physical and engineering) in pursuit of human well-being (innovation argument, US contexts); and some initiatives brought together students and entities in a team-based learning process with social purpose (transcendent interdisciplinary research “tir” argument). It is noteworthy that none of the initiatives mirrored the transgression discourse, which attempts to reformulate the establishment, no longer for society but with society. The last phase consisted in the implementation of a td learning environment experience in the course Action Research Workshop on Science and Technology (Sci&Tech) for Sustainability (5 ETCS) of the UPC Master degree in Sustainability Sci&Tech. Civil organisations, public administration, students and educators undertook collaborative research on real-life sustainability case studies, following two cycles of action-reflection. While the course mainly fitted in the real-world argument of problem solving, service learning (SL) or CampusLab schemes also reproduced a team-based learning with societal purpose (“tir” argument). We addressed the transgression discourse by means of SL focusing on social justice, which enhanced the development of complex thinking. Afterwards, some students engaged as professional researchers-activists in the participant organisations. Challenges of their learning process were: problem formulation, process uncertainty, stakeholder’s interests and roles integration, and interpersonal skills. Additionally, a well-valued Emotional Intelligence module was developed by the author to help students face some process paralyzing uncertainties. Finally this work proposes a set of fundamental features to be considered for an effective scheme for a td approach in EESD, methodically framing the science-society discourse on the issue at stake: work in real-world complex problems; involve diverse disciplines and fields cooperation; involve science-society cooperation and mutual learning processes; integrate types of knowledge; rely on disciplinary and cross-disciplinary practice.
Aquesta investigació té com a objectiu la millora de l'educació en enginyeria en sostenibilitat (EESD) a través d'un enfocament d'aprenentatge transdisciplinari, en 3 fases. La primera va consistir en l'anàlisi de com s'aborda la sostenibilitat a EE, mitjançant l'anàlisi de co-ocurrència i la caracterització dels mots clau d’articles de tres revistes rellevants en l’EESD, al llarg de 10 anys. L'anàlisi de l'evolució de les xarxes de revistes va suggerir una preocupació creixent per a traslladar el focus a la societat. La transdisciplinarietat (td) i els mots clau relacionats van degotar constantment al llarg del període a totes les revistes, guanyant rellevància, especialment a la International Journal of Sustainability in Higher Education (IJSHE) i la Journal of Cleaner Production (JCLP) A més, mostrà la rellevància de: la voluntat de reforçar relacions més enllà de la universitat, a la IJSHE; els estudis de casos reals amb component Nord-Sud, i la representativitat dels estudiants, a la International Journal of Engineering Education; i els aspectes sobre competències i estratègies educatives, a la JCLP. La caracterització va aportar com a categories rellevants per la sostenibilitat les relacionades amb esquemes “cross-boundary” (td, ètica, treball en xarxa), aspectes institucionals, desenvolupament professional del professorat i estratègies d'aprenentatge. Finalment, els mots clau relacionats amb td i xarxes de col·laboració s’identificaren al llarg de totes les àrees de coneixement empreses a les revistes, indicant un interès creixent. La segona fase va estudiar com les iniciatives de EESD, eren abordades des de la td. Indicà que la majoria encaixaven en el discurs de resolució de problemes, que emfatitza la coproducció de coneixement i els aspectes metodològics. Aprofundint aquest discurs, la majoria de les iniciatives s’esqueien a l'argument del món real que promou la col·laboració ciència-societat sobre problemes socials (context UE); altres buscaven la convergència de les ciències (vida, salut, física i enginyeria) en la recerca del benestar humà (argument d'innovació, context USA); i algunes reunien a estudiants i entitats en un procés grupal d'aprenentatge, amb propòsit social (argument d'investigació interdisciplinària transcendent "tir"). És rellevant que cap de les iniciatives es va vincular al discurs de transgressió, que persegueix la reformulació de l'”establishment” ja no per a la societat, sinó amb la societat. L'última fase va consistir en la implementació d'un entorn d'aprenentatge td al curs Taller d'Investigació-Acció (5 ETCS) del Màster UPC en Ciència i Tecnologia de Sostenibilitat. Organitzacions civils i de govern, estudiants i educadors van investigar col·laborativament en casos reals de sostenibilitat, a partir de dos cicles d'acció-reflexió. Si bé el curs encaixa principalment en l'argument del món real del discurs de resolució de problemes, els esquemes d'aprenentatge servei (ApS) o CampusLab poden reproduir l'argument "tir" d'aprenentatge basat en equips amb propòsit social. El discurs de la transgressió s'abordà mitjançant l’ApS per a la justícia social i va resultar en la implicació professional d'alguns estudiants en les organitzacions civils participants. Els reptes del procés d'aprenentatge foren: formulació de problemes; gestió d'incerteses; integració de diferents interessos i rols; i habilitats interpersonals. Per això, l'autora desenvolupà un valorat mòdul d'Intel·ligència Emocional, animat a encarar punts paralitzants del procés. Finalment, aquest treball proposa un conjunt d'elements fonamentals a considerar en un esquema eficaç per a aplicar l'enfocament td a l’EESD, que emmarqui de forma metòdica el discurs sobre la qüestió social en joc: treballar sobre problemes complexos del món real; involucrar diverses disciplines i àrees; facilitar la cooperació ciència-societat i els processos. Finalment, aquest treball proposa un conjunt d’elements fonamentals a considerar en un esquema eficaç per a aplicar l'enfocament transdisciplinarietat a l’EESD, que emmarqui de forma metòdica el discurs sobre la qüestió social en joc: treballar sobre problemes complexos del món real; involucrar diverses disciplines i àrees; facilitar la cooperació ciència-societat i els processos d'aprenentatge mutu; integrar tipus de coneixement; recolzar-se en pràctiques disciplinàries i interdisciplinàries
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Segalàs, Jordi. "Engineering education for a sustainable future". Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/5926.

Testo completo
Abstract (sommario):
En el context social global actual, en el què un nombre considerable de senyals inequívocs indiquen que la
nostra societat està contribuint al col∙lapse del planeta, " és necessari un nou tipus d'enginyer, un enginyer que
sigui plenament conscient del que està succeint a la societat i que tingui les habilitats necessàries per fer front
als aspectes socials de les tecnologies "(De Graaff et al., 2001).

L'educació superior és un instrument essencial per superar els reptes del món actual amb èxit i per formar
ciutadans capaços de construir una societat més justa i oberta (Álvarez, 2000). Per tant, les institucions
d'educació superior tenen la responsabilitat d'educar els futurs titulats amb la finalitat que adquireixin una
visió moral i ètica i assoleixin els coneixements tècnics necessaris per assegurar la qualitat de vida per a les
generacions futures (Corcoran et al, 2002).

Amb l'objectiu d'assegurar que els futurs titulats siguin enginyers sostenibles, tres qüestions fonamentals han
guiat aquesta investigació:
Quines competències en sostenibilitat ha d'adquirir un enginyer a la universitat?
Com poden aquestes competències ser adquirides d'una manera eficient?
Quina estructura educacional és més eficaç per facilitar els processos d'aprenentatge requerits?

La primera pregunta es refereix a "Què?", és a dir, a quines competències relacionades amb la sostenibilitat
(coneixements, habilitats i actituds) ha de tenir un enginyer que es gradua en el segle 21. La segona qüestió es
refereix a "Com?" i es centra en com els processos educatius poden fer possible l'aprenentatge de les
competències en sostenibilitat a través de les estratègies pedagògiques adequades. L'última pregunta es
refereix a "On?" des de la perspectiva de quin pla d'estudis i quina estructura organitzativa són necessaris per
poder aplicar la didàctica més òptima per graduar enginyers amb competències en sostenibilitat.
Aquesta recerca s'ha enfocat des d'una vessant teòrico‐pràctica en què tant les estratègies pedagògiques com
les competències en sostenibilitat s'han estudiat en paral∙lel. Amb aquesta orientació, s'ha dissenyat una eina
d'avaluació que mesura aquests dos aspectes i la seva relació, i que s'ha aplicat a 10 casos d'estudi formats per
cursos de sostenibilitat de 5 universitats tecnològiques europees, en els quals hi han participat, en total, més
de 500 estudiants.

Per completar l'estudi, s'ha analitzat la introducció de la sostenibilitat en els plans d'estudi
de 17 universitats tecnològiques, i s'han entrevistat 45 experts en educació de sostenibilitat en l'enginyeria.
En relació a les preguntes clau, els resultats de la investigació han estat els següents:
En el moment de titular‐se, l'estudiantat d'enginyeria hauria d'haver adquirit les competències següents:
pensament crític, pensament sistèmic, ser capaços de treballar en un entorn transdisciplinari, i tenir valors en
consonància amb el paradigma de la sostenibilitat. D'altra banda, d'acord amb els requisits de l'EEES, també cal
establir un marc comú per definir, descriure i avaluar les competències en sostenibilitat a nivell europeu.

Després d'haver realitzat un curs en sostenibilitat, la majoria de l'estudiantat segueix prioritzant el rol
tecnològic de la sostenibilitat, pel que fa a la tecnologia com la solució als problemes ambientals, sense gairebé
considerar els aspectes socials. Per tant, els cursos sobre sostenibilitat han d'emfatitzar més la part social i
institucional de la sostenibilitat.

Existeix una relació directa entre l'aprenentatge de la transdisciplinarietat i el pensament sistèmic.
L'aprenentatge cognitiu de l'estudiantat augmenta, a mida que s'aplica una pedagogia més orientada a la
comunitat i més constructiva. Així, l'aprenentatge cognitiu de la sostenibilitat també millora a través d'una
l''educació activa, experiencial i multimetodològica. A més a més, en l'aprenentatge de la sostenibilitat, el
paper del professorat és molt important pel que fa a l'aprenentatge implícit de valors, principis i pensament
crític associats a la sostenibilitat

Les universitats tecnològiques actualment implementen l'educació en sostenibilitat a través de quatre
estratègies principals: un curs específic, una especialització en sostenibilitat, un màster en sostenibilitat o en
tecnologies sostenibles, i la integració del desenvolupament sostenible en tots els cursos. No obstant això, la
principal barrera per a la integració de la sostenibilitat en tots els cursos és la manca de comprensió del terme
per part del professorat. L'"enfocament individual" (Peet et al., 2004) ha demostrat ser un bon sistema per
superar aquesta barrera.
Hi ha una necessitat clara de lideratge per part de l'equip de govern de les universitats en el procés de canvi
cap a una educació en sostenibilitat. Aquest lideratge ha de promoure l'enfocament de baix a dalt.
Els processos d'educació en sostenibilitat es reforcen quan aquests no només integren l'educació, sinó també
totes les altres àrees clau d'activitat de la universitat: recerca, gestió i relació amb la societat.
En breu, l'estructura d'aquesta tesi és la següent. El capítol 1 introdueix el plantejament de la recerca. El
capítol 2 revisa l'estat de l'art i la literatura en relació a les competències que els enginyers han de tenir quan
es graduen, A continuació, el capítol 3 descriu les estratègies pedagògiques per al desenvolupament sostenible
i les analitza des d'un punt de vista teòric i metodològic presentant els avantatges i desavantatges de les més
utilitzades en l'ensenyament d'enginyeria El capítol 4 presenta les estructures curriculars que han de catalitzar
el procés d'aprenentatge en sostenibilitat. El capítol 5 desenvolupa el marc conceptual de la recerca, les
propostes metodològiques de la investigació i els casos d'estudi analitzats. El capítol 6 avalua
comparativament les competències en sostenibilitat definides en tres universitats tecnològiques que són líders
europeus en sostenibilitat. El Capítol 7 introdueix el marc metodològic per a l'avaluació de l'aprenentatge
cognitiu en sostenibilitat del estudiantat. Aquesta metodologia s'aplica en el capítol 8 als 10 cursos de
sostenibilitat impartits en 5 universitats tecnològiques europees, que conformen els casos d'estudi d'aquesta
recerca. A partir de les 45 entrevistes realitzades a experts en sostenibilitat provinents de 17 universitats
tecnològiques europees, el capítol 9 estudia les millors pràctiques en pedagogia per a l'aprenentatge de la
sostenibilitat i el capítol 10 examina l'estructura curricular que més facilita l'aprenentatge en sostenibilitat a
les universitats tecnològiques. En el Capítol 11 es comparen els resultats obtinguts en els diferents casos
d'estudi i s'avaluen les propostes plantejades en el capítol 1. Finalment, el capítol 12 planteja les conclusions
de la recerca i algunes recomanacions per a les institucions d'educació superior tecnològiques.
In today's world social context, in which a considerable number of contrasting signs reveal that our society is currently contributing to the planet's collapse, "a new kind of engineer is needed, an engineer who is fully aware of what is going on in society and who has the skills to deal with societal aspects of technologies" (De
Graaff et al., 2001).

Higher education is the essential instrument to overcome the current world challenges and to train citizens able to build a more fair and open society (Alvarez, 2000). Thus higher education institutions have the responsibility to educate graduates who have achieved an ethical moral vision and the necessary technical knowledge to ensure the quality of life for future generations (Corcoran et al, 2002).

In relation to graduating sustainable engineers, three main questions have been developed to guide this research:
1. Which Sustainability (SD) competences must an engineer obtain at university?
2. How can these competences be acquired efficiently?
3. Which education structure is more effective for the required learning processes?
The first main question is a "What" question, and focuses on which competences (knowledge/understanding, skills/abilities and attitudes) an engineer graduating in the 21st century should have in relation to SD.
The second main question is a "How" question and focuses on how can the education processes make this learning achievable through the proper pedagogical strategies. The last main question is a "Where" question and looks
at the perspective of the curriculum and the organizational structure needed to apply the optimal didactics to achieve the goal of graduating sustainable engineers.
The focus of this research requires a theoretical‐practical approach in which both pedagogical strategies and SD competences are studied in parallel.
An assessment tool that measures the two subjects and their relationship is developed and case studies are run in 10 SD courses at 5 European technological universities, where nearly 500 students have participated. Moreover, the different approaches to introduce SD in the
curriculum of 17 technological universities are analysed, and 45 experts on teaching SD to engineering students have been interviewed.

In relation to the key questions, the findings of this research are the following.
When graduating the engineering students should have acquired the following SD competences: critical thinking, systemic thinking, an ability to work in transdisciplinary frameworks, and to have values consistent with the sustainability paradigm. Moreover, following the requirements of the EHEA, a common framework to define, describe and evaluate SD competences at European level is needed.

Most students, after taking a course on SD, highlight the technological role of sustainability in terms of technology as the solution to environmental problems. Therefore SD courses need to place more emphasis on the social/institutional side of sustainability.
There is a direct relationship between transdisciplinary and systemic thinking learning.
Students achieve better cognitive learning as more community‐oriented and constructive‐learning pedagogies are applied. Multi‐methodological experiential active learning education increases cognitive learning of sustainability.
In addition, the role of the teacher is very important for SD learning in terms of implicit learning of sustainability values, principles and critical thinking.

There are four main strategies to increase EESD in universities: a specific SD course, a minor/specialization in SD, a Master on SD or Sustainable Technologies and the embedment of SD in all courses. Nevertheless the main barrier to embedding SD in all courses is the lack of comprehension to SD within the faculty. The
individual approach (Peet et al., 2004) has shown to be successful to overcome this barrier.

There is a need of clear top‐down leadership in the ESD process, which must promote the bottom‐up
approach. Additionally, ESD processes are reinforced when they encompass not only education but also all the key areas of the university: research, management, and society outreach.
This thesis is organised as follows. The introduction in chapter 1 is followed by the state of the art and literature review in competences that engineers should have when graduating in chapter 2. Chapter 3 introduces the pedagogical strategies for SD and develops a theoretical and methodological exploration of
these strategies, which presents the pros & cons and learning outcomes of the most common pedagogical strategies in engineering. Chapter 4 describes the curriculum structures that catalyse the process of sustainable education. Chapter 5 presents the development of the conceptual research framework,
propositions and case studies research methodologies. A comparative SD competence analysis of three European leading SD technological universities is presented in chapter 6. Chapter 7 introduces the methodology framework to evaluate the knowledge on SD acquired by students; this methodology is later
applied in chapter 8 to 10 case studies related to SD courses taught in 5 European technological universities.
From the results of the interviews with 45 experts from 17 European technological universities, chapter 9 analyses the best pedagogical practices for SD learning and chapter 10 analyses the curriculum structure that
most facilitates the introduction of SD learning in technological universities. Chapter 11 compares the different cases analyzed and evaluates the propositions developed in chapter 1. Finally, in chapter 12 conclusions are drawn and recommendations for technological higher education institutions are provided.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Foster, Jason. "Understanding and Improving Undergraduate Engineering Education". Thesis, University of Waterloo, 2001. http://hdl.handle.net/10012/849.

Testo completo
Abstract (sommario):
This thesis seeks to understand the past and present state of engineering education and to plot a course for its future evolution. This research is limited to engineering education as it has taken place in North American universities during the last half of the 20th century. Within this context, broad trends are described. The description is supplemented with a case study of a unique and innovative engineering programme. The trends and case study form the foundation of a synthesis, and alternative vision, for higher education and engineering education. The intended audience of this thesis includes those who teach, design curriculum, or administer engineering education programmes. The description of the current state of engineering education contains analyses of the state and of the gaps within it. Both of these analyses are based almost exclusively on publicly available documentation. The present state of engineering is drawn from accreditation criteria. Critiques of the current state and suggestions for future change are drawn from reports commissioned by groups affiliated with professional engineering. The discussions identify recurring themes and patterns. Unlike the analysis of the literature, the case study merges interview evidence and personal experience with the available documentation. The synthesis and visions continue the trend away from formal sources towards experiences and beliefs. Engineering education research is in its infancy and shows few signs of maturing. There is no documented, common framing of engineering education nor have there been any efforts in this regard. Few sources address broad issues and those that do lack theoretical rigour. The visions for engineering education are simple amalgams of visions for the profession and for general higher education. The Department of Systems Design Engineering has enjoyed great past successes because of its unique vision that combines the theories of systems, complexity, and design with the discipline of engineering. Its recent decay can be traced to its faculty having collectively lost this vision. The original vision for Systems Design Engineering holds promise as a means to reinvent and reinvigorate both the engineering profession and engineering education. For this renaissance to be successful a theoretically rigorous research programme assessing the past, present, and future of engineering and engineering education must be developed.
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Engineering Education"

1

Alam, Firoz, e Alexandra Kootsookos. Engineering Education. Boca Raton : CRC Press, [2021]: CRC Press, 2020. http://dx.doi.org/10.1201/9781351182003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Heywood, John. Engineering Education. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471744697.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Grasso, Domenico, e Melody Brown Burkins, a cura di. Holistic Engineering Education. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-1393-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Davim, J. Paulo, a cura di. Mechanical Engineering Education. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118568774.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Crawley, Edward F., Johan Malmqvist, Sören Östlund, Doris R. Brodeur e Kristina Edström. Rethinking Engineering Education. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05561-9.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Díaz-Herrera, Jorge L., a cura di. Software Engineering Education. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/bfb0017602.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Tomayko, James E., a cura di. Software Engineering Education. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0024280.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Gibbs, Norman E., a cura di. Software Engineering Education. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/bfb0042344.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Ford, Gary A., a cura di. Software Engineering Education. New York, NY: Springer New York, 1988. http://dx.doi.org/10.1007/bfb0043582.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Deimel, Lionel E., a cura di. Software Engineering Education. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/bfb0040434.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Engineering Education"

1

Glover, Ian A., e Michael P. Kelly. "Engineering Education". In Engineers in Britain, 93–115. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4615-8530-5_6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Berztiss, Alfs T. "Engineering principles and software engineering". In Software Engineering Education, 437–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55963-9_68.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Davis, Brent, Krista Francis e Sharon Friesen. "Engineering". In STEM Education by Design, 71–87. New York: Routledge, 2019 |: Routledge, 2019. http://dx.doi.org/10.4324/9780429025143-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Mitcham, Carl, e David Muñoz. "Humanitarian Engineering Education". In Humanitarian Engineering, 37–50. Cham: Springer International Publishing, 2010. http://dx.doi.org/10.1007/978-3-031-79964-8_4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Lowe, P. G. "Engineering and Education". In Solid Mechanics and Its Applications, 165–74. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-015-9930-6_14.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Shanmuganathan, S. "Engineering education online". In Blended Learning in Engineering Education, 125–37. First edition. | London : CRC Press/Balkema, [2019]: CRC Press, 2018. http://dx.doi.org/10.1201/9781315165486-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Şen, Zekâi. "Education and Engineering". In Philosophical, Logical and Scientific Perspectives in Engineering, 193–232. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01742-6_6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Penprase, Bryan Edward. "Engineering Education Reconsidered". In STEM Education for the 21st Century, 51–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-41633-1_4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Badiru, Adedeji B. "Industrial Engineering Education". In The Story of Industrial Engineering, 33–40. Boca Raton : Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa, plc, [2018] | Series: Analytics and Control: CRC Press, 2018. http://dx.doi.org/10.1201/9780429461811-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Huber, Mary Taylor. "Redesigning Engineering Education". In Balancing Acts, 119–42. New York: Routledge, 2023. http://dx.doi.org/10.4324/9781003443155-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Engineering Education"

1

Waks, Shlomo. "Engineering Education: Prospective Research Issues". In ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2008. http://dx.doi.org/10.1115/esda2008-59535.

Testo completo
Abstract (sommario):
There exists an increasing gap between engineering developments and research on educating engineers. There is a need to investigate and develop pedagogical means for advancing engineering education. The problem stems from the fact that most engineering educators are concerned mainly with disciplinary engineering contents, while researchers in the educational domain concentrate on educational psychology and pedagogical aspects. There is not enough cooperation between engineering and education, thus avoiding the creation of synergetic interaction between the two domains in a given engineering education system or situation. This article deals with the question: what has to be investigated in engineering education in order to advance learning activities of students and updating engineers? We will analyze some issues, as they aroused during recent years in a series of research studies on engineering education around the world and in the Department of Education in Technology and Science at the Technion – Israel Institute of Technology. After analyzing the status of engineering education and emergence of relevant R&D activities, possible research questions are presented. For example: (1) How should the contents of an engineering curriculum be determined? By whom? (2) Is there a need for a recognized educational scholarship like that of the existing disciplinary scholarship? (3) Creativity and project work – what do engineering educators and students think about? (4) What are the conditions and means for advancing the learning process in a multimedia environment? (5) What are the pitfalls in using hypermedia during the learning process? (6) What is Self-Learning Regulation (SLR) and why is it an important issue in engineering education? Accordingly possible trends in engineering education research are proposed and discussed.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Mina, Mani. "Liberating engineering education: Engineering education and pragmatism". In 2013 IEEE Frontiers in Education Conference (FIE). IEEE, 2013. http://dx.doi.org/10.1109/fie.2013.6684942.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

"Engineering Education". In 2019 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2019. http://dx.doi.org/10.1109/icit.2019.8755224.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

"Engineering Education". In 2020 55th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST). IEEE, 2020. http://dx.doi.org/10.1109/icest49890.2020.9232873.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

"Engineering Education". In 2018 IEEE 27th International Symposium on Industrial Electronics (ISIE). IEEE, 2018. http://dx.doi.org/10.1109/isie.2018.8433760.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

"Engineering Education". In 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE). IEEE, 2019. http://dx.doi.org/10.1109/isie.2019.8781254.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Bulleit, William M. "What Makes an Engineering Education an Engineering Education?" In Structures Congress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412367.102.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Zizyte, Milda, e Trenton Tabor. "Should robotics engineering education include software engineering education?" In ICSE '22: 44th International Conference on Software Engineering. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3526071.3527514.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Penev, Ivaylo, Anatolii Antonov e Mitko Mitev. "M-LEARNING IN ENGINEERING EDUCATION". In eLSE 2013. Carol I National Defence University Publishing House, 2013. http://dx.doi.org/10.12753/2066-026x-13-136.

Testo completo
Abstract (sommario):
In this paper the functional possibilities of modern smartphones and tablets, as multi-touch screen, accelerators, navigation, geo positioning are considered. An analysis of the main components of the educational process is done, oriented towards the engineering subjects, for example algorithms, schemas, tables, processes and so on. The possibilities of modern mobile devices for organizing and carrying out education process in the field of the engineering education are commented from functional and methodological point of view.M-learning is a relatively new form of e-learning. The process of learning is based on the functional possibilities of modern devices for mobile communication. In the paper the main objects of the engineering education and the possibilities of the mobile devices for technical support of the education process are reviewed. The comparison of these two factors requires adaptation of the learning methodology and the control of the knowledge according to the new possibilities. In this paper the functional possibilities of modern smartphones and tablets, as multi-touch screen, accelerators, navigation, geo positioning are considered. An analysis of the main components of the educational process is done, oriented towards the engineering subjects, for example algorithms, schemas, tables, processes and so on. The possibilities of modern mobile devices for organizing and carrying out education process in the field of the engineering education are commented from functional and methodological point of view.M-learning is a relatively new form of e-learning. The process of learning is based on the functional possibilities of modern devices for mobile communication. In the paper the main objects of the engineering education and the possibilities of the mobile devices for technical support of the education process are reviewed. The comparison of these two factors requires adaptation of the learning methodology and the control of the knowledge according to the new possibilities.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Xie, Tao, Nikolai Tillmann e Jonathan de Halleux. "Educational software engineering: Where software engineering, education, and gaming meet". In 2013 3rd International Workshop on Games and Software Engineering - Engineering Computer Games to Enable Positive, Progressive Change (GAS). IEEE, 2013. http://dx.doi.org/10.1109/gas.2013.6632588.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Engineering Education"

1

Johnson, Albert L. Software Engineering Education Directory. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1988. http://dx.doi.org/10.21236/ada200630.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

McSteen, Bill, e Mark Schmick. Software Engineering Education Directory. Fort Belvoir, VA: Defense Technical Information Center, febbraio 1989. http://dx.doi.org/10.21236/ada207545.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

McSteen, Bill, Brian Gottier e Mark Schmick. Software Engineering Education Directory. Fort Belvoir, VA: Defense Technical Information Center, aprile 1990. http://dx.doi.org/10.21236/ada223740.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Johnson, Albert. SEI Software Engineering Education Directory. Fort Belvoir, VA: Defense Technical Information Center, febbraio 1987. http://dx.doi.org/10.21236/ada178178.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Mark A. Eiteman. Multidisciplinary Graduate Education in Bioprocess Engineering. Office of Scientific and Technical Information (OSTI), aprile 2006. http://dx.doi.org/10.2172/881268.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Striuk, Andrii M., e Serhiy O. Semerikov. The Dawn of Software Engineering Education. [б. в.], febbraio 2020. http://dx.doi.org/10.31812/123456789/3671.

Testo completo
Abstract (sommario):
Designing a mobile-oriented environment for professional and practical training requires determining the stable (fundamental) and mobile (technological) components of its content and determining the appropriate model for specialist training. In order to determine the ratio of fundamental and technological in the content of software engineers’ training, a retrospective analysis of the first model of training software engineers developed in the early 1970s was carried out and its compliance with the current state of software engineering development as a field of knowledge and a new the standard of higher education in Ukraine, specialty 121 “Software Engineering”. It is determined that the consistency and scalability inherent in the historically first training program are largely consistent with the ideas of evolutionary software design. An analysis of its content also provided an opportunity to identify the links between the training for software engineers and training for computer science, computer engineering, cybersecurity, information systems and technologies. It has been established that the fundamental core of software engineers’ training should ensure that students achieve such leading learning outcomes: to know and put into practice the fundamental concepts, paradigms and basic principles of the functioning of language, instrumental and computational tools for software engineering; know and apply the appropriate mathematical concepts, domain methods, system and object-oriented analysis and mathematical modeling for software development; put into practice the software tools for domain analysis, design, testing, visualization, measurement and documentation of software. It is shown that the formation of the relevant competencies of future software engineers must be carried out in the training of all disciplines of professional and practical training.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

ADA JOINT PROGRAM OFFICE ARLINGTON VA. DoD Ada Software Engineering Education and Training. Fort Belvoir, VA: Defense Technical Information Center, ottobre 1987. http://dx.doi.org/10.21236/ada200766.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Bagert, Donald J., Thomas B. Hilburn, Greg Hislop, Michael Lutz e Michael McCracken. Guidelines for Software Engineering Education Version 1.0. Fort Belvoir, VA: Defense Technical Information Center, novembre 1999. http://dx.doi.org/10.21236/ada370372.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Shaw, Mary. Education for the Future of Software Engineering. Fort Belvoir, VA: Defense Technical Information Center, maggio 1986. http://dx.doi.org/10.21236/ada175227.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Ardis, Mark, e Gary Ford. SEI (Software Engineering Institute) Report on Graduate Software Engineering Education, 1989. Fort Belvoir, VA: Defense Technical Information Center, giugno 1989. http://dx.doi.org/10.21236/ada219018.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia