Segui questo link per vedere altri tipi di pubblicazioni sul tema: Energy metabolism.

Articoli di riviste sul tema "Energy metabolism"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Energy metabolism".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Perera, PAJ, e Faiz MMT Marikar. "Energy Metabolism". Bangladesh Journal of Medical Biochemistry 6, n. 2 (13 gennaio 2014): 68–76. http://dx.doi.org/10.3329/bjmb.v6i2.17646.

Testo completo
Abstract (sommario):
This review considers how our understanding of energy utilized by energy metabolism has progressed since the pioneering work on this topic in the late 1960s and early 1970s. Research has been stimulated by a desire to understand how metabolic events contribute to the development of the body into the different phases, the need of considering health with which to improve the success of implication on public health. Nevertheless, considerable progress has been made in defining the roles of the traditional nutrients: pyruvate, glucose, lactate and amino acids; originally considered as energy sources and biosynthetic precursors, but now recognised as having multiple, overlapping functions. Other nutrients; notably, lipids, are beginning to attract the attention they deserve. The review concludes by up-dating the state of knowledge of energy metabolism in the early 1970s and listing some future research questions. DOI: http://dx.doi.org/10.3329/bjmb.v6i2.17646Bangladesh J Med Biochem 2013; 6(2): 68-76
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Almeida Castro, Luis Henrique, Leandro Rachel Arguello, Nelson Thiago Andrade Ferreira, Geanlucas Mendes Monteiro, Jessica Alves Ribeiro, Juliana Vicente de Souza, Sarita Baltuilhe dos Santos et al. "Energy metabolism". International Journal for Innovation Education and Research 8, n. 9 (1 settembre 2020): 359–68. http://dx.doi.org/10.31686/ijier.vol8.iss9.2643.

Testo completo
Abstract (sommario):
Most animal cells are able to meet their energy needs from the oxidation of various types of compounds: sugars, fatty acids, amino acids, but some tissues and cells of our body depend exclusively on glucose and the brain is the largest consumer of all. That is why the body has mechanisms in order to keep glucose levels stable. As it decreases, the degradation of hepatic glycogen occurs, which maintains the appropriate levels of blood glucose allowing its capture continues by those tissues, even in times of absence of food intake. But this reserve is limited, so another metabolic pathway is triggered for glucose production, which occurs in the kidneys and liver and is called gluconeogenesis, which means the synthesis of glucose from non-glucose compounds such as amino acids, lactate, and glycerol. Most stages of glycolysis use the same enzymes as glycolysis, but it makes the opposite sense and differs in three stages or also called deviations: the first is the conversion of pyruvate to oxaloacetate and oxaloacetate to phosphoenolpyruvate. The second deviation is the conversion of fructose 1,6 biphosphate to fructose 6 phosphate and the third and last deviation is the conversion of glucose 6 phosphate to glucose.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Flight, Monica Hoyos. "Shifting energy metabolism". Nature Reviews Drug Discovery 9, n. 4 (aprile 2010): 272. http://dx.doi.org/10.1038/nrd3146.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Gutierrez, Guillermo, Fernando Palizas e Carlo E. Marini. "Cellular Energy Metabolism". Chest 97, n. 4 (aprile 1990): 975–82. http://dx.doi.org/10.1378/chest.97.4.975.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Lochner, A. "Myocardial energy metabolism". Cardiovascular Drugs and Therapy 4, n. 3 (maggio 1990): 756. http://dx.doi.org/10.1007/bf01856567.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Crunkhorn, Sarah. "Disrupting energy metabolism". Nature Reviews Drug Discovery 17, n. 10 (ottobre 2018): 708. http://dx.doi.org/10.1038/nrd.2018.172.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Blum, J. Joseph. "Energy metabolism inLeishmania". Journal of Bioenergetics and Biomembranes 26, n. 2 (aprile 1994): 147–55. http://dx.doi.org/10.1007/bf00763063.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Alcaraz, Miquel. "Pavlova E.V. Movement and energy metabolism of marine planktonic organisms". Scientia Marina 70, n. 4 (30 dicembre 2006): 767–68. http://dx.doi.org/10.3989/scimar.2006.70n4767.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Lee, Sujin, e Yumie Rhee. "Bone and Energy Metabolism". Journal of Korean Diabetes 14, n. 4 (2013): 174. http://dx.doi.org/10.4093/jkd.2013.14.4.174.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Nieuwenhuizen, Arie G., e Evert M. van Schothorst. "Energy Metabolism and Diet". Nutrients 13, n. 6 (1 giugno 2021): 1907. http://dx.doi.org/10.3390/nu13061907.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Karthik, Vivin, e Anyonya R. Guntur. "Energy Metabolism of Osteocytes". Current Osteoporosis Reports 19, n. 4 (12 giugno 2021): 444–51. http://dx.doi.org/10.1007/s11914-021-00688-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Terjung, R. L., M. D. Jenssen, L. Turcotte, W. W. Winder e A. R. Coggan. "ENERGY METABOLISM DURING EXERCISE". Medicine & Science in Sports & Exercise 27, Supplement (maggio 1995): S135. http://dx.doi.org/10.1249/00005768-199505001-00754.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Kinney, John M. "Energy Metabolism – An Overview". Transfusion Medicine and Hemotherapy 15, n. 4 (1988): 148–51. http://dx.doi.org/10.1159/000222283.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Brand, M. D. "Control of energy metabolism". Biochemical Society Transactions 28, n. 5 (1 ottobre 2000): A106. http://dx.doi.org/10.1042/bst028a106a.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Wilmore, Jack H., e David L. Costill. "Physical Energy: Fuel Metabolism". Nutrition Reviews 59, n. 1 (27 aprile 2009): S13—S16. http://dx.doi.org/10.1111/j.1753-4887.2001.tb01885.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Zemel, Michael B., e Xiaocun Sun. "Calcitriol and energy metabolism". Nutrition Reviews 66 (25 settembre 2008): S139—S146. http://dx.doi.org/10.1111/j.1753-4887.2008.00099.x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Li, X. "SIRT1 and energy metabolism". Acta Biochimica et Biophysica Sinica 45, n. 1 (20 dicembre 2012): 51–60. http://dx.doi.org/10.1093/abbs/gms108.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Greenhill, Claire. "Narciclasine boosts energy metabolism". Nature Reviews Endocrinology 13, n. 4 (3 marzo 2017): 189. http://dx.doi.org/10.1038/nrendo.2017.25.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Portilla, Didier. "Energy metabolism and cytotoxicity". Seminars in Nephrology 23, n. 5 (settembre 2003): 432–38. http://dx.doi.org/10.1016/s0270-9295(03)00088-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Garland, John M., e Andrew Halestrap. "Energy Metabolism during Apoptosis". Journal of Biological Chemistry 272, n. 8 (21 febbraio 1997): 4680–88. http://dx.doi.org/10.1074/jbc.272.8.4680.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Goran, Michael I. "ENERGY METABOLISM AND OBESITY". Medical Clinics of North America 84, n. 2 (marzo 2000): 347–62. http://dx.doi.org/10.1016/s0025-7125(05)70225-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Lodi, R., C. Tonon, C. Testa, D. Manners e B. Barbiroli. "Energy metabolism in migraine". Neurological Sciences 27, S2 (maggio 2006): s82—s85. http://dx.doi.org/10.1007/s10072-006-0576-0.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Martin, William F., e Rudolf K. Thauer. "Energy in Ancient Metabolism". Cell 168, n. 6 (marzo 2017): 953–55. http://dx.doi.org/10.1016/j.cell.2017.02.032.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Long, Fanxin. "Energy Metabolism and Bone". Bone 115 (ottobre 2018): 1. http://dx.doi.org/10.1016/j.bone.2018.08.002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Prebil, Mateja, Jørgen Jensen, Robert Zorec e Marko Kreft. "Astrocytes and energy metabolism". Archives of Physiology and Biochemistry 117, n. 2 (10 gennaio 2011): 64–69. http://dx.doi.org/10.3109/13813455.2010.539616.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Motyl, Katherine J., Anyonya R. Guntur, Adriana Lelis Carvalho e Clifford J. Rosen. "Energy Metabolism of Bone". Toxicologic Pathology 45, n. 7 (ottobre 2017): 887–93. http://dx.doi.org/10.1177/0192623317737065.

Testo completo
Abstract (sommario):
Biological processes utilize energy and therefore must be prioritized based on fuel availability. Bone is no exception to this, and the benefit of remodeling when necessary outweighs the energy costs. Bone remodeling is important for maintaining blood calcium homeostasis, repairing micro cracks and fractures, and modifying bone structure so that it is better suited to withstand loading demands. Osteoclasts, osteoblasts, and osteocytes are the primary cells responsible for bone remodeling, although bone marrow adipocytes and other cells may also play an indirect role. There is a renewed interest in bone cell energetics because of the potential for these processes to be targeted for osteoporosis therapies. In contrast, due to the intimate link between bone and energy homeostasis, pharmaceuticals that treat metabolic disease or have metabolic side effects often have deleterious bone consequences. In this brief review, we will introduce osteoporosis, discuss how bone cells utilize energy to function, evidence for bone regulating whole body energy homeostasis, and some of the unanswered questions and opportunities for further research in the field.
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Iotti, Stefano, Marco Borsari e David Bendahan. "Oscillations in energy metabolism". Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797, n. 8 (agosto 2010): 1353–61. http://dx.doi.org/10.1016/j.bbabio.2010.02.019.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Friedman, M. I. "Control of energy intake by energy metabolism". American Journal of Clinical Nutrition 62, n. 5 (1 novembre 1995): 1096S—1100S. http://dx.doi.org/10.1093/ajcn/62.5.1096s.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Mota-Rojas, D., H. Orozco-Gregorio, D. Villanueva-Garcia, H. Bonilla-Jaime, X. Suarez-Bonilla, R. Hernandez-Gonzalez, P. Roldan-Santiago e ME Trujillo-Ortega. "Foetal and neonatal energy metabolism in pigs and humans: a review". Veterinární Medicína 56, No. 5 (10 giugno 2011): 215–25. http://dx.doi.org/10.17221/1565-vetmed.

Testo completo
Abstract (sommario):
The aim of this review was to elaborate a conceptual framework of the most important aspects of the main biochemical processes of synthesis and breakdown of energy substrates that human and pig foetuses and newborns can use during the transition from foetus to newborn. Under normal physiological conditions, the growth and development of the foetus depends upon nutrients such as glucose, lipids and amino acids. In addition to the maternal and foetal status, genetic factors are also reported to play a role. The main function of the placenta in all species is to promote the selective transport of nutrients and waste products between mother and foetus. This transport is facilitated by the close proximity of the maternal and foetal vascular systems in the placenta. The foetus depends on the placental supply of nutrients, which regulates energy reserves by means of glycogen storage. Also, the synthesis of foetal hepatic glycogen guarantees energy reserves during perinatal asphyxia or maternal hypoglycaemia. However, the foetus can also obtain energy from other resources, such as gluconeogenesis from the intermediary metabolism of the Krebs cycle and most amino acids. Later, when the placental glucose contribution ends during the transition to the postnatal period, the maturation of biological systems and essential metabolic adaptations for survival and growth is required. The maintenance of normoglycaemia depends on the conditions that determine nutrient status throughout life: the adequacy of glycogen stores, the maturation of the glycogenolytic and gluconeogenic pathway, and an integrated endocrine response.
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Tan, Esa Indah Ayudia, Irfannuddin Irfannuddin e Krisna Murti. "PENGARUH DIET KETOGENIK TERHADAP PROLIFERASI DAN KETAHANAN SEL PADA JARINGAN PANKREAS". JAMBI MEDICAL JOURNAL "Jurnal Kedokteran dan Kesehatan" 7, n. 1 (1 maggio 2019): 102–16. http://dx.doi.org/10.22437/jmj.v7i1.7127.

Testo completo
Abstract (sommario):
ABSTRACT The ketogenic diet is a diet that uses a lot of fat as an energy source and reduces carbohydrate and protein consumption when the body does not get enough glucose from carbohydrates, the body usually uses alternative energy sourced from the ketone body, namely acetoacetate and b-hydroxybutyrate. The ketone body comes from the breakdown of fatty acid metabolism in the liver where at the moment the concentration is low in the blood. Ketogenic diet is a diet that uses a lot of fat as an energy source and reduces carbohydrate consumption. The ketogenic diet makes the body burn fat instead of carbohydrates. The pancreas is the center of control of energy metabolism. The role of metabolism affected by endocrine function of the pancreas is located on the islands of langerhans, in the form of epithelial cells spread throughout the organs. Changes in diet patterns will certainly have an impact on proliferation and apoptosis cell in pancreas. Keywords: ketogenic diet, pancreas, proliferation, cell resistance ABSTRAK Diet ketogenik adalah diet yang menggunakan banyak lemak sebagai sumber energi dan mengurangi konsumsi karbohidrat dan protein ketika tubuh tidak mendapatkan cukup glukosa dari karbohidrat, tubuh biasanya menggunakan energi alternatif yang bersumber dari tubuh keton, yaitu asetoasetat dan b- hidroksibutirat. Tubuh keton berasal dari pemecahan metabolisme asam lemak di hati di mana saat ini konsentrasi rendah dalam darah. Diet ketogenik adalah diet yang menggunakan banyak lemak sebagai sumber energi dan mengurangi konsumsi karbohidrat. Diet ketogenik membuat tubuh membakar lemak, bukan karbohidrat. Pankreas adalah pusat kendali metabolisme energi. Peran metabolisme yang dipengaruhi oleh fungsi endokrin pankreas terletak di pulau-pulau langerhans, dalam bentuk sel-sel epitel yang menyebar ke seluruh organ. Perubahan pola diet tentu akan berdampak pada proliferasi dan sel apoptosis pada pankreas. Kata Kunci: diet ketogenik, pankreas, proliferasi, resistensi sel
Gli stili APA, Harvard, Vancouver, ISO e altri
31

Neto, Benjamim Pereira da Costa. "Photosynthetic efficiency in species with C3 and C4 metabolisms". International Journal of Advanced Engineering Research and Science 10, n. 1 (2023): 001–3. http://dx.doi.org/10.22161/ijaers.101.1.

Testo completo
Abstract (sommario):
Beans and corn are very important crops in terms of human nutrition worldwide, however each of them has its particularities, especially in the characteristics of photosynthetic metabolism (energy production), which are C3 and C4, respectively. According to studies in the field of physiology of higher plants, the C4 metabolism is an evolution of the C3 metabolism, being, according to the literature, more efficient from the photosynthetic point of view. The present work was based on the following question: In fact, is C4 metabolism more efficient than C3 from the point of view of energy production?. Thus, this work aimed to quantify and compare the photosynthetic potential of species with C3 and C4 metabolisms. The results of this study, therefore, pointed to C3 metabolism as the major energy producer in the photosynthetic process. On the other hand, it considered that the relationship between the energy produced and the energy stored in grains was higher in the C4 metabolism culture, that can change from species to species.
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Judge, Ayesha, e Michael S. Dodd. "Metabolism". Essays in Biochemistry 64, n. 4 (24 agosto 2020): 607–47. http://dx.doi.org/10.1042/ebc20190041.

Testo completo
Abstract (sommario):
Abstract Metabolism consists of a series of reactions that occur within cells of living organisms to sustain life. The process of metabolism involves many interconnected cellular pathways to ultimately provide cells with the energy required to carry out their function. The importance and the evolutionary advantage of these pathways can be seen as many remain unchanged by animals, plants, fungi, and bacteria. In eukaryotes, the metabolic pathways occur within the cytosol and mitochondria of cells with the utilisation of glucose or fatty acids providing the majority of cellular energy in animals. Metabolism is organised into distinct metabolic pathways to either maximise the capture of energy or minimise its use. Metabolism can be split into a series of chemical reactions that comprise both the synthesis and degradation of complex macromolecules known as anabolism or catabolism, respectively. The basic principles of energy consumption and production are discussed, alongside the biochemical pathways that make up fundamental metabolic processes for life.
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Driedzic, W. R., B. D. Sidell, D. Stowe e R. Branscombe. "Matching of vertebrate cardiac energy demand to energy metabolism". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 252, n. 5 (1 maggio 1987): R930—R937. http://dx.doi.org/10.1152/ajpregu.1987.252.5.r930.

Testo completo
Abstract (sommario):
Concentrations of high-energy phosphates and activities of key enzymes of energy metabolism were assessed in hearts from species with differing levels of cardiac power output. Positive correlations were found between resting power output and the total adenylate pool and between citrate synthase activity and the total adenylate pool. Maximum in vitro activity levels of enzymes from energy metabolism were compared with calculated resting cardiac power output and maximal cardiac power output (as reflected by total oligomycin-insensitive adenosine-triphosphatase activity). Three indexes of carbohydrate metabolism (hexokinase, pyruvate kinase, and L-lactate dehydrogenase) all plateau at relatively low levels of energy demand. In contrast, enzymes required for aerobic fatty acid metabolism, (carnitine palmitoyltransferase and 3-hydroxyacyl-CoA dehydrogenase) and for tricarboxylic acid and electron transport (citrate synthase and cytochrome-c oxidase) show consistent increases as ATP demand is elevated. It appears that as capacity for power development by vertebrate hearts, increases across taxa, the elevated demand for ATP is met by expansion of fatty acid based aerobic metabolism and not carbohydrate metabolism.
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Tian, Tian, Xin-Yi Chu, Yi Yang, Xuan Zhang, Ye-Mao Liu, Jun Gao, Bin-Guang Ma e Hong-Yu Zhang. "Phosphates as Energy Sources to Expand Metabolic Networks". Life 9, n. 2 (22 maggio 2019): 43. http://dx.doi.org/10.3390/life9020043.

Testo completo
Abstract (sommario):
Phosphates are essential for modern metabolisms. A recent study reported a phosphate-free metabolic network and suggested that thioesters, rather than phosphates, could alleviate thermodynamic bottlenecks of network expansion. As a result, it was considered that a phosphorus-independent metabolism could exist before the phosphate-based genetic coding system. To explore the origin of phosphorus-dependent metabolism, the present study constructs a protometabolic network that contains phosphates prebiotically available using computational systems biology approaches. It is found that some primitive phosphorylated intermediates could greatly alleviate thermodynamic bottlenecks of network expansion. Moreover, the phosphorus-dependent metabolic network exhibits several ancient features. Taken together, it is concluded that phosphates played a role as important as that of thioesters during the origin and evolution of metabolism. Both phosphorus and sulfur are speculated to be critical to the origin of life.
Gli stili APA, Harvard, Vancouver, ISO e altri
35

XU, JIAN-XING. "Radical Metabolism Is Partner to Energy Metabolism in Mitochondria". Annals of the New York Academy of Sciences 1011, n. 1 (aprile 2004): 57–60. http://dx.doi.org/10.1196/annals.1293.006.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Nazhmiddinovich Soliev, Nuriddin, e Odiljon Shermatovich Boymatov. "Serotonin Regulation Of Energy Metabolism Of Mitochondria Of Various Organs Of Rats". American Journal of Applied sciences 3, n. 05 (31 maggio 2021): 116–22. http://dx.doi.org/10.37547/tajas/volume03issue05-18.

Testo completo
Abstract (sommario):
Serotonin reduces the respiratory function of the mitochondria of the brain, heart and liver of rats. Serotonin significantly reduces the transport of electrons from glutamate to the oxygen molecule along the respiratory chain relative to succinate. These changes lead to a slight increase in the oxidative efficiency of phosphorylation in the oxidation of glutamate in mitochondria.
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Ferenchuk, Ye O., e I. V. Gerush. "Glutathione influence on energy metabolism in rat liver mitochondria under experimental nephropathy". Ukrainian Biochemical Journal 91, n. 3 (15 maggio 2019): 19–24. http://dx.doi.org/10.15407/ubj91.03.019.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Göbel, Britta, Dirk Langemann, Kerstin M. Oltmanns e Matthias Chung. "Compact energy metabolism model: Brain controlled energy supply". Journal of Theoretical Biology 264, n. 4 (giugno 2010): 1214–24. http://dx.doi.org/10.1016/j.jtbi.2010.02.033.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Amri, Syahrial Nur, e Taslim Arifin. "SIKLUS PEMANFAATAN ENERGI SUMBER DAYA PESISIR OLEH AKTIVITAS MANUSIA BERBASIS LOOP AUTOKATALITIK DI KOTA MAKASSAR". Jurnal Sosial Ekonomi Kelautan dan Perikanan 14, n. 1 (1 luglio 2019): 101. http://dx.doi.org/10.15578/jsekp.v14i1.6772.

Testo completo
Abstract (sommario):
Kota Makassar merupakan sebuah sistem sosial ekologi yang kompleks dengan berbagai proses metabolisme energi di dalamnya. Penelitian ini bertujuan menggambarkan pola pemanfaatan energi secara sederhana dalam kerangka konsep metabolisme sosial di Kota Makassar. Pendekatan yang digunakan adalah Autocatalytic Feedback Loop. Hasil penelitian menunjukkan bahwa penggunaan lahan dan peningkatan konsumsi energi mengalami peningkatan seiring meningkatnya jumlah penduduk dan limbah. Di sisi lain, ketersediaan sumber daya lokal atau produksi perikanan, pertanian, dan peternakan mengalami ketidakstabilan produksi. Untuk menstabilkan sistem, sebagai suatu sistem yang selalu berusaha menstabilkan diri, Kota Makassar menstabilkan proses sistem dengan melakukan input sumber daya dari luar.Title: The Useful Cycles of The Coastal Resources Energy By Human Activities Base on Autocatalytic Loop in Makasar CityMakassar City is a complex social ecological system with the various processes of energy metabolism in it. This study aims to describe simply the pattern of energy utilization within the framework of the concept of social metabolism in Makassar. The approach used is Autocatalytic Feedback Loop. The results showed that land use and energy consumption increased as population and waste increased.On the other hand, the availability of local resources or the production of fisheries, agriculture, and livestock have production instability. To stabilize the system, as a system that always try to stabilize itself, Makassar City stabilizes the system process by inputting external resources.
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Pathak, Aishwarya. "EXPLORING METABOLISM: UNDERSTANDING THE FUNDAMENTAL PROCESSES". International Journal of Prevention Practice and Research 02, n. 01 (2 gennaio 2022): 01–06. http://dx.doi.org/10.55640/medscience-abcd612.

Testo completo
Abstract (sommario):
Metabolism, the intricate web of biochemical processes within living organisms, is essential for energy production, growth, and the maintenance of life. This article delves into the key components and mechanisms of metabolism, elucidating its significance in cellular function and overall organismal health. Metabolism encompasses a series of interconnected biochemical reactions that sustain life by converting nutrients into energy and building blocks for cellular function. Comprising catabolic and anabolic pathways, metabolism operates through intricate enzymatic reactions, ensuring the body's equilibrium and functionality.
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Zhang, Yi, e Jin-Ming Yang. "Altered energy metabolism in cancer". Cancer Biology & Therapy 14, n. 2 (febbraio 2013): 81–89. http://dx.doi.org/10.4161/cbt.22958.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Li, Xiaoling, e Nevzat Kazgan. "Mammalian Sirtuins and Energy Metabolism". International Journal of Biological Sciences 7, n. 5 (2011): 575–87. http://dx.doi.org/10.7150/ijbs.7.575.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Zanatta, Leila C. B., Cesar L. Boguszewski, Victoria Z. C. Borba e Carolina A. M. Kulak. "Osteocalcin, energy and glucose metabolism". Arquivos Brasileiros de Endocrinologia & Metabologia 58, n. 5 (luglio 2014): 444–51. http://dx.doi.org/10.1590/0004-2730000003333.

Testo completo
Abstract (sommario):
Osteocalcin is a bone matrix protein that has been associated with several hormonal actions on energy and glucose metabolism. Animal and experimental models have shown that osteocalcin is released into the bloodstream and exerts biological effects on pancreatic beta cells and adipose tissue. Undercarboxylated osteocalcin is the hormonally active isoform and stimulates insulin secretion and enhances insulin sensitivity in adipose tissue and muscle. Insulin and leptin, in turn, act on bone tissue, modulating the osteocalcin secretion, in a traditional feedback mechanism that places the skeleton as a true endocrine organ. Further studies are required to elucidate the role of osteocalcin in the regulation of glucose and energy metabolism in humans and its potential therapeutic implications in diabetes, obesity and metabolic syndrome.
Gli stili APA, Harvard, Vancouver, ISO e altri
44

Dietrich, Marcelo O., e Tamas L. Horvath. "Neuroendocrine Regulation of Energy Metabolism". Endocrinology and Metabolism 27, n. 4 (2012): 268. http://dx.doi.org/10.3803/enm.2012.27.4.268.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Roh, Eun, e Min-Seon Kim. "Brain Regulation of Energy Metabolism". Endocrinology and Metabolism 31, n. 4 (2016): 519. http://dx.doi.org/10.3803/enm.2016.31.4.519.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Cevoli, Sabina, Valentina Favoni e Pietro Cortelli. "Energy Metabolism Impairment in Migraine". Current Medicinal Chemistry 26, n. 34 (12 dicembre 2019): 6253–60. http://dx.doi.org/10.2174/0929867325666180622154411.

Testo completo
Abstract (sommario):
Migraine is a common disabling neurological disorder which is characterised by a recurring headache associated with a variety of sensory and autonomic symptoms. The pathophysiology of migraine remains not entirely understood, although many mechanisms involving the central and peripheral nervous system are now becoming clear. In particular, it is widely accepted that migraine is associated with energy metabolic impairment of the brain. The purpose of this review is to present an updated overview of the energy metabolism involvement in the migraine pathophysiology. Several biochemical, morphological and magnetic resonance spectroscopy studies have confirmed the presence of energy production deficiency together with an increment of energy consumption in migraine patients. An increment of energy demand over a certain threshold creates metabolic and biochemical preconditions for the onset of the migraine attack. The defect of oxidative energy metabolism in migraine is generalized. It remains to be determined if the mitochondrial deficit in migraine is primary or secondary. Riboflavin and Co-Enzyme Q10, both physiologically implicated in mitochondrial respiratory chain functioning, are effective in migraine prophylaxis, supporting the hypothesis that improving brain energy metabolism may reduce the susceptibility to migraine.
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Brand, M. D. "Regulation analysis of energy metabolism." Journal of Experimental Biology 200, n. 2 (1 gennaio 1997): 193–202. http://dx.doi.org/10.1242/jeb.200.2.193.

Testo completo
Abstract (sommario):
This paper reviews top-down regulation analysis, a part of metabolic control analysis, and shows how it can be used to analyse steady states, regulation and homeostasis in complex systems such as energy metabolism in mitochondria, cells and tissues. A steady state is maintained by the variables in a system; regulation is the way the steady state is changed by external effectors. We can exploit the properties of the steady state to measure the kinetic responses (elasticities) of reactions to the concentrations of intermediates and effectors. We can reduce the complexity of the system under investigation by grouping reactions into large blocks connected by a small number of explicit intermediates-this is the top-down approach to control analysis. Simple titrations then yield all the values of elasticities and control coefficients within the system. We can use these values to quantify the relative strengths of different internal pathways that act to keep an intermediate or a rate constant in the steady state. We can also use them to quantify the relative strengths of different primary actions of an external effector and the different internal pathways that transmit its effects through the system, to describe regulation and homeostasis. This top-down regulation analysis has been used to analyse steady states of energy metabolism in mitochondria, cells and tissues, and to analyse regulation of energy metabolism by cadmium, an external effector, in mitochondria. The combination of relatively simple experiments and new theoretical structures for presenting and interpreting the results means that top-down regulation analysis provides a novel and effective way to analyse steady states, regulation and homeostasis in intricate metabolic systems.
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Folmes, Clifford DL, Timothy J. Nelson e Andre Terzic. "Energy metabolism in nuclear reprogramming". Biomarkers in Medicine 5, n. 6 (dicembre 2011): 715–29. http://dx.doi.org/10.2217/bmm.11.87.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Kondo, Fukuji. "ENERGY METABOLISM IN HYDRONEPHROTIC KIDNEYS". Japanese Journal of Urology 79, n. 3 (1988): 445–50. http://dx.doi.org/10.5980/jpnjurol1928.79.3_445.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Kondo, Fukuji. "ENERGY METABOLISM IN HYDRONEPHROTIC KIDNEYS". Japanese Journal of Urology 79, n. 3 (1988): 451–56. http://dx.doi.org/10.5980/jpnjurol1928.79.3_451.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia