Letteratura scientifica selezionata sul tema "Energy development"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Energy development".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Energy development"

1

Hsia, Yeoh Sing. "Development of Hybrid Energy in Vehicle". Journal of Advanced Research in Dynamical and Control Systems 12, SP3 (28 febbraio 2020): 1144–51. http://dx.doi.org/10.5373/jardcs/v12sp3/20201360.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

TATENO, Akira. "Renewable Energy Development Efforts in IHI Corporation". Proceedings of the International Conference on Power Engineering (ICOPE) 2015.12 (2015): B1—B16. http://dx.doi.org/10.1299/jsmeicope.2015.12.b1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Jho, Shi Gie, e Sungmin Kum. "Development of a Movable Pellet Manufacturing Equipment". Journal of Energy Engineering 24, n. 3 (30 settembre 2015): 13–19. http://dx.doi.org/10.5855/energy.2015.24.3.013.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Hailu, Ashebir Dingeto. "Ethiopia hydropower development and Nile basin hydro politics". AIMS Energy 10, n. 1 (2022): 87–101. http://dx.doi.org/10.3934/energy.2022006.

Testo completo
Abstract (sommario):
<abstract> <p>Ethiopia, one of the countries in the Horn of Africa, has an abundance of hydroelectric resource potential that can meet the country's energy demand. However, this energy resource has been underutilized, and the country has one of the lowest per capita consumption rates of electricity. Recognizing that energy access and security are critical factors in economic growth, the country has launched a number of hydroelectric projects to meet rising energy demand, as well as a plan to export electricity to neighboring countries. As a result, this paper provides an in-depth review of the country's hydropower potential and current development status. The article then discusses hydro-politics in the context of the construction of the Grand Ethiopian Renaissance Dam (GERD). Finally, it discusses the role of hydropower in meeting energy needs.</p> </abstract>
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Oh, Seung-Jin, Yoon-Joon Lee, Nam-Jin Kim, Joon-Ho Hyun, Sang-Hoon Lim e Won-Gee Chun. "Development of an AVR MCU-based Solar Tracker". Journal of Energy Engineering 20, n. 4 (31 dicembre 2011): 353–57. http://dx.doi.org/10.5855/energy.2011.20.4.353.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Katutsi, Vincent, Milly Kaddu, Adella Grace Migisha, Muhumuza Ezra Rubanda e Muyiwa S. Adaramola. "Overview of hydropower resources and development in Uganda". AIMS Energy 9, n. 6 (2021): 1299–320. http://dx.doi.org/10.3934/energy.2021060.

Testo completo
Abstract (sommario):
<abstract> <p>Even though hydropower plants are currently the most dominant source of electricity in Uganda, the rate of development of these resources for power generation remains low. Using a semi-systematic review approach, this paper seeks to understand why there is a slow rate of hydropower development in Uganda (challenges) and thereby provide potential solutions to these challenges. With current total capacity of about 1011 MW, findings indicate that there is a higher future prospect for hydropower generation in Uganda, with an estimated potential of over 4500 MW. In terms of number of projects, small-scale hydropower plants dominate power plants in Uganda, currently accounting for 19 out of 35 grid-connected power plants. However, with 855 MW installation capacity, large hydropower plants dominate the power generation plants landscape in Uganda. This study found that the challenges to hydropower development in this country are multi-dimensional including technical, economic, environmental, and social factors, and shows that the cross-cutting challenge is lack of human capacity that possess adequate skills to handle hydropower projects in the country. Furthermore, this study discussed practical solutions to address the identified problems facing hydro power in Uganda.</p> </abstract>
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Arthur, Emmanuel. "Energy development: A global perspective and advances in Ghana". AIMS Energy 10, n. 2 (2022): 306–39. http://dx.doi.org/10.3934/energy.2022017.

Testo completo
Abstract (sommario):
<abstract> <p>Climate change, population increase, and urbanisation present severe threats to energy security throughout the world. As a result, governments all over the world have made significant investments in diversifying and developing local energy systems, notably in the renewable energy sector. In this light, this review was conducted to analyse the production trends of fossil energy, renewable energy and nuclear energy, as well as the impact of renewable energy production on fossil energy production, between 2000 and 2021. Using correlation and regression analysis, the relationship between these energy sources and the impact of renewable energy on fossil energy production were studied and then measured against similar studies in the literature. The findings showed an increasing trend in fossil energy and renewable energy production and a slightly decreasing trend in nuclear energy production from 2000 to 2021. In addition, there was a significant impact of renewable energy production on fossil energy production in the last two decades. In Ghana, it was found that the addition of solar energy generation to the national grid significantly influenced thermal energy generation. On the whole, renewable energy production has significantly increased over the last decades, and it has the potential to reduce the dependence on fossil energy if effectively developed and managed.</p> <p>Therefore, future energy development should focus on more research and development in the area of smart and efficient renewable energy technologies.</p> </abstract>
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Kim, Tae-Young, Se-Jun Jin, Se-Hun Park e Hee-Dong Pyo. "The Economic Impacts of Marine Bio-energy Development Project". Journal of Energy Engineering 22, n. 2 (30 giugno 2013): 184–96. http://dx.doi.org/10.5855/energy.2013.22.2.184.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Yeom, Dong Un, Tae Young Ju e Jin Woo Hyun. "Development of Engineering Program for APR1400 Feedwater Supplying System". Journal of Energy Engineering 26, n. 2 (30 giugno 2017): 12–22. http://dx.doi.org/10.5855/energy.2017.26.2.020.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Doso, Oying, e Sarsing Gao. "An overview of small hydro power development in India". AIMS Energy 8, n. 5 (2020): 896–917. http://dx.doi.org/10.3934/energy.2020.5.896.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Energy development"

1

Лисиця, Віра Іванівна, Вера Ивановна Лисица e Vira Ivanivna Lysytsia. "Sustainable energy development". Thesis, Видавництво СумДУ, 2008. http://essuir.sumdu.edu.ua/handle/123456789/8250.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Nussbaumer, Patrick. "Energy for Sustainable Development – An Assessment of the Energy-Poverty-Development Nexus". Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/96873.

Testo completo
Abstract (sommario):
La energía es un elemento fundamental para muchos aspectos del desarrollo socioeconómico. Los servicios que la mayoría de las personas en los países industrializados dan garantizados - iluminación adecuada, energía limpia para calefacción y cocina, telecomunicaciones, fuerza motriz y ocio - están fuera del alcance en gran parte de la población mundial. La falta de acceso a servicios energéticos confiables y asequibles representa un claro obstáculo para el desarrollo humano, social, económico y para el logro de los Objetivos de Desarrollo del Milenio. Constituyendo actualmente un hecho inaceptable e insostenible, la pobreza energética representa una cruda realidad que junto a otros problemas globales debe ser tratada de manera urgente. A pesar de los importantes esfuerzos realizados por las instituciones y los gobiernos locales, las entidades públicas y las organizaciones internacionales, la tendencia indica que el número total de pobres en términos de acceso a la energía aumente en las próximas décadas, a menos de que se inicien de forma inmediata acciones adicionales orientadas a evitar ese incremento. En este sentido, la historia ha demostrado que es posible lograr un significativo avance en acceso energetico en un corto espacio de tiempo. Este hecho se ha producido recientemente en varios países asiáticos (por ejemplo, Vietnam), Sudáfrica y Brasil. Sin embargo, a pesar de los avances realizados en los países mencionados, las iniciativas que hoy en día se están desarrollando a nivel global para erradicar la pobreza energética no son suficientes en cuanto a su tamaño y alcance. Las estrategias relacionadas con la promoción del acceso a la energía para el desarrollo socioeconómico deben ir mucho más allá de la iluminación para hogares pobres. Los objetivos de dichas estrategias deberían estar orientados a generar cambios estructurales que originen un desarrollo sostenible. Además, la reciente crisis ha provocado retrocesos en el desarrollo sostenible de los países. La comunidad internacional tiene que adaptarse rápidamente a las nuevas circunstancias y proporcionar asesoramiento y asistencia que sea duradera en el tiempo y adaptable a cada caso, de cara a provocar un ambiente propicio para el desarrollo interno en los países. Hoy en día, no existen barreras técnicas que impidan suministrar servicios modernos de energía de forma segura, fiable y asequible a los miles de millones de pobres que no tienen acceso a la misma. Es nuestro deber contribuir a lograr la aspiración de los países más desfavorecidos para avanzar hacia economías sostenibles, y la energía es fundamental para esta transformación. Afortunadamente, el tema de acceso a la energía está recibiendo una atención cada vez mayor en todas las esferas. Como ejemplo ilustrativo de este hecho, el año 2012 ha sido declarado por la Asamblea General, el principal órgano normativo y representativo de las Naciones Unidas, como el Año Internacional de la Energía Sostenible para Todos. Es fundamental aprovechar este impulso, ya que la energía es necesaria para enfrentar muchos de los desafíos clave actuales. Así, abordar la pobreza energética de manera integral tendría enormes beneficios en diversas áreas relacionadas con el desarrollo de los países (por ejemplo, salud, educación, igualdad de género). Los capítulos de esta tesis persiguen conformar un conjunto coherente de piezas individuales de análisis en torno a un tema central: el nexo entre energía y el desarrollo socio-económico. Los diferentes capítulos están basados en artículos independientes y ofrecen perspectivas contrastadas y a la vez complementarias en relación al tema en cuestión. En definitiva, se trata de un ejercicio de investigación aplicada así como de desarrollo metodológico y el conjunto deriva en una evaluación integrada de las implicaciones de la energía para el desarrollo sostenible. La tesis está organizada de forma que se presente como una narrativa coherente y estructurada. En términos generales de su estructura, los primeros capítulos describen el problema de la pobreza energética, como la falta de acceso a servicios energéticos modernos. Estos capítulos ofrecen una idea de la magnitud del desafío que nos ocupa y presentan una evaluación de los escenarios posibles para lograr el acceso universal a la energía. En los capítulos siguientes, se presenta la escala de la inversión necesaria para abordar la cuestión así como intervenciones concretas que permitirían superar algunas de las cuestiones que se discuten. La Energía y los Objetivos de Desarrollo del Milenio Aunque intuitiva, la relación entre energía y desarrollo sostenible es difícil de determinar cuantitativamente y no ha sido explorada ni analizada en detalle en la literatura científica. La correlación entre el acceso a los servicios de energía y el desarrollo socioeconómico se refleja a menudo, por ejemplo, mediante el uso de índices compuestos como el Índice de Desarrollo Humano (HDI), o a partir de un análisis centrado únicamente en las repercusiones económicas. Este trabajo presenta una articulación estadística que analiza la relación entre la energía y varios elementos clave del desarrollo socioeconómico, utilizando los Objetivos de Desarrollo del Milenio como marco de referencia. Los resultados confirman la influencia potencialmente positiva que el acceso a los servicios de energía genera. La evaluación desarrollada en el trabajo proporciona una perspectiva basada en una serie de supuestos que a menudo se emplean alrededor de la correlación entre energía y desarrollo, y examina reivindicaciones de sus beneficios universalmente positivos a las prioridades específicas de desarrollo socioeconómico. Entre las conclusiones, se destaca que los beneficios para el desarrollo sostenible del acceso a los servicios de energía varían considerablemente. Medición de la pobreza energética Cualquier política que pretenda ser efectiva para expandir de forma considerable el acceso a energía moderna ha de estar fundamentada en una sólida base documental. Por lo tanto los análisis cuantitativos que se pueden utilizar con fines comparativos y de seguimiento de los avances hacia los objetivos planteados, representan una herramienta de apoyo esencial. Este trabajo revisa la literatura relevante en la materia, y analiza la idoneidad y la aplicabilidad de los instrumentos existentes para medir la pobreza energética. Basándose en esos instrumentos y en sus resultados, se propone un nuevo índice compuesto para medir la pobreza energética. Tanto la metodología como los resultados iniciales obtenidos de la aplicación del índice son presentados para varios países africanos. Mientras que la mayoría de los indicadores e índices compuestos existentes se centran en la evaluación del acceso a la energía o en el grado de desarrollo relacionado con la energía, el nuevo índice desarrollado - el Índice de Pobreza Multidimensional de la Energía (MEPI) - se centra en la privación del acceso a servicios energéticos modernos. Este índice, refleja la incidencia e intensidad de la pobreza energética y proporciona una nueva herramienta para la elaboración de políticas. Escenarios de acceso a la energía hasta el año 2030 para el África subsahariana Con el fin de alcanzar una meta de acceso universal a servicios modernos de energía para el año 2030, se han considerado varias opciones de desarrollo de sector eléctrico así como el hecho de informar consecuentemente a los políticos e inversionistas, de cara a orientar de forma adecuada el diseño del sistema. Con este fin, y basándose en las herramientas y análisis existentes, se presentan varios escenarios de forma transparente y para toda la economía del sector energético de África subsahariana hasta el año 2030. Estos escenarios se han elaborado teniendo en cuenta el contexto de las tendencias históricas y las diversas interpretaciones sobre el concepto de acceso universal a la energía. Los mismos, están diseñados para proporcionar una indicación de la escala general en relación al esfuerzo requerido por la comunidad internacional. Actualmente, la mayoría de las proyecciones con métodos tradicionales de predicción a largo plazo en materia de planificación energética muestran un aumento de aproximadamente tres veces la capacidad de generación instalada para el año 2030, pero probablemente se requiera que ese aumento sea de más de diez veces, si se pretende proporcionar un acceso completo a nivel global - incluso a niveles relativamente modestos de consumo de electricidad. Esto equivale a aproximadamente un 13% la tasa media de crecimiento anual, en comparación con un histórico (en las últimas dos décadas) de 1,7%. Escala de la inversión para el acceso a la energía universal Para ayudar a proporcionar una mayor claridad y apoyo a la toma de decisiones políticas, así como en el diseño de propuestas financieras, en este trabajo es considerado y analizado el nivel global de gasto requerido para satisfacer el acceso universal a servicios de energía modernos. Este trabajo revisa la literatura existente a nivel mundial, regional, nacional y de proyecto, y a su vez se realiza un desglose de las estimaciones de costos necesarios, a fin de proporcionar una mayor transparencia a través del desarrollo de indicadores comparables. Con la nueva metodología desarrollada, calculamos tres escenarios de costos nuevos que intentan abordar varias deficiencias analíticas existentes. Como conclusión, el costo total de proporcionar (de forma aproximada) el acceso universal se espera que probablemente sea considerablemente más alto que las estimaciones publicadas, que a menudo se centran principalmente en los costos de capital. Si bien se reconoce la naturaleza aproximada de los análisis, el costo anual del acceso universal a la electricidad y energía limpia para la cocinar se calcula que va desde USD 14 a 136 mil millones (de USD 12 a 134 mil millones para electrificación y de USD 1,4 a 2,2 mil millones para energía limpia para la cocinar). Actuales flujos financieros relacionados con el acceso a la energía De cara a contribuir al diseño de políticas apropiadas y eficaces para reducir la pobreza energética, este análisis presenta una evaluación de los flujos macro financieros actuales en el sector eléctrico y de distribución de gas en los países en desarrollo. Se basa en la metodología más extendida actualmente para cuantificar los flujos de inversión en el área de cambio climático. El enfoque se centra en las variables de formación bruta de capital fijo nacional, la ayuda al desarrollo procedente del extranjero y la inversión extranjera directa. Estas cifras proporcionan a los responsables políticos una idea de la escala de inversión necesaria, aunque esto representan sólo una pequeña parte de la información necesaria para diseñar los instrumentos financieros requeridos para lograr el acceso universal a la energía. Igualmente, estas cifras tienden a ocultar muchas variaciones entre sectores y países, así como las tendencias y otras fluctuaciones en el tiempo. En cualquier caso, se puede concluir que la corriente de inversión destinada a los países más pobres se queda muy corta (por lo menos cinco veces) si se pretende proporcionar un nivel básico de acceso a servicios modernos de energía limpia a los ‘pobres energéticos’. Mecanismo de Desarrollo Limpio y el Desarrollo Sostenible El Mecanismo de Desarrollo Limpio (MDL) tiene un doble objetivo: compensar las emisiones de gases de efecto invernadero y contribuir al desarrollo sostenible en el país anfitrión, aunque la contribución a este último objetivo parece marginal en la mayoría de las actividades del MDL. Además, las actividades del MDL están distribuidas de forma desigual entre los países en desarrollo. En respuesta a estas inquietudes, se han puesto en marcha varias iniciativas cuyo objetivo es la promoción de proyectos MDL que generen amplios dividendos orientados al desarrollo local sostenible, como el Gold Standard y el Community Development Carbon Fund (CDCF). La certificación Gold Standard recompensa las mejores prácticas de proyectos MDL, mientras que el CDCF se centra en la promoción de las actividades del MDL en comunidades desfavorecidas. A partir de un método de criterios múltiples, este trabajo analiza, la contribución potencial al desarrollo local sostenible de los proyectos del MDL, comparando los proyectos que tienen atributos particulares con los proyectos ordinarios. Los resultados obtenidos sugieren que generalmente aunque no siempre, los proyectos MDL con certificación, tienden a superar ligeramente a los proyectos similares sin certificación en términos de beneficios a nivel local.
Energy is central to many aspects of socio-economic emancipation. The services that most people in industrialised countries take from granted – adequate lighting, low-polluting heating and cooking energy, telecommunication and entertainment, motive power – are out of reach to large parts of the world’s population. A lack of access to affordable and reliable energy services represents a key obstacle to human, social, and economic development and the achievement of the Millennium Development Goals. As unacceptable and unsustainable as it is, widespread energy poverty represents a stark reality which must be dealt alongside other pressing global issues. Despite the significant efforts by local institutions and governments, utilities and international organisations, the absolute number of energy poor is expected to rise in coming decades in the absence of additional dedicated action. History has shown, however, that significant progress can be achieved with regard to improving energy access in a short timeframe. Remarkable improvements occurred rapidly in several Asian countries (e.g. Vietnam), South Africa and Brazil in the recent past. However, current initiatives to eradicate energy poverty are insufficient in scale and scope, and attempting to address the issue in the same incremental fashion as in the past is clearly inappropriate. Energy for development strategies must go well beyond merely providing light to poor households. They should aim at transformative changes that bring about sustainable development. The recent succession of crises has set back some development progress. The international community needs to adjust swiftly to the new circumstances and provide advice and assistance that is resilient and long-lasting, and creates an environment that is conducive to enhancing endogenous development. Today, there is no technical barrier to providing the billions of energy poor with modern, safe, reliable and affordable energy services. It is our duty to deal with the aspiration of countries to move towards modern economies, and energy is paramount to such transformation. Fortunately, the issue of energy access is receiving greater and greater attention. As an illustrative example, 2012 has been declared by the General Assembly, the main deliberative, policymaking and representative organ of the United Nations, as the International Year of Sustainable Energy for All. It is crucial to capitalise on this momentum, as energy is central to facing many of today's key development challenges. Addressing the issue of energy poverty in a comprehensive manner would have enormous multiple benefits (e.g. health, education, gender equality). The various chapters of this thesis form a coherent ensemble of individual pieces of analysis around a core topic, namely the nexus between energy and socio-economic development. The different chapters, which are based on stand-alone articles, provide contrasting and complementary perspectives around the issue at hand. It consists of applied research as well as methodological development, and forms altogether an integrated assessment of energy for sustainable development. The thesis is organised in such a way so as to present a consistent and structured narrative. In terms of broad structure, the first chapters gauge the issue of energy poverty, or the lack of access to modern energy services. They offer a sense of the magnitude of the challenge at hand, as well as present an assessment of scenarios towards universal energy access. This is followed by insights on the scale of investment required to address the issue. Finally, concrete interventions to overcome some of the issues are discussed. Energy and the Millennium Development Goals While intuitive, the relationship between energy and development is difficult to quantitatively ascertain and has not been analytically explored in detail in the scientific literature. The correlation between access to energy services and development is, however, often addressed in aggregate in the literature, for example by using composite indexes such as the Human Development Index (HDI), or by focusing strictly on economic impacts. This analysis presents a statistical articulation of the link between energy and various proxies of development, using the Millennium Development Goals as a framework. The outcomes confirm the potentially positive influence of access to energy services on development. The assessment provides a perspective on a number of often employed assumptions about the correlation between energy and development, and challenges claims of its universally positive benefits to specific development priorities. It is found that the benefits to development of access to energy services vary considerably. Measuring Energy Poverty Effective policies to dramatically expand modern energy access need to be grounded in a robust information-base. Metrics that can be used for comparative purposes and to track progress towards targets therefore represent an essential support tool. This analysis reviews the relevant literature, and discusses the adequacy and applicability of existing instruments to measure energy poverty. Drawing on those insights, it proposes a new composite index to measure energy poverty. Both the associated methodology and initial results for several African countries are discussed. Whereas most existing indicators and composite indices focus on assessing the access to energy, or the degree of development related to energy, the new index developed – the Multidimensional Energy Poverty Index (MEPI) – focuses on the deprivation of access to modern energy services. It captures both the incidence and intensity of energy poverty, and provides a new tool to support policy-making. Energy Access Scenarios to 2030 for sub-Saharan Africa In order to reach a goal of universal access to modern energy services by 2030, consideration of various electricity sector pathways is required to help inform policy-makers and investors, and help guide power system design. To that end, and building on existing tools and analysis, several ‘high-level’, transparent, and economy-wide scenarios for the sub-Saharan African power sector to 2030 are presented. These simple scenarios are constructed against the backdrop of historical trends and various interpretations of universal access. They are designed to provide the international community with an indication of the overall scale of the effort required. Most existing projections, using typical long-term forecasting methods for power planning, show roughly a threefold increase in installed generation capacity occurring by 2030, but more than a tenfold increase would likely be required to provide for full access – even at relatively modest levels of electricity consumption. This equates to approximately a 13% average annual growth rate, compared to a historical one (in the last two decades) of 1.7%. Scale of Investment for Universal Energy Access To help provide clarity, support political decision making, and inform the design of financial responses, the overall scale of spending required to meet universal access to modern energy services is considered. The existing literature at the global, regional, national, and project levels and disaggregate cost estimates is reviewed in order to provide increased transparency through comparable metrics. A new methodology is developed to calculate three new cost scenarios that attempt to address several existing analytical gaps. As a conclusion, the total cost of providing (near) universal access is expected to be likely considerably higher than published estimates which often focus primarily on capital costs. While recognizing the coarse nature of the analysis, the annual cost of universal access to electricity and clean cooking is estimated at ranging from USD 14 to 136 billion (USD 12 - 134 billion for electrification and USD 1.4 to 2.2 billion for clean cooking) depending on the various scenarios and assumptions. Current Financial Flows related to Energy Access To help inform the design of appropriate and effective policies to reduce energy poverty, this analysis presents an assessment of the current macro financial flows in the electricity and gas distribution sectors in developing countries. It builds on the methodology used to quantify the flows of investment in the climate change area. The approach relies on national gross fixed capital formation, overseas development assistance, and foreign direct investment. These high-level and aggregated investment figures provide a sense of the scale to policy-makers, but are only a small part of the information required to design financial vehicles. In addition, these figures tend to mask numerous variations between sectors and countries, as well as trends and other temporal fluctuations. Nonetheless, for the poorest countries, one can conclude that the current flows are considerably short (at least five times) of what will be required to provide a basic level of access to clean, modern energy services to the ‘energy poor’. Clean Development Mechanism and Sustainable Development The Clean Development Mechanism (CDM) has a twofold objective, to offset greenhouse gas emissions and to contribute to sustainable development in the host country. The contribution to the latter objective seems marginal in most CDM activities. Also, CDM activities are unevenly spread among developing countries. In response to these concerns, initiatives with the objective of promoting CDM projects with broad local sustainable development dividends have been launched, such as the Gold Standard and the Community Development Carbon Fund. The Gold Standard label rewards best-practice CDM projects while the Community Development Carbon Fund focuses on promoting CDM activities in underprivileged communities. Using a multi-criteria method, the potential contribution to local sustainable development of those CDM projects with particular attributes is compared with ordinary ones. This evaluation suggests that labelled CDM activities tend to slightly outperform comparable projects, although not unequivocally.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Hu, Yuetong. "Development Trends of World Energy". Thesis, Department of Management and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19517.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Fuss, Sabine. "Sustainable energy development under uncertainty". [Maastricht] : Maastricht : Universitaire Pers Maastricht ; University Library, Universiteit Maastricht [host], 2008. http://arno.unimaas.nl/show.cgi?fid=10524.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Lazimah, John E. "Energy development strategies for sustainability and development in Tanzania". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0006/MQ42315.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Wallin, Micah R. "China’s Wind Energy Development and Prediction". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1275450139.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Guerrero, Felipe Martinez. "Development of a wave energy basin to maximize wave energy conversion". Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20241.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Kan, Hon-pang. "Development of electromechanical energy storage systems". Click to view the E-thesis via HKUTO, 2003. http://sunzi.lib.hku.hk/hkuto/record/B43895153.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

shi, rui, e FengYuan Wang. "Energy Sustainable Development Scheme In China". Thesis, Högskolan i Gävle, Avdelningen för bygg- energi- och miljöteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-13326.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

簡瀚澎 e Hon-pang Kan. "Development of electromechanical energy storage systems". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B43895153.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Libri sul tema "Energy development"

1

Stonge, Gracia. Energy Development. New Delhi: World Technologies, 2011.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Urban, Frauke. Energy and Development. Milton Park, Abingdon, Oxon ; New York, NY : Routledge, 2020. | Series: Rethinking development: Routledge, 2019. http://dx.doi.org/10.4324/9781351047487.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Toth, Ferenc L., a cura di. Energy for Development. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4162-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Smith, Wayne H., a cura di. Biomass Energy Development. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4757-0590-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Kassler, Peter. Energy for development. London: Shell, 1994.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Qatar: Energy & development. London: Croom Helm, 1985.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

1921-, Subekti, Technology Indonesia (Firm), PIBI (Organization) e Wahyu Promo Citra PT, a cura di. Energy: Technology & development. 2a ed. [Jakarta]: Published in cooperation with Technology Indonesia, PIBI (Pusat Informasi Bisnis dan Pembangunan Indonesia), PT Wahyu Promo Citra, 1995.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

1928-, Goldemberg José, e World Resources Institute, a cura di. Energy for development. Washington, DC: World Resources Institute, 1987.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Southern Biomass Energy Research Conference (3rd 1985 Gainesville, Fla.). Biomass energy development. New York: Plenum Press, 1986.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Southern African Development Coordination Conference., a cura di. Energy. [Gaborone, Botswana]: SADCC, 1987.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Energy development"

1

Beedasy, Jaishree, e Revin Panray Beeharry. "Energy". In Population — Development — Environment, 191–205. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-03061-5_10.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Küfeoğlu, Sinan. "Energy". In Sustainable Development Goals Series, 47–80. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75093-0_3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Urban, Frauke. "Sectoral energy needs and household energy". In Energy and Development, 57–68. Milton Park, Abingdon, Oxon ; New York, NY : Routledge, 2020. | Series: Rethinking development: Routledge, 2019. http://dx.doi.org/10.4324/9781351047487-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Urban, Frauke. "Energy transitions". In Energy and Development, 43–56. Milton Park, Abingdon, Oxon ; New York, NY : Routledge, 2020. | Series: Rethinking development: Routledge, 2019. http://dx.doi.org/10.4324/9781351047487-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Thomas, Stefan, Lukas Hermwille e Kilian Topp. "Sustainable energy". In Sustainable Development Policy, 276–96. Abingdon, Oxon ; New York, NY : Routledge, 2017. | Series: Routledge studies in sustainble development Identifiers: LCCN 2016042620| ISBN 978-1-138-28499-9 (hbk) | ISBN 978-1-138-40043-6 (ebk): Routledge, 2017. http://dx.doi.org/10.4324/9781315269177-13.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Carbonnier, Gilles, e Jacques Grinevald. "Energy and Development". In International Development Policy: Energy and Development, 3–20. London: Palgrave Macmillan UK, 2011. http://dx.doi.org/10.1007/978-0-230-31401-6_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Basil, Paschalin Mbenge, e Robert Ouko. "Energy". In Rural Development Planning in Africa, 135–51. New York: Palgrave Macmillan US, 2017. http://dx.doi.org/10.1057/978-1-349-95297-7_7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Afgan, Naim Hamdia, e Maria da Graça Carvalho. "Sustainable Energy Development". In Sustainable Assessment Method for Energy Systems, 29–63. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4479-1_3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Louie, Henry. "Energy and Development". In Off-Grid Electrical Systems in Developing Countries, 3–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91890-7_1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Milborrow, David. "Wind Energy Development". In The Age of Wind Energy, 3–22. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26446-8_2.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Energy development"

1

Pyasi, Aditya, Shijie Deng e Valerie M. Thomas. "Biomass Forwards and Futures Market to Support Bioenergy Development". In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781052.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

KALDER, Janar, Alo ALLIK, Hardi HÕIMOJA, Erkki JÕGI, Mart HOVI, Maido MÄRSS, Jarek KURNITSKI et al. "OPTIMAL WIND/SOLAR ENERGY MIX FOR RESIDENTIAL NET ZERO-ENERGY BUILDINGS". In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.020.

Testo completo
Abstract (sommario):
The article is concentrated on the energy storage problems arising from microgeneration in private households. The case study involves a small-scale wind and solar electricity production set in a net zero-energy building. Both the net zero-energy building and the microgeneration units are connected to an utility grid. The current article serves to confirm the hypothesis, that the self consumption is at its maximum with the annual 70/30 wind and solar energy mix of in favour of the wind. The maximal self consumption at no additional energy storage in a net zero-energy building is studied as well. Produced and consumed energies are equal, which satisfies the requirements for a net zero-energy building with the utility grid acting as an energy buffer. The consumed energy is used to operate a heat pump, heat up ventilation supply air, run ventilation fans, supplying non-shiftable loads (white goods, TV, lighting etc), heat up domestic hot water via heat pump. To express self consumption, we use the term of supply cover factor, which describes optimally the directly consumed energy in relationship to net consumption or production. In annual scale, the cover factors for a net zero-energy building are equal as the production and consumption are equal as well. Also, seasonal variations in self consumption are studied. According to study results, the annual maximal supply cover factor in a net zero-energy building is 0.375 with 70/30 wind/solar mix. Seasonally, the self consumption is at its maximum in summer when the supply cover factor equals to 0.49.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Corsair, H. J., e Debora Ley. "The Commercialization of Solar Energy as a Means for Rural Development". In 2008 IEEE Energy 2030 Conference. IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781056.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Neves, A. R., e V. Leal. "An exploratory study on energy sustainability indicators for local energy planning". In SUSTAINABLE DEVELOPMENT 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/sdp090572.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Ebbin, Steven, e Ahmad Ghamarian. "Sustainable Energy Development". In 27th Intersociety Energy Conversion Engineering Conference (1992). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/929042.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Choudhary, Muhammad Abbas, Nawar Khan, Ayaz Ali e Aisha Abbas. "Achievability of Pakistan's 2030 Electricity Generation Goals Established under Medium Term Development Framework (MTDF): Validation Using Time Series Models and Error Decomposition Technique". In 2008 IEEE Energy 2030 Conference (Energy). IEEE, 2008. http://dx.doi.org/10.1109/energy.2008.4781000.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

ČERNIAUSKIENĖ, Živilė, Egidijus ZVICEVIČIUS, Algirdas RAILA, Vita TILVIKIENĖ, Zofija JANKAUSKIENĖ e Žydrė KADŽIULIENĖ. "ASSESSMENT OF PROPERTIES OF COARSE-ENERGY PLANTS". In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.190.

Testo completo
Abstract (sommario):
In the world, fossil fuel resources are constantly decreasing and increasing energy use. This leads to wider use of biomass in various industrial areas. Also, for the production of heat and electricity. Depending on the situation of current market, much attention is being paid to increasing the potential of biomass and to ensure the needs of users. Recently, much attention is paid to non-food energy plants, which could be used in thermochemical conversion technologies. These plants must be well adapted to climatic conditions, to grow a high biomass yield, to possess high energy value, easy to use for biofuel production and low environmental impact. Having a high energy potential and promising plants for cultivation in a changing climate conditions can be characterized and these plants: this is Miscantus spp. (namely miscanthus), Artemisia dubia Wall. (mugwort) and Cannabis sativa L. (fiber hemp). The article summarizes long-standing biometric and thermal performance results on Miscantus spp. (namely miscanthus), Artemisia dubia Wall. (mugwort) and Cannabis sativa L. (fiber hemp). In Lithuania climate condition, it is possible to grow from 3.26 to 17.06 t ha-1 of dry biomass per year from the mentioned plants. The calorific value of biomass has a huge influence on assessment of energy potential from plants. After combustion of 1 kilogram of Miscantus spp., Artemisia dubia Wall. and Cannabis sativa L. biomass it stands out on average 18.3±0.06, 18.5±0.66 and 17.43±0.06 MJ of heat, respectively. An equally important property which assesses the suitability of biomass for biofuels is ash content. The average ash content of biomass from Miscantus spp. and Artemisia dubia Wall was 1.51±0.03 % and 2.69±0.33 %, i.e. 2.22 times and 1.25 times lower than Cannabis sativa L.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

SKORUPSKAITĖ, Virginija, Eglė SENDŽIKIENĖ e Milda GUMBYTĖ. "POSSIBILITIES TO USE FISH WASTE FOR ENERGY PRODUCTION". In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.073.

Testo completo
Abstract (sommario):
The secondary raw materials of fish can be used for various purposes in food industry, agriculture, etc. No less important way for usage of secondary raw fish, dead fish and fish farming sludge is the utilization of mentioned feedstocks for energy purposes, i.e. biofuels production. In this reearch, the possibilities of the consumption of dead fish and fish farming sludge for biodiesel and biogas production has been studied. The influence of the basic biodiesel production parameters, including the methanol to oil molar ratio, amount of catalyst, temperature and process duration on transesterification yield was determined. The guantitative and gualitative research of biogas production using different substrates such as fish waste, fish farming sludge and substrates composed of fish waste (de-oiled and non de-oiled biomass)+fish farming sludge and fish farming sludge+wastewater sludge was performed. The biodiesel yield higher than 96.5% could be achieved under the following process conditions: methanol/oil molar ratio – 4:1, amount of enzyme content – 7% from oil mass, temperature – 40 ° C, reaction time – 24 hours. The highest biogas yield (1224 ml/gVS) was determined using wet fish waste biomass and mixed substrates consisted of fish waste and fish farming sludge. The results of qualitative biogas research revealed, that biogas produced from both homogeneous and heterogeneous substrates contained more than 60% of methane. The highest calorific value (app. 70% of methane) had biogas gained from fish waste biomass.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

ADAMOVICS, Aleksandrs, e Liena POIŠA. "EVALUATION OF CHEMICAL CONTENT IN DIFFERENT ENERGY CROPS". In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.143.

Testo completo
Abstract (sommario):
For energy crops (reed canary grass and timothy grass), it is important to evaluate the sulphur and carbon content, and the harvested dry matter dependency on the fertilizer norm. Sulphur and carbon are important elements of a combustible material, and carbon is directly important as it forms the burning component. On the other hand, sulphur is an unwelcome element in combustible materials as it promotes environmental pollution. The field trials were carried out in sod calcareous soils in 2011–2013. A research was conducted to investigate the chemical content of two grasses: reed canary grass var. ‘Bamse’ (Phalaris arundinacea L.), and timothy grass ‘Jumis’ (Phleum pratense L.). Fertiliser norms (kg ha-1) applied in the research were: N0P0K0 (control), N30, N60, and N90. The harvest yield is one of the most important factors to obtain biocombustible materials; however, it does not mean that the amount of the harvest yield guarantees also a good quality of grasses. The research showed that the trial year had the most significant influence on both the sulphur yield and content in dry matter, the fertiliser norm essentially influenced the sulphur (η=30.1%) and carbon (η=6.5%) yield, but for the sulphur yield, a 6% interaction effect was established between the trial year and the nitrogen fertilizer norm.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Georgallis, N., R. Rovers e W. Timmermans. "Renewable communities: sustainable energy transition in Leuth". In SUSTAINABLE DEVELOPMENT 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/sdp090021.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Energy development"

1

Trivelpiece, A., e W. Fulkerson. (Global energy development). Office of Scientific and Technical Information (OSTI), novembre 1989. http://dx.doi.org/10.2172/5386349.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Zheng, Nina, e David Fridley. Alternative Energy Development and China's Energy Future. Office of Scientific and Technical Information (OSTI), giugno 2011. http://dx.doi.org/10.2172/1076804.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

IUEP. Energy Efficiency Project Development. Office of Scientific and Technical Information (OSTI), marzo 2004. http://dx.doi.org/10.2172/828182.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Clutter, Ted J. Energy cooperative development program. Office of Scientific and Technical Information (OSTI), ottobre 1998. http://dx.doi.org/10.2172/760115.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Sims, Jill. Hawaii Renewable Energy Development Venture. Office of Scientific and Technical Information (OSTI), ottobre 2017. http://dx.doi.org/10.2172/1475063.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Author, Not Given. Energy storage research and development. Office of Scientific and Technical Information (OSTI), gennaio 2008. http://dx.doi.org/10.2172/1216760.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Carter, Drake. North Dakota Energy Workforce Development. Office of Scientific and Technical Information (OSTI), dicembre 2014. http://dx.doi.org/10.2172/1178544.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Sukumar Bandopadhyay, Charles Chamberlin, Robert Chaney, Gang Chen, Godwin Chukwu, James Clough, Steve Colt et al. Arctic Energy Technology Development Laboratory. Office of Scientific and Technical Information (OSTI), dicembre 2008. http://dx.doi.org/10.2172/960443.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Larry Demick. Energy Development Opportunities for Wyoming. Office of Scientific and Technical Information (OSTI), novembre 2012. http://dx.doi.org/10.2172/1055818.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Jicarilla Apache Tribe. Renewable Energy Research & Development. Office of Scientific and Technical Information (OSTI), aprile 2003. http://dx.doi.org/10.2172/815063.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia