Letteratura scientifica selezionata sul tema "Electron configuration"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Electron configuration".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Electron configuration"
Pressler, David E. "Atomic Electron Configuration". International Journal of Modern Physics A 16, supp01c (settembre 2001): 922–24. http://dx.doi.org/10.1142/s0217751x01008503.
Testo completoYang, Qing, e J. D. Fan. "Topologic configuration of electron". Modern Physics Letters A 33, n. 26 (24 agosto 2018): 1850163. http://dx.doi.org/10.1142/s0217732318501638.
Testo completoMercero, José M., Joseph E. Fowler, Cecilia Sarasola e Jesus M. Ugalde. "Atomic configuration-interaction electron-electron counterbalance densities". Physical Review A 59, n. 6 (1 giugno 1999): 4255–58. http://dx.doi.org/10.1103/physreva.59.4255.
Testo completoUlianov MSc, PhD, Policarpo Yoshin. "Comparison of pauling and Ulianov electron distribution models". Material Science & Engineering International Journal 8, n. 2 (27 maggio 2024): 49–54. http://dx.doi.org/10.15406/mseij.2024.08.00235.
Testo completoMulyawati, Tin, e Eka Purwanda. "Implementasi Alat Peraga “Ikon-E” Merupakan Kunci Sukses Memahami Konfigurasi Elektron (Cara Pengisian Konfigurasi Elektron Sebagai Media Pembelajaran Inovatif di SMA)". NUSRA : Jurnal Penelitian dan Ilmu Pendidikan 5, n. 2 (28 maggio 2024): 700–706. http://dx.doi.org/10.55681/nusra.v5i2.2631.
Testo completoStojković, S. M., J. P. Šetrajčić e Igor Vragović. "Electron Configuration of Carbon Nanotubes". Materials Science Forum 352 (agosto 2000): 129–34. http://dx.doi.org/10.4028/www.scientific.net/msf.352.129.
Testo completoPe rez-Garrido, M. Ortun-O, A. M. S, A. "Configuration space in electron glasses". Philosophical Magazine B 81, n. 2 (1 febbraio 2001): 151–62. http://dx.doi.org/10.1080/13642810010009366.
Testo completoPérez-Garrido, A., M. Ortuño, A. M. Somoza e A. Díaz-Sánchez. "Configuration space in electron glasses". Philosophical Magazine B 81, n. 2 (febbraio 2001): 151–62. http://dx.doi.org/10.1080/13642810108216532.
Testo completoKumar, Amit, Krishna Katuri, Piet Lens e Dónal Leech. "Does bioelectrochemical cell configuration and anode potential affect biofilm response?" Biochemical Society Transactions 40, n. 6 (21 novembre 2012): 1308–14. http://dx.doi.org/10.1042/bst20120130.
Testo completoMorehouse, Aaron, Kelton C. Ireland e Gobinda C. Saha. "An Investigation into the Effects of Electric Field Uniformity on Electrospun TPU Fiber Nano-Scale Morphology". Micromachines 14, n. 1 (13 gennaio 2023): 199. http://dx.doi.org/10.3390/mi14010199.
Testo completoTesi sul tema "Electron configuration"
Ozfidan, Asli Isil. "Electron-Electron Interactions in Optical Properties of Graphene Quantum Dots". Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32857.
Testo completoKimani, Peter Borgia Ndungu. "Electronic structure and electron correlation in weakly confining spherical quantum dot potentials". abstract and full text PDF (free order & download UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3307466.
Testo completoReyes, Vasquez David Fernando. "Magnetic configurations in Co-based nanowires explored by electron holography and micromagnetic calculations". Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30356/document.
Testo completoMagnetic nanowires have raised significant interest in the last 15 years due to their potential use for spintronics. Technical achievements require a detailed description of the local magnetic states inside the nanowires at the remnant state. In this thesis, I performed quantitative and qualitative studies of the remnant magnetic states on magnetic nanowires by Electron Holography (EH) experiments and micromagnetic simulations. A detailed investigation was carried out on two types of nanowires: multilayered Co/Cu and diameter-modulated FeCoCu nanowires. Both systems were grown by template-based synthesis using electrodeposition process. The combination of local magnetic, structural and chemical characterizations obtained in a TEM with micromagnetic simulations brought a complete description of the systems. In the multilayered Co/Cu nanowires, I analysed how different factors such as the Co and Cu thicknesses or the Co crystal structure define the remnant magnetic configuration into isolated nanowires. After applying saturation fields along directions either parallel or perpendicular to the NW axis, I studied multilayered Co/Cu nanowires with the following relative Co/Cu thickness layers: 25nm/15nm, 25nm/45nm, 50nm/50nm, and 100nm/100nm. Three main remnant configurations were found: (i) antiparallel coupling between Co layers, (ii) mono-domain-like state and (iii) vortex state. In the Co(25 nm)/Cu(15 nm) nanowires, depending on the direction of the saturation field, the Co layers can present either an antiparallel coupling (perpendicular saturation field) or vortex coupling (parallel saturation field) with their core aligned parallel to the wire axis. However, 10% of the nanowires studied present a mono-domain-like state that remains for both parallel and perpendicular saturation fields. In the Co(50 nm)/Cu(50 nm) and Co(25 nm)/Cu(45 nm) nanowires, a larger Cu thickness separating the ferromagnetic layers reduces the magnetic interaction between neighbouring Co layers. The remnant state is hence formed by the combination of monodomain Co layers oriented perpendicularly to the wire axis and some tilted vortex states. Finally for the Co(100 nm)/Cu(100 nm) nanowires a monodomain-like state is found no matters the direction of the saturation field. All these magnetic configurations were determined and simulated using micromagnetic calculations until a quantitative agreement with experimental results has been obtained. I was able to explain the appearance and stability of these configurations according to the main magnetic parameters such as exchange, value and direction of the anisotropy and magnetization. The comparison between simulations and experimental results were used to precisely determine the value of these parameters. In the diameter-modulated cylindrical FeCoCu nanowires, a detailed description of the geometry-induced effect on the local spin configuration was performed. EH experiments seem to reveal that the wires present a remnant single-domain magnetic state with the spins longitudinally aligned. However, we found through micromagnetic simulations that such apparent single-domain state is strongly affected by the local variation of the diameter. The study of the leakage field and the demagnetizing field inside the nanowire highlighted the leading role of magnetic charges in modulated areas. The magnetization presents a more complicated structure than a simple alignment along the wire axis. Finally my results have led to a new interpretation of previous MFM experiments
Bridges, Craig Allan Greedan John E. "Structural and electronic properties of BaV10O15, BaV10-xTixO15, and BaVO3-x /". *McMaster only, 2002.
Cerca il testo completoSans, Aguilar Juan R. "Four dimensional analysis of free electron lasers in the amplifier configuration". Thesis, Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Dec%5FSans%5FAguilar.pdf.
Testo completoThesis Advisor(s): Colson, William B. "December 2007." Description based on title screen as viewed on January 18, 2008. Includes bibliographical references (p. 63). Also available in print.
Napier, Stuart A. "Electron correlation and spin-dependent effects in the electron impact excitation of zinc atoms". University of Western Australia. School of Physics, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0098.
Testo completoSloggett, Clare Physics Faculty of Science UNSW. "Electron correlations in mesoscopic systems". Awarded by:University of New South Wales. School of Physics, 2007. http://handle.unsw.edu.au/1959.4/31875.
Testo completo吳潔貞 e Kit-ching Betty Ng. "Correlation effects in crystal field splitting". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1986. http://hub.hku.hk/bib/B31230714.
Testo completoNg, Kit-ching Betty. "Correlation effects in crystal field splitting /". [Hong Kong : University of Hong Kong], 1986. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12323342.
Testo completoTemperley, J. "Electron spin resonance studies of early d-transition metal compounds with a d#1#-configuration". Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382736.
Testo completoLibri sul tema "Electron configuration"
K, Wilson Angela, Peterson Kirk A, American Chemical Society. Division of Physical Chemistry. e American Chemical Society. Division of Computers in Chemistry., a cura di. Electron correlation methodology. Washington, DC: American Chemical Society, 2007.
Cerca il testo completoGöres, Jörn. Correlation effects in 2-dimensional electron systems: Composite fermions and electron liquid crystals. Stuttgart: Max-Planck-Institut für Festkörperforschung, 2004.
Cerca il testo completoMarch, Norman H. Electron correlation in molecules and condensed phases. New York: Plenum Press, 1996.
Cerca il testo completo1945-, Gonis Antonios, Kioussis Nicholas, Ciftan Mikael e International Workshop on Electron Correlations and Materials Properties (1st : 1998 : Crete, Greece), a cura di. Electron correlations and materials properties. New York: Kluwer Academic/Plenum Publishers, 1999.
Cerca il testo completoMatsen, F. A. The unitary group in quantum chemistry. Amsterdam: Elsevier, 1986.
Cerca il testo completo1950-, Wilson S., a cura di. Electron correlation in atoms and molecules. New York: Plenum Press, 1987.
Cerca il testo completoH, McGuire J. Electron correlation dynamics in atomic collisions. Cambridge: Cambridge University Press, 1997.
Cerca il testo completoGordon Godfrey Workshop on Condensed Matter Physics (1991 University of New South Wales). Strongly correlated electron systems: Proceedings of the Gordon Godfrey Workshop on Condensed Matter Physics. Commack, N.Y: Nova Science Publishers, 1992.
Cerca il testo completoGreenspan, Donald. Computer experiments for molecular motions and chemical bonding. Arlington, Tex: University of Texas at Arlington, Dept. of Mathematics, 1995.
Cerca il testo completoWhelan, Colm T. (E,2e) & related processes. Dordrecht: Springer, 1993.
Cerca il testo completoCapitoli di libri sul tema "Electron configuration"
Davidson, Ernest R. "Configuration Interaction Wave Functions". In Relativistic and Electron Correlation Effects in Molecules and Solids, 105–31. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1340-1_5.
Testo completoKarwowski, Jacek. "The Configuration Interaction Approach to Electron Correlation". In NATO ASI Series, 65–98. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-7419-4_6.
Testo completoHandy, Nicholas C. "Full Configuration Interaction and Møller-Plesset Theory". In Relativistic and Electron Correlation Effects in Molecules and Solids, 133–60. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4899-1340-1_6.
Testo completoPindzola, Michael S., Donald C. Griffin e Christopher Bottcher. "Electron-Ion Collisions in the Average-Configuration Distorted-Wave Approximation". In Atomic Processes in Electron-Ion and Ion-Ion Collisions, 75–91. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5224-2_3.
Testo completoSasaki, F., M. Sekiya, T. Noro, K. Ohtsuki e Y. Osanai. "Non-Relativistic Configuration Interaction Calculations for Many-Electron Atoms: ATOMCI". In Modem Techniques in Computational Chemistry: MOTECC-91, 115–66. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3032-5_3.
Testo completoKnowles, Peter J. "Electron Correlation in Small Molecules and the Configuration Interaction Method". In Supercomputational Science, 211–33. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5820-6_17.
Testo completoSasaki, F., M. Sekiya, T. Noro, K. Ohtsuki e Y. Osanai. "Non-Relativistic Configuration Interaction Calculations for Many-Electron Atoms: ATOMCI". In Modern Techniques in Computational Chemistry: MOTECC™-90, 181–234. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2219-8_4.
Testo completoChristoffersen, Ralph E. "Computational Techniques for Many-Electron Systems Using Single Configuration Wavefunctions". In Basic Principles and Techniques of Molecular Quantum Mechanics, 481–575. New York, NY: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-6360-6_11.
Testo completoPardasani, R. T., e P. Pardasani. "Magnetic properties of monocyclopentadienyl molybdenum(II) complex with 16-electron configuration". In Magnetic Properties of Paramagnetic Compounds, 447–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54228-6_251.
Testo completoPardasani, R. T., e P. Pardasani. "Magnetic properties of monocyclopentadienyl molybdenum(II) complex with 16-electron configuration". In Magnetic Properties of Paramagnetic Compounds, 449. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54228-6_252.
Testo completoAtti di convegni sul tema "Electron configuration"
Williamson, S., e G. Mourou. "Picosecond Electro-Electron Optic Oscilloscope". In Picosecond Electronics and Optoelectronics. Washington, D.C.: Optica Publishing Group, 1985. http://dx.doi.org/10.1364/peo.1985.pdp2.
Testo completoMcVey, B. D., J. C. Goldstein, K. Lee e B. E. Newnam. "Optical Physics of an XUV Free-Electron Laser*". In Short Wavelength Coherent Radiation: Generation and Applications. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/swcr.1986.tue14.
Testo completoHenderson, Gregory N., Thomas K. Gaylord, Elias N. Glytsis, Phillip N. First e William J. Kaiser. "Testing multilayer semiconductor electron wave devices using ballistic electron emission microscopy". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thf4.
Testo completoRaitses, Y., D. Staack, A. Smirnov, A. Litvak, L. Dorf, T. Graves e N. Fisch. "Studies of non-conventional configuration closed electron drift thrusters". In 37th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-3776.
Testo completoHu, E., e S. Laux. "Session 24 Solid state devices—Novel MOS operation and configuration". In 1985 International Electron Devices Meeting. IRE, 1985. http://dx.doi.org/10.1109/iedm.1985.191031.
Testo completoDominik, Magdalena, Predrag Mikulic, Wojtek J. Bock e Mateusz Śmietana. "Reflection configuration of long period grating sensor working at dispersion turning point". In Electron Technology Conference ELTE 2016, a cura di Barbara Swatowska, Wojciech Maziarz, Tadeusz Pisarkiewicz e Wojciech Kucewicz. SPIE, 2016. http://dx.doi.org/10.1117/12.2263480.
Testo completoShih, C. W., Albert Chin, Chun-Fu Lu e S. H. Yi. "Extremely high mobility ultra-thin metal-oxide with ns2np2 configuration". In 2015 IEEE International Electron Devices Meeting (IEDM). IEEE, 2015. http://dx.doi.org/10.1109/iedm.2015.7409642.
Testo completoYang, Rui, Haitong Li, Kirby K. H. Smithe, Taeho R. Kim, Kye Okabe, Eric Pop, Jonathan A. Fan e H. S. Philip Wong. "2D molybdenum disulfide (MoS2) transistors driving RRAMs with 1T1R configuration". In 2017 IEEE International Electron Devices Meeting (IEDM). IEEE, 2017. http://dx.doi.org/10.1109/iedm.2017.8268423.
Testo completoKawamura, Leo, Takahiro Ohnishi e Yasuhisa Omura. "Impact of electrode configuration on bio-impedance measurements". In 2013 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK). IEEE, 2013. http://dx.doi.org/10.1109/imfedk.2013.6602252.
Testo completoCapasso, Federico, e M. C. Teich. "Conversion of Poisson photons into sub-Poisson photons by the action of electron feedback". In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.tua7.
Testo completoRapporti di organizzazioni sul tema "Electron configuration"
Y. Raitses, D. Staack, A. Smirnov, A.A. Litvak, L.A. Dorf, T. Graves e and N.J. Fisch. Studies of Non-Conventional Configuration Closed Electron Drift Thrusters. Office of Scientific and Technical Information (OSTI), settembre 2001. http://dx.doi.org/10.2172/788220.
Testo completoGu, Xiaofeng, A. Blednykh, M. Blaskiewiscz e S. Verdu-Andres. MBTRACK2 - APPLICATION ON EIC 5GEV ELECTRON RING REVERSE PHASE CONFIGURATION. Office of Scientific and Technical Information (OSTI), gennaio 2024. http://dx.doi.org/10.2172/2281584.
Testo completoRej, D. J. Electron temperature measurements of field-reversed configuration plasmas on the FRX-C/LSM experiment. Office of Scientific and Technical Information (OSTI), settembre 1989. http://dx.doi.org/10.2172/5866713.
Testo completoAlan H. Glasser e Samuel A. Cohen. Electron Acceleration in the Field-reversed Configuration (FRC) by Slowly Rotating Odd-parity Magnetic Fields. Office of Scientific and Technical Information (OSTI), aprile 2001. http://dx.doi.org/10.2172/786570.
Testo completoGlasser, A. H., e S. A. Cohen. Electron Acceleration in the Field-reversed Configuration (FRC) by Slowly Rotation Odd-parity Magnetic Fields (RMF[subscript o]). Office of Scientific and Technical Information (OSTI), aprile 2001. http://dx.doi.org/10.2172/781483.
Testo completoKarpius, Peter. Electron Configurations and Basic Chemical Bonding. Office of Scientific and Technical Information (OSTI), ottobre 2020. http://dx.doi.org/10.2172/1679981.
Testo completoTang, C. M., P. Sprangle, A. Ting e B. Hafizi. Radio Frequency Linac Driven Free-Electron Laser Configurations. Fort Belvoir, VA: Defense Technical Information Center, settembre 1989. http://dx.doi.org/10.21236/ada212572.
Testo completoSpeller, Leslie C., e Arthur N. Thorpe. Feasibility of Investigating Smith-Purcell Free-Electron Laser Configurations by Electron Energy Loss Studies. Fort Belvoir, VA: Defense Technical Information Center, giugno 1986. http://dx.doi.org/10.21236/ada169059.
Testo completoJiang, Yuxiang. Unsettled Technology Areas in Electric Propulsion Systems. SAE International, maggio 2021. http://dx.doi.org/10.4271/epr2021012.
Testo completoWelch, D. R., S. A. Cohen, T. C. Genoni e A. H. Glasser. Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons. Office of Scientific and Technical Information (OSTI), giugno 2010. http://dx.doi.org/10.2172/984348.
Testo completo