Articoli di riviste sul tema "Electrolytes – Conductivity"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Electrolytes – Conductivity".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Dabrowski, L., M. Marciniak e T. Szewczyk. "Analysis of Abrasive Flow Machining with an Electrochemical Process Aid". Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 220, n. 3 (1 marzo 2006): 397–403. http://dx.doi.org/10.1243/095440506x77571.
Testo completoNefedov, Vladimir G., Vadim V. Matveev e Dmytriy G. Korolyanchuk. "INFLUENCE OF FREQUENCY OF ELECTRIC CURRENT ON ELECTRIC CONDUCTIVITY OF THIN FILMS OF ELECTROLYTES". IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 61, n. 2 (29 gennaio 2018): 58. http://dx.doi.org/10.6060/tcct.20186102.5592.
Testo completoReddy Polu, Anji, e Ranveer Kumar. "Impedance Spectroscopy and FTIR Studies of PEG - Based Polymer Electrolytes". E-Journal of Chemistry 8, n. 1 (2011): 347–53. http://dx.doi.org/10.1155/2011/628790.
Testo completoKamaluddin, Norashima, Famiza Abdul Latif e Chan Chin Han. "The Effect of HCl Concentration on the Ionic Conductivity of Liquid PMMA Oligomer". Advanced Materials Research 1107 (giugno 2015): 200–204. http://dx.doi.org/10.4028/www.scientific.net/amr.1107.200.
Testo completoSenthil, R. A., J. Theerthagiri e J. Madhavan. "Hematite Fe2O3 Nanoparticles Incorporated Polyvinyl Alcohol Based Polymer Electrolytes for Dye-Sensitized Solar Cells". Materials Science Forum 832 (novembre 2015): 72–83. http://dx.doi.org/10.4028/www.scientific.net/msf.832.72.
Testo completoAmbika, C., G. Hirankumar, S. Thanikaikarasan, K. K. Lee, E. Valenzuela e P. J. Sebastian. "Influence of TiO2 as Filler on the Discharge Characteristics of a Proton Battery". Journal of New Materials for Electrochemical Systems 18, n. 4 (20 novembre 2015): 219–23. http://dx.doi.org/10.14447/jnmes.v18i4.351.
Testo completoPark, Young Seon, Jae Min Lee, Eun Jeong Yi, Ji-Woong Moon e Haejin Hwang. "All-Solid-State Lithium-Ion Batteries with Oxide/Sulfide Composite Electrolytes". Materials 14, n. 8 (16 aprile 2021): 1998. http://dx.doi.org/10.3390/ma14081998.
Testo completoAstakhov, Mikhail V., Ludmila A. Puntusova, Ruslan R. Galymzyanov, Ilya S. Krechetov, Alexey V. Lisitsyn, Svetlana V. Stakhanova e Natalia V. Sviridenkova. "Multicomponent non-aqueous electrolytes for high temperature operation of supercapacitors". Butlerov Communications 61, n. 1 (31 gennaio 2020): 67–75. http://dx.doi.org/10.37952/roi-jbc-01/20-61-1-67.
Testo completoKumar, R., Shuchi Sharma, N. Dhiman e D. Pathak. "Study of Proton Conducting PVdF based Plasticized Polymer Electrolytes Containing Ammonium Fluoride". Material Science Research India 13, n. 1 (5 aprile 2016): 21–27. http://dx.doi.org/10.13005/msri/130104.
Testo completoWang, Linsheng. "Development of Novel High Li-Ion Conductivity Hybrid Electrolytes of Li10GeP2S12 (LGPS) and Li6.6La3Zr1.6Sb0.4O12 (LLZSO) for Advanced All-Solid-State Batteries". Oxygen 1, n. 1 (15 luglio 2021): 16–21. http://dx.doi.org/10.3390/oxygen1010003.
Testo completoYang, Yan, Jie Tao e Li Ma. "Study on Properties of Quasi Solid Polymer Electrolyte Based on PVdF-PMMA Blend for Dye-Sensitized Solar Cells". Materials Science Forum 610-613 (gennaio 2009): 347–52. http://dx.doi.org/10.4028/www.scientific.net/msf.610-613.347.
Testo completoBin, Wu, e Fan Chun. "Summary of Lithium-Ion Battery Polymer Electrolytes". Advanced Materials Research 535-537 (giugno 2012): 2092–99. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.2092.
Testo completoLiu, Wei, Bin Li e Wei Pan. "Influence of Thickness on Oxide Ionic Conductivity in Sm3+ and Nd3+ Co-Doped CeO2 Electrolyte". Key Engineering Materials 434-435 (marzo 2010): 710–13. http://dx.doi.org/10.4028/www.scientific.net/kem.434-435.710.
Testo completoJawad, Mohammed Kadhim. "Investigate Salts type and concentration on the conductivity of Polymer Electrolyte". Iraqi Journal of Physics (IJP) 17, n. 42 (31 agosto 2019): 42–50. http://dx.doi.org/10.30723/ijp.v17i42.437.
Testo completoZhang, Meng Fei, Tian Jun Li, Xiao Hui Zhao, Hua Jian Zhou e Wei Pan. "Enhanced Ionic Conductivity in Ce0.8Gd0.2O2-δ Nanofiber: Effect of the Crystallite Size". Solid State Phenomena 281 (agosto 2018): 761–66. http://dx.doi.org/10.4028/www.scientific.net/ssp.281.761.
Testo completoRen, Yong Huan, Chun Wei Yang, Bo Rong Wu, Cun Zhong Zhang, Shi Chen e Feng Wu. "Novel Low-Temperature Electrolyte for Li-Ion Battery". Advanced Materials Research 287-290 (luglio 2011): 1283–89. http://dx.doi.org/10.4028/www.scientific.net/amr.287-290.1283.
Testo completoHong, Jinhua, Shunsuke Kobayashi, Akihide Kuwabara, Yumi H. Ikuhara, Yasuyuki Fujiwara e Yuichi Ikuhara. "Defect Engineering and Anisotropic Modulation of Ionic Transport in Perovskite Solid Electrolyte LixLa(1−x)/3NbO3". Molecules 26, n. 12 (10 giugno 2021): 3559. http://dx.doi.org/10.3390/molecules26123559.
Testo completoSrivastava, Sandeep, e Pradeep K. Varshney. "Conductivity and structural studies of PVA based mixed-ion composite polymer electrolytes". International Journal of Engineering & Technology 7, n. 2 (1 giugno 2018): 887. http://dx.doi.org/10.14419/ijet.v7i2.12423.
Testo completoGupta, Sandhya, Pramod K. Singh e B. Bhattacharya. "Low-viscosity ionic liquid–doped solid polymer electrolytes". High Performance Polymers 30, n. 8 (30 maggio 2018): 986–92. http://dx.doi.org/10.1177/0954008318778763.
Testo completoBock, Robert, Morten Onsrud, Håvard Karoliussen, Bruno Pollet, Frode Seland e Odne Burheim. "Thermal Gradients with Sintered Solid State Electrolytes in Lithium-Ion Batteries". Energies 13, n. 1 (3 gennaio 2020): 253. http://dx.doi.org/10.3390/en13010253.
Testo completoKim, Han-Na, Kyung-Geun Kim, Yeon Uk Jeong e Sung Yeol Kim. "Double-Crosslinked Polyurethane Acrylate for Highly Conductive and Stable Polymer Electrolyte". Polymers 12, n. 11 (31 ottobre 2020): 2557. http://dx.doi.org/10.3390/polym12112557.
Testo completoHoang Huy, Vo Pham, Seongjoon So e Jaehyun Hur. "Inorganic Fillers in Composite Gel Polymer Electrolytes for High-Performance Lithium and Non-Lithium Polymer Batteries". Nanomaterials 11, n. 3 (1 marzo 2021): 614. http://dx.doi.org/10.3390/nano11030614.
Testo completoKumar, Asheesh, Raghunandan Sharma, M. Suresh, Malay K. Das e Kamal K. Kar. "Structural and ion transport properties of lithium triflate/poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolytes". Journal of Elastomers & Plastics 49, n. 6 (4 novembre 2016): 513–26. http://dx.doi.org/10.1177/0095244316676512.
Testo completoUlihin, Artem, e Olga Protazanova. "Synthesis and electrical properties of Ag16I12P2O7". MATEC Web of Conferences 340 (2021): 01046. http://dx.doi.org/10.1051/matecconf/202134001046.
Testo completoMuthiah, Muthuvinayagam, Gopinathan Chellasamy, Rajeswari Natarajan, Selvasekarapandian Subramanian e Sanjeeviraja Chinnappa. "Proton conducting polymer electrolytes based on PVdF-PVA with NH4NO3". Journal of Polymer Engineering 33, n. 4 (1 luglio 2013): 315–22. http://dx.doi.org/10.1515/polyeng-2012-0146.
Testo completoChai, M. N., e M. I. N. Isa. "Structural Study of Plasticized Carboxy Methylcellulose Based Solid Biopolymer Electrolyte". Advanced Materials Research 1107 (giugno 2015): 242–46. http://dx.doi.org/10.4028/www.scientific.net/amr.1107.242.
Testo completoSong, Yongli, Luyi Yang, Lei Tao, Qinghe Zhao, Zijian Wang, Yanhui Cui, Hao Liu, Yuan Lin e Feng Pan. "Probing into the origin of an electronic conductivity surge in a garnet solid-state electrolyte". Journal of Materials Chemistry A 7, n. 40 (2019): 22898–902. http://dx.doi.org/10.1039/c9ta10269h.
Testo completoSingh, Divya, D. Kanjilal, GVS Laxmi, Pramod K. Singh, SK Tomar e Bhaskar Bhattacharya. "Conductivity and dielectric studies of Li3+-irradiated PVP-based polymer electrolytes". High Performance Polymers 30, n. 8 (12 giugno 2018): 978–85. http://dx.doi.org/10.1177/0954008318780494.
Testo completoYue, Zheng, Qiang Ma, Xinyi Mei, Abigail Schulz, Hamza Dunya, Dana Alramahi, Christopher McGarry et al. "Specifically Designed Ionic Liquids—Formulations, Physicochemical Properties, and Electrochemical Double Layer Storage Behavior". ChemEngineering 3, n. 2 (3 giugno 2019): 58. http://dx.doi.org/10.3390/chemengineering3020058.
Testo completoRavindran, D., P. Vickraman e N. Sankarasubramanian. "Conductivity Studies on Nano ZnO Incorporated PVC-PVdF Gel Electrolytes for Li+ Ion Battery Application". Applied Mechanics and Materials 787 (agosto 2015): 563–67. http://dx.doi.org/10.4028/www.scientific.net/amm.787.563.
Testo completoMuda, N., Salmiah Ibrahim, Norlida Kamarulzaman e Mohamed Nor Sabirin. "PVDF-HFP-NH4CF3SO3-SiO2 Nanocomposite Polymer Electrolytes for Protonic Electrochemical Cell". Key Engineering Materials 471-472 (febbraio 2011): 373–78. http://dx.doi.org/10.4028/www.scientific.net/kem.471-472.373.
Testo completoLee, Kyoung-Jin, Eun-Jeong Yi, Gangsanin Kim e Haejin Hwang. "Synthesis of Ceramic/Polymer Nanocomposite Electrolytes for All-Solid-State Batteries". Journal of Nanoscience and Nanotechnology 20, n. 7 (1 luglio 2020): 4494–97. http://dx.doi.org/10.1166/jnn.2020.17562.
Testo completoLin, Xu Ping, Hai Tao Zhong, Xing Chen, Ben Ge e De Sheng Ai. "Preparation and Property of LSGM-Carbonate Composite Electrolyte for Low Temperature Solid Oxide Fuel Cell". Solid State Phenomena 281 (agosto 2018): 754–60. http://dx.doi.org/10.4028/www.scientific.net/ssp.281.754.
Testo completoUlutaş, Kemal, Ugur Yahsi, Hüseyin Deligöz, Cumali Tav, Serpil Yılmaztürk, Mesut Yılmazoğlu, Gonca Erdemci, Bilgehan Coşkun, Şahin Yakut e Deniz Değer. "Dielectric properties and conductivity of PVdF-co-HFP/LiClO4 polymer electrolytes". Canadian Journal of Physics 96, n. 7 (luglio 2018): 786–91. http://dx.doi.org/10.1139/cjp-2017-0678.
Testo completoTamamushi, Reita, e Kazuko Tanaka. "Electrolytic conductivity of non-associated electrolytes at high concentrations". Electrochimica Acta 33, n. 10 (ottobre 1988): 1445–48. http://dx.doi.org/10.1016/0013-4686(88)80137-3.
Testo completoSharma, Jitender Paul, e Vijay Singh. "Influence of high and low dielectric constant plasticizers on the ion transport properties of PEO: NH4HF2 polymer electrolytes". High Performance Polymers 32, n. 2 (marzo 2020): 142–50. http://dx.doi.org/10.1177/0954008319894043.
Testo completoShukur, M. F., F. Sonsudin, R. Yahya, Z. Ahmad, R. Ithnin e M. F. Z. Kadir. "Electrical Properties of Starch Based Silver Ion Conducting Solid Biopolymer Electrolyte". Advanced Materials Research 701 (maggio 2013): 120–24. http://dx.doi.org/10.4028/www.scientific.net/amr.701.120.
Testo completoWidiarti, Nuni, Woro Sumarni e Lysa Setyaningrum. "THE SYNTHESIS OF CHITOSAN POLYMER MEMBRANE/PVA AS AN ECO-FRIENDLY BATTERY FOR ALTERNATIVE ENERGY RESOURCE". Jurnal Bahan Alam Terbarukan 6, n. 1 (30 maggio 2017): 14–19. http://dx.doi.org/10.15294/jbat.v6i1.6880.
Testo completoYang, Chun Wei, Yong Huan Ren, Bo Rong Wu e Feng Wu. "Formulation of a New Type of Electrolytes for LiNi1/3Co1/3Mn1/3O2 Cathodes Working in an Ultra-Low Temperature Range". Advanced Materials Research 455-456 (gennaio 2012): 258–64. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.258.
Testo completoJawad, Mohammed Kadhim. "Polymer electrolytes based PAN for dye-sensitized solar cells". Iraqi Journal of Physics (IJP) 15, n. 33 (8 gennaio 2019): 143–50. http://dx.doi.org/10.30723/ijp.v15i33.150.
Testo completoSharma, Rajni, Anjan Sil e Subrata Ray. "Characterization of Plasticized PMMA-LiClO4 Solid Polymer Electrolytes". Advanced Materials Research 585 (novembre 2012): 185–89. http://dx.doi.org/10.4028/www.scientific.net/amr.585.185.
Testo completoAbarna, S., e G. Hirankumar. "Vibrational, electrical, dielectric and optical properties of PVA-LiPF6 solid polymer electrolytes". Materials Science-Poland 37, n. 3 (1 settembre 2019): 331–37. http://dx.doi.org/10.2478/msp-2019-0037.
Testo completoBoyano, Iker, Aroa R. Mainar, J. Alberto Blázquez, Andriy Kvasha, Miguel Bengoechea, Iratxe de Meatza, Susana García-Martín, Alejandro Varez, Jesus Sanz e Flaviano García-Alvarado. "Reduction of Grain Boundary Resistance of La0.5Li0.5TiO3 by the Addition of Organic Polymers". Nanomaterials 11, n. 1 (29 dicembre 2020): 61. http://dx.doi.org/10.3390/nano11010061.
Testo completoVijil Vani, C., K. Karuppasamy, N. Ammakutty Sridevi, S. Balakumar e X. Sahaya Shajan. "Effect of Electron Beam Irradiation on the Mechanical and Electrochemical Properties of Plasticized Polymer Electrolytes Dispersed with Nanoparticles". Advanced Materials Research 678 (marzo 2013): 229–33. http://dx.doi.org/10.4028/www.scientific.net/amr.678.229.
Testo completoGao, Hongcai, Nicholas S. Grundish, Yongjie Zhao, Aijun Zhou e John B. Goodenough. "Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries". Energy Material Advances 2020 (23 dicembre 2020): 1–10. http://dx.doi.org/10.34133/2020/1932952.
Testo completoGao, Hongcai, Nicholas S. Grundish, Yongjie Zhao, Aijun Zhou e John B. Goodenough. "Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries". Energy Material Advances 2021 (7 gennaio 2021): 1–10. http://dx.doi.org/10.34133/2021/1932952.
Testo completoTan, Feihu, Hua An, Ning Li, Jun Du e Zhengchun Peng. "Stabilization of Li0.33La0.55TiO3 Solid Electrolyte Interphase Layer and Enhancement of Cycling Performance of LiNi0.5Co0.3Mn0.2O2 Battery Cathode with Buffer Layer". Nanomaterials 11, n. 4 (12 aprile 2021): 989. http://dx.doi.org/10.3390/nano11040989.
Testo completoGuo, Xin, Shunchang Li, Fuhua Chen, Ying Chu, Xueying Wang, Weihua Wan, Lili Zhao e Yongping Zhu. "Performance Improvement of PVDF–HFP-Based Gel Polymer Electrolyte with the Dopant of Octavinyl-Polyhedral Oligomeric Silsesquioxane". Materials 14, n. 11 (21 maggio 2021): 2701. http://dx.doi.org/10.3390/ma14112701.
Testo completoAhmad, Nur Hidayah, e M. I. N. Isa. "Structural and Ionic Conductivity Studies of CMC Based Polymerelectrolyte Doped with NH4Cl". Advanced Materials Research 1107 (giugno 2015): 247–52. http://dx.doi.org/10.4028/www.scientific.net/amr.1107.247.
Testo completoGrinchik, N. N., K. V. Dobrego e M. A. Chumachenko. "On the Measurement of Electric Resistance of Liquid Electrolytes of Accumulator Battery". ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations 61, n. 6 (11 dicembre 2018): 494–507. http://dx.doi.org/10.21122/1029-7448-2018-61-6-494-507.
Testo completo