Letteratura scientifica selezionata sul tema "Electrolyte solide hybride"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Electrolyte solide hybride".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Electrolyte solide hybride"

1

Kanai, Yamato, Koji Hiraoka, Mutsuhiro Matsuyama e Shiro Seki. "Chemically and Physically Cross-Linked Inorganic–Polymer Hybrid Solvent-Free Electrolytes". Batteries 9, n. 10 (26 settembre 2023): 492. http://dx.doi.org/10.3390/batteries9100492.

Testo completo
Abstract (sommario):
Safe, self-standing, all-solid-state batteries with improved solid electrolytes that have adequate mechanical strength, ionic conductivity, and electrochemical stability are strongly desired. Hybrid electrolytes comprising flexible polymers and highly conductive inorganic electrolytes must be compatible with soft thin films with high ionic conductivity. Herein, we propose a new type of solid electrolyte hybrid comprising a glass–ceramic inorganic electrolyte powder (Li1+x+yAlxTi2−xSiyP3−yO12; LICGC) in a poly(ethylene)oxide (PEO)-based polymer electrolyte that prevents decreases in ionic conductivity caused by grain boundary resistance. We investigated the cross-linking processes taking place in hybrid electrolytes. We also prepared chemically cross-linked PEO/LICGC and physically cross-linked poly(norbornene)/LICGC electrolytes, and evaluated them using thermal and electrochemical analyses, respectively. All of the obtained electrolyte systems were provided with homogenous, white, flexible, and self-standing thin films. The main ionic conductive phase changed from the polymer to the inorganic electrolyte at low temperatures (close to the glass transition temperature) as the LICGC concentration increased, and the Li+ ion transport number also improved. Cyclic voltammetry using [Li metal|Ni] cells revealed that Li was reversibly deposited/dissolved in the prepared hybrid electrolytes, which are expected to be used as new Li+-conductive solid electrolyte systems.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Choi, Kyoung Hwan, Eunjeong Yi, Kyeong Joon Kim, Seunghwan Lee, Myung-Soo Park, Hansol Lee e Pilwon Heo. "(Invited) Pragmatic Approach and Challenges of All Solid State Batteries: Hybrid Solid Electrolyte for Technical Innovation". ECS Meeting Abstracts MA2023-01, n. 6 (28 agosto 2023): 988. http://dx.doi.org/10.1149/ma2023-016988mtgabs.

Testo completo
Abstract (sommario):
For the growth of electric vehicle market, lithium-ion batteries (LIBS) used in the EVs still requires safety and reliability. Unfortunately, large-scale application of the LIBs is being challenged due to the fact that the use of flammable liquid electrolytes has caused safety issues such as leakage and fire explosion. In this respect, all-solid-state batteries (ASSBs) have been intensively studied to ensure the safety and mileage that are superior to the current LIBs. In terms of solid electrolytes, oxide electrolytes not only shows high ionic conductivity (10-4 ~ 10-3 S/cm) but also high mechanical strength to suppress surface dendrite formation. In addition, the oxide electrolytes possess advantages such as non-flammability, high thermal stability, and excellent electrochemical stability (~ 6 V), enabling high temperature/high voltage operations of oxide-based ASSBs. However, most of oxide materials require a sintering process at high temperatures to form a planar solid electrolyte. And a lack of flexibility results in non-uniform electrolyte/electrode contact in the battery, which makes it difficult to apply the rigid oxide electrolyte directly. On the other hand, solid polymer electrolytes have also been actively investigated due to no leakage, good electrolyte/electrode contact, easy processing, flexibility, and good film formability. However, the solid polymer electrolytes have critical disadvantages such as low ionic conductivity at room temperature and low thermal/mechanical stability, which precludes commercialization of solid polymer-based ASSBs despite their advantages. To overcome each disadvantages of oxide and polymer electrolytes, we developed hybrid electrolytes for improved ionic conductivity, easy processing, and formation of continuous electrolyte/electrode interface. In this presentation, pragmatic approach and current challenges related to solid batteries will be discussed including innovative manufacturing process. Hybrid electrolytes and their synergistic effect on the battery performance as a promissing solution will be presented [Fig. 1]
Gli stili APA, Harvard, Vancouver, ISO e altri
3

LI, X. D., X. J. YIN, C. F. LIN, D. W. ZHANG, Z. A. WANG, Z. SUN e S. M. HUANG. "INFLUENCE OF I2 CONCENTRATION AND CATIONS ON THE PERFORMANCE OF QUASI-SOLID-STATE DYE-SENSITIZED SOLAR CELLS WITH THERMOSETTING POLYMER GEL ELECTROLYTE". International Journal of Nanoscience 09, n. 04 (agosto 2010): 295–99. http://dx.doi.org/10.1142/s0219581x10006831.

Testo completo
Abstract (sommario):
Thermosetting polymer gel electrolytes (TPGEs) based on poly(acrylic acid)-poly(ethylene glycol) (PAA-PEG) hybrid were prepared and applied to fabricate dye-sensitized solar cells (DSCs). N-methylpyrrolidone (NMP) and γ-butyrolactone (GBL) were used as solvents for liquid electrolytes and LiI and KI as iodide source, separately. The microstructure of PAA-PEG shows a well swelling ability in liquid electrolyte and excellent stability of the swollen hybrid. The TPGE was optimized in terms of the liquid electrolyte absorbency and ionic conductivity photovoltaic performance. Quasi-solid-state DSCs containing TPGE with optimized KI electrolyte show higher efficiency, voltage, fill factor, and lower photocurrent than those with LiI electrolyte. The related mechanism was discussed. A quasi-solid-state DSC fabricated with optimized polymer gel electrolyte obtained an overall energy conversion efficiency of 4.90% under irradiation of 100 mW/cm2 (AM1.5).
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Lv, Wenjing, Kaidong Zhan, Xuecheng Ren, Lu Chen e Fan Wu. "Comparing Charge Dynamics in Organo-Inorganic Halide Perovskite: Solid-State versus Solid-Liquid Junctions". Journal of Nanoelectronics and Optoelectronics 19, n. 2 (1 febbraio 2024): 121–28. http://dx.doi.org/10.1166/jno.2024.3556.

Testo completo
Abstract (sommario):
In this study, we explore the dynamics of a perovskite-electrolyte photoelectrochemical cell, pivotal for advancing electrolyte-gated field effect transistors, water-splitting photoelectrochemical and photocatalytic cells, supercapacitors, and CO2 capture and reduction technologies. The instability of hybrid perovskite materials in aqueous electrolytes presents a significant challenge, yet recent breakthroughs have been achieved in stabilizing organo-inorganic halide perovskite films. This stabilization is facilitated by employing liquid electrolytes, specifically those formed by dissolving tetrabutylammoniumperchlorate in dichloromethane. A critical aspect of this research is the comparative analysis of charge and ion kinetics at the perovskite/liquid electrolyte interface versus the perovskite/solid charge transport layer interface. Employing Intensity Modulated Photocurrent Spectroscopy (IMPS), Open-Circuit Voltage Decay (OCVD), and Capacitance-Frequency (C-F) methods, the study scrutinizes charge dynamics in both perovskite/electrolyte and perovskite/solid interfaces. Furthermore, the investigation extends to contrasting the properties of solid–liquid and solid-state junctions, focusing on mobile ions, electric field impacts, and electron-hole transport. The research also examines variations in recombination resistance and ionic double layer charging in perovskite-based devices, aiming to elucidate the operational mechanisms and kinetic complexities at the hybrid perovskite/electrolyte interface.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Liao, Cheng Hung, Chia-Chin Chen, Ru-Jong Jeng e Nae-Lih (Nick) Wu. "Application of Artificial Interphase on Ni-Rich Cathode Materials Via Hybrid Ceramic-Polymer Electrolyte in All Solid State Batteries". ECS Meeting Abstracts MA2023-01, n. 6 (28 agosto 2023): 1050. http://dx.doi.org/10.1149/ma2023-0161050mtgabs.

Testo completo
Abstract (sommario):
Among many cathode materials, nickel-rich LiNi0.83Co0.12Mn0.05O2 (NCM 831205) has been spotlighted as one of the most feasible candidates for next-generation LIBs because of its high discharge capacity (~200 mAh/g). However, NCM 831205 shows significant performance degradation, which is mostly attributed to cation mixing, surface side reactions, and intrinsic structural instability originating from the large volume changes during repeated cycling. Conventional lithium ion batteries (LIB) normally use flammable nonaqueous liquid electrolytes, resulting in a serious safety issue in use. In this respect, all-solid-state batteries (ASSB) are regarded as a fundamental solution to address the safety issue by using a solid state electrolyte in place of the conventional liquid one. This work employed lithium sulfonate (SO3Li) tethered polymer, obtained from sulfonation of commercial polymer, to serve as the artificial protective coating on the active NCM831205 of the cathode for ASSB based on hybrid PEO-ceramic solid electrolyte. The coating layer should prevent direct contact of electrolyte with the cathode, thus avoid the negative effects such as microcracks of NCM831205 and undesired CEI formation. The preparation of hybrid ceramic-polymer electrolyte through a solvent-free process. The hybrid electrolytes exhibit good flexibility and processability with respect to pure ceramic and pure PEO polymer electrolyte. It is demonstrated that the hybrid electrolytes can penetrate into cathode under 60°C, providing a good Li+ transfer channel inside the battery. Moreover, the sulfone based polymer protective coating could effectively improve the electrochemical stability of the NCM831205 without sacrificing the battery performance. Keywords: NCM831205, Artificial Polymer Coating, All-Solid-State Batteries
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Villaluenga, Irune, Kevin H. Wujcik, Wei Tong, Didier Devaux, Dominica H. C. Wong, Joseph M. DeSimone e Nitash P. Balsara. "Compliant glass–polymer hybrid single ion-conducting electrolytes for lithium batteries". Proceedings of the National Academy of Sciences 113, n. 1 (22 dicembre 2015): 52–57. http://dx.doi.org/10.1073/pnas.1520394112.

Testo completo
Abstract (sommario):
Despite high ionic conductivities, current inorganic solid electrolytes cannot be used in lithium batteries because of a lack of compliance and adhesion to active particles in battery electrodes as they are discharged and charged. We have successfully developed a compliant, nonflammable, hybrid single ion-conducting electrolyte comprising inorganic sulfide glass particles covalently bonded to a perfluoropolyether polymer. The hybrid with 23 wt% perfluoropolyether exhibits low shear modulus relative to neat glass electrolytes, ionic conductivity of 10−4 S/cm at room temperature, a cation transference number close to unity, and an electrochemical stability window up to 5 V relative to Li+/Li. X-ray absorption spectroscopy indicates that the hybrid electrolyte limits lithium polysulfide dissolution and is, thus, ideally suited for Li-S cells. Our work opens a previously unidentified route for developing compliant solid electrolytes that will address the challenges of lithium batteries.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Zaman, Wahid, Nicholas Hortance, Marm B. Dixit, Vincent De Andrade e Kelsey B. Hatzell. "Visualizing percolation and ion transport in hybrid solid electrolytes for Li–metal batteries". Journal of Materials Chemistry A 7, n. 41 (2019): 23914–21. http://dx.doi.org/10.1039/c9ta05118j.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Zahiri, Beniamin, Chadd Kiggins, Dijo Damien, Michael Caple, Arghya Patra, Carlos Juarez Yescaz, John B. Cook e Paul V. Braun. "Hybrid Halide Solid Electrolytes and Bottom-up Cell Assembly Enable High Voltage Solid-State Lithium Batteries". ECS Meeting Abstracts MA2022-01, n. 2 (7 luglio 2022): 327. http://dx.doi.org/10.1149/ma2022-012327mtgabs.

Testo completo
Abstract (sommario):
Interface between halide based solid electrolytes and layered transition metal oxide cathodes has been found to be electro-chemically stable due to stability of chloride compounds, in particular, at >4V range. The extent of interfacial stability is correlated with the type of cationic and anionic species in the solid electrolyte compound, a fact supported by theoretical prediction and yet, not accurately measured in composite cathode mixtures. By altering the architecture of cathode into a dense additive-free structure, we have identified differences in interfacial stability of chloride compounds which are hidden in composite cathode formats. In this work, we report the use of dense cathode to track the electrochemical evolution of interface between a hybrid halide solid electrolyte composed of chloride and fluoride species. Introducing fluoride compounds is known to be a promising method to expand the oxidation stability while the nature of such expansion is found to be related to kinetics rather than thermodynamics, we report. Furthermore, fluorination of solid electrolyte is generally accompanied with loss of ionic conductivity due to strong electronegative fluoride ions. We demonstrate a fundamental change of solid-state battery assembly from conventional electrolyte pelletizing followed by electrode placement, to a bottom-up assembly route starting with dense cathode, thin (<20µm) layer of SE and anode addition, which compensates for the suppressed conductivity of fluorinated halide solid electrolytes. Through extensive characterization, compositional optimization, and electrochemical interfacial analysis, we demonstrate stable cycling of LiCoO2/hybrid halide solid electrolyte up to 4.4V vs. Li. Our findings pave the way for expanding the voltage stability of solid electrolytes without compromising the cell performance due to ionic conductivity overpotential issues.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Mohanty, Debabrata, Shu-Yu Chen e I.-Ming Hung. "Effect of Lithium Salt Concentration on Materials Characteristics and Electrochemical Performance of Hybrid Inorganic/Polymer Solid Electrolyte for Solid-State Lithium-Ion Batteries". Batteries 8, n. 10 (9 ottobre 2022): 173. http://dx.doi.org/10.3390/batteries8100173.

Testo completo
Abstract (sommario):
Lithium-ion batteries are popular energy storage devices due to their high energy density. Solid electrolytes appear to be a potential replacement for flammable liquid electrolytes in lithium batteries. This inorganic/hybrid solid electrolyte is a composite of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt, (poly(vinylidene fluoride-hexafluoro propylene) (PVDF-HFP) polymer and sodium superionic conductor (NASICON)-type Li1+xAlxTi2−x(PO4)3 (LATP) ceramic powder. The structure, morphology, mechanical behavior, and electrochemical performance of this composite solid electrolyte, based on various amounts of LiTFSI, were investigated. The lithium-ion transfer and conductivity increased as the LiTFSI lithium salt concentration increased. However, the mechanical strength apparently decreased once the percentage of LITFSI was over 60%. The hybrid electrolyte with 60% LiTFSI content showed high ionic conductivity of 2.14 × 10−4 S cm−1, a wide electrochemical stability window (3–6 V) and good electrochemical stability. The capacity of the Li|60% LiTFSI/PVDF-HFP/LATP| LiFePO4 solid-state lithium-metal battery was 103.8 mA h g−1 at 0.1 C, with a high-capacity retention of 98% after 50 cycles.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Gu, Sui, Xiao Huang, Qing Wang, Jun Jin, Qingsong Wang, Zhaoyin Wen e Rong Qian. "A hybrid electrolyte for long-life semi-solid-state lithium sulfur batteries". Journal of Materials Chemistry A 5, n. 27 (2017): 13971–75. http://dx.doi.org/10.1039/c7ta04017b.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Electrolyte solide hybride"

1

Basso-Bert, Thomas. "Etude de l'élaboration et des performances électrochimiques de séparateurs électrolytiques composites polymère-céramique pour des batteries au Lithium métal". Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALI036.

Testo completo
Abstract (sommario):
Pour augmenter la densité d’énergie dans les générateurs électrochimiques, deux leviers sont habituellement étudiés : la capacité et le potentiel des matériaux d’électrodes. L’utilisation de lithium (Li) métal comme matériau d’électrode négative répond à ces enjeux puisqu’il présente une très grande capacité gravimétrique (3860 mAh/g) et un potentiel très bas (-3.04 V vs. SHE). Malheureusement, de nombreux phénomènes sont délétères au bon fonctionnement de cette négative idéale, comme la croissance de lithium dendritique au cours du cyclage qui entraine des fins de vie prématurées et des problèmes de sécurité. Une solution est de travailler avec des électrolytes solides, en lieu et place des électrolytes liquides organiques actuels des batteries Li-ion. Ainsi, la recherche se concentre sur le développement de nombreux matériaux d’électrolytes solides, bons conducteurs ionique, stables à bas et haut potentiels, peu coûteux, recyclables, etc. Malgré de grandes avancées que ce soit dans le domaine des électrolytes céramiques ou polymères (voire même des composites des deux), aucun matériau ne semble s’imposer pour l’heure [1].Dans ce contexte, un nouveau concept de membrane hybride polymère/céramique est étudié pour son intégration en batterie au Li métal [2][3]. Nous avons réalisé, par un procédé en voie fondu économique, sans solvant, et aisément extrapolable à l’échelle industrielle, un séparateur constitué d’une monocouche de grains d’électrolyte céramique Li1,3Al0,3Ti1,7(PO4)3 (LATP) jointoyée par un polymère (figure 1.a.). Les grains de LATP percolant de part et d’autre de la membrane apportent la conductivité aux ions Li+ tandis que le polymère à base de Poly(éthylène) assure la tenue mécanique, l’étanchéité aux solvants et sels de lithium, et l’isolation électrique. Le concept de ces membranes est de pouvoir optimiser l’anolyte et le catholyte indépendamment. La conductivité de telles membranes a été étudiée en fonction du pourcentage volumique de LATP (figure 1.b.) et atteint 0,491 mS/cm, à température ambiante, pour une membrane à 50%vol. De plus, le transfert de charge ionique à travers une cellule anolyte / membrane / catholyte a été étudiée par impédance électrochimique. La croissance dendritique en cellule symétrique Li / anolyte / membrane / anolyte / Li a aussi été étudié. Finalement, une batterie à haute densité d’énergie a été réalisée et cyclée à température ambiante.Références :[1] Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 1–4 (2016)[2] Aetukuri, N. B. et al. Flexible Ion-Conducting Composite Membranes for Lithium Batteries. Adv. Energy Mater. 5, 1–6 (2015)[3] Samuthira Pandian, A. et al. Flexible, Synergistic Ceramic-Polymer Hybrid Solid-State Electrolyte for Secondary Lithium Metal Batteries. ACS Appl. Energy Mater. 3, 12709–12715 (2020)
To boost the energy density of lithium-based accumulators, two levers are commonly studied: the energy density and the potential of electrode materials. The use of Li metal as a negative electrode is undoubtedly an appropriate solution to address these challenges since it has the highest gravimetric capacity (3860mAh/g) and very low reducing potential (-3.04 V vs. Standard Hydrogen Electrode). However, a couple of harmful phenomena prevent from using this ideal negative electrode, such as the dendritic growth during the electrodeposition of Lithium metal when a conventional organic liquid electrolyte is used. As a result, the research has been focusing on the development of numerous solid-state electrolytes (SSE) materials, having high Li+ ionic conductivity, high Li+ transport number, large electrochemical stability window, low cost, recyclable. Despite of breakthroughs for both ceramics or polymers fields (and even composites of both), no room temperature SSE has been developed at industrial scale so far [1].In that context, a new concept [2] of composite polymer/ceramic membrane is studied to be implemented within a Lithium Metal battery. It consists of an electrolytic separator where the Li1.3Al0,3Ti1,7(PO4)3 (LATP) ceramic forms one mono layer of monocrystalline and monodispersed grains bonded with a Poly(ethylene)-based matrix. The LATP grains are the Li+ conducting media allowing the Li+ percolation from one side to another while the Poly(ethylene)-based matrix which is ionically and electronically insulating, and, above all, impermeable to most of conventional Li-ion batteries solvents and Li salts, ensuring both the membrane tightening and very good flexibility (figure 1.a.). Herein, this composite membrane is elaborated via a low cost, solvent free process thanks to extrusion and calendering which can be industrially upscaled unlike the very complex and multistep processes suggested in the literature so far [2,3]. The microstructure of the composite separators was characterized by SEM and X-ray Tomography imaging to better understand the influences of the ceramic, the polymer type, and the elaboration process parameters. The Li+ ionic conductivity of the composite membranes as a function of the ceramic content have been studied by electrochemical impedance spectroscopy (EIS) and a high conductivity of 0.49 mS/cm has been measured at 25°C (50vol% LATP, figure 1.b.). Acting as a chemical barrier, this composite membrane allows the optimization of electrolyte chemistries at both the anode side and the cathode sides. Hence, the ionic charge transfer mechanisms in symmetric electrolyte/membrane/electrolyte systems have been also studied by EIS to determine the driving parameters such as the solvent type, the Li salt type and concentration [4].References:[1] Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 1–4 (2016)[2] Aetukuri, N. B. et al. Flexible Ion-Conducting Composite Membranes for Lithium Batteries. Adv. Energy Mater. 5, 1–6 (2015)[3] Samuthira Pandian, A. et al. Flexible, Synergistic Ceramic-Polymer Hybrid Solid-State Electrolyte for Secondary Lithium Metal Batteries. ACS Appl. Energy Mater. 3, 12709–12715 (2020)[4] Isaac, J. A., Mangani, L. R., Devaux, D. & Bouchet, R. Electrochemical Impedance Spectroscopy of PEO-LATP Model Multilayers: Ionic Charge Transport and Transfer. ACS Appl. Mater. Interfaces 14, 13158–13168 (2022)
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Chometon, Ronan. "Exploring the role of polymers in scaling up the manufacturing of solid-state batteries". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS046.

Testo completo
Abstract (sommario):
Dans un contexte de transition vers les énergies renouvelables et d'électrification de la mobilité, les batteries sont un rouage indispensable à cette transformation. Alors que la technologie lithium-ion est aujourd'hui largement établie, la course à la performance en matière de densité d'énergie mise sur les batteries tout-solide, encore à l'état de prototype. Elles sont basées sur le principe du transfert de charge au travers de contacts purement solides, complexes à former et à maintenir, et donc sources de nombreux problèmes associés à leur fonctionnement. La mise à l'échelle des procédés de fabrication des batteries tout-solide est particulièrement critique et nécessite un changement de stratégie d'assemblage, en abandonnant le format en pastille pour tendre vers un montage en feuillets. Dans ce contexte, nos travaux de recherche ont porté sur le rôle des polymères dans l'adaptation du procédé d'assemblage, en tant que liant des particules inorganiques. Nous avons exploré deux stratégies qui se distinguent par rapport à la nature de ce liant, pouvant être conducteur ou non des ions lithium. Dans une première approche, l'électrolyte polymère PEO:LiTFSI a été utilisé pour préparer des films autosupportés d'électrolyte hybride à haut taux de charges inorganiques Li6PS5Cl, suivant un procédé à sec. L'instabilité des deux électrolytes en contact génère cependant une interphase trop résistive pour assurer une conduction ionique conjointe au sein de l'hybride. Dans un souci de simplification du système, une nouvelle approche a été adoptée, se basant sur un liant non conducteur, le PVDF-HFP, pour la préparation et le coulage en bande d'une encre afin d'obtenir des films d'électrodes et de séparateurs. Une optimisation minutieuse des paramètres a permis d'obtenir des résultats encourageants puisque que proches du système de référence ne contenant pas de liant, et ce même à basse pression de cyclage. La fiabilité du procédé développé au cours de cette thèse ouvre maintenant la voie vers l'assemblage de cellules tout-solide complètes, intégrant une anode à haute densité d'énergie telle que le lithium métal
The imperative transition toward renewable energy sources and the ongoing electrification of transportation position battery technologies at the forefront of this transformation. While the lithium-ion technology is already well-established, the quest for higher energy density has drawn significant attention to the emerging solid-state batteries (SSBs). Their working principle is based on ion and electron transfers through solid-solid contacts, which are complex to master and sustain, giving rise to most of the challenges associated with their realisation. Especially, the capability to scale up SSBs' fabrication process is critical for future implementation and calls for a shift from pellet-type to sheet-type assembly. Thus, this doctoral research delved into the role of polymers in facilitating this transition by exploring two strategies differing on the binder's ability to conduct lithium ions. In the first approach, we capitalised on the polymer electrolyte PEO:LiTFSI favourable mechanical properties to prepare self-standing films of hybrid solid electrolyte with a high content of Li6PS5Cl, using a dry process. However, the instability between the organic and inorganic phases resulted in a resistive interphase that prevents a shared conduction mechanism within the hybrid. After that, we pursued a simpler approach to fabricate self-standing SSBs by employing a conventional non-conductive binder, PVDF-HFP, and using a slurry-based tape casting process. The thorough optimisation of the formulation and preparation of the electrodes and solid-state separators gave promising results, closely approaching the electrochemical performance of binder-free reference SSBs, even under low operating pressure. The reliability of our fabrication process thus paves the way for assembling self-standing solid-state full cells, integrating high energy density anodes such as lithium metal
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Issa, Sébastien. "Synthèse et caractérisation d'électrolytes solides hybrides pour les batteries au lithium métal". Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0046.

Testo completo
Abstract (sommario):
Les problématiques engendrées par l’extraction et l’utilisation intensives des ressources fossiles ont forcé l’humanité à se tourner vers le développement d’énergies renouvelables et de véhicules électriques. Cependant, ces technologies doivent être couplées à des moyens de stockage de l’énergie efficaces pour exploiter leur potentiel. Les systèmes embarquant une anode de lithium métallique sont particulièrement intéressants car ils présentent une densité d’énergie élevée. Cependant, cette technologie souffre de la formation de dendrites pouvant déclencher des courts-circuits provoquant l’explosion du dispositif. Ainsi, de nombreux efforts ont été consacrés à l’élaboration d’électrolytes solides polymères (SPE) à base de POE permettant de constituer une barrière qui bloque la croissance dendritique tout en préservant les propriétés de conduction ionique. Cependant, la conductivité ionique des SPE à base de POE décroît fortement avec la température. A l’heure actuelle, les meilleurs SPE de la littérature nécessiteraient de fonctionner à 60 °C, ce qui signifie qu’une partie de l’énergie de la batterie sera détournée de son utilisation pour maintenir cette température. Ainsi, l’objectif principal de ce travail de thèse est de concevoir un SPE permettant le fonctionnement de la technologie de batterie au lithium métal à température ambiante. Ces SPE doivent présenter une conductivité ionique élevée à température ambiante (≈ 10-4 S.cm-1) et des propriétés mécaniques permettant l’inhibition du phénomène de croissance dendritique. Pour cela, les objectifs du projet sont focalisés sur le développement de nouveaux SPE nanocomposites et hybrides
The problems caused by the intensive extraction and use of fossil fuels have forced humanity to turn to the development of renewable energies and electric vehicles. However, these technologies need to be coupled with efficient energy storage means to exploit their potential. Lithium metal anode systems are particularly interesting because they have a high energy density. However, this technology suffers from the formation of dendrites that can trigger short circuits causing the device to explode. Thus, many efforts have been devoted to the development of POE-based solid polymer electrolytes (SPEs) that provide a barrier that blocks dendritic growth while preserving ionic conduction properties. However, the ionic conductivity of POE-based SPEs decreases strongly with temperature. Currently, the best SPEs in the literature would require operation at 60 °C, which means that some of the energy in the battery will be diverted from its use to maintain this temperature. Thus, the main objective of this thesis work is to design an SPE that allows the operation of lithium metal battery technology at room temperature. These SPEs must exhibit high ionic conductivity at room temperature (≈ 10-4 S.cm-1) and mechanical properties that allow the inhibition of the dendritic growth phenomenon. For this, the objectives of the project are focused on the development of new nanocomposite and hybrid SPEs
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Leclercq, Florent. "Étude d'électrolytes hybrides solides destinés aux batteries lithium". Electronic Thesis or Diss., Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLET068.

Testo completo
Abstract (sommario):
Au cours de cette thèse, nous avons comparé deux voies d’élaboration d’un électrolyte solide hybride composé d’un mélange de deux polymères (PEO et PVDF-HFP), d’un sel de lithium (LiTFSI), et d’un réseau de silice formé in situ par voie sol-gel et fonctionnalisé par des groupements imidazolium Dans un premier temps, nous avons utilisé le procédé de coulée-évaporation pour étudier l’influence des différents constituants sur les propriétés physico-chimiques et électrochimiques. Des conductivités de 10⁻⁴ S/cm à 80°C ont été atteintes, ce qui permet de faire cycler des batteries LiFePO₄/Li à des régimes de C/10 à la même température. Le procédé d’extrusion électro-assistée a ensuite été utilisé afin de fabriquer un squelette de nanofibres hybrides PVDF-HFP/silice (fonctionnalisée ou non) dont la porosité est remplie par un mélange PEO/LiTFSI. L’architecture particulière de l’électrolyte ainsi fabriqué permet de découpler les propriétés de conduction des propriétés mécaniques. Les conductivités obtenues à 80°C sont de 5.10⁻⁴ S/cm, ce qui permet de faire cycler des batteries LiFePO₄/Li à des régimes de C/2 à la même température. Les mêmes squelettes hybrides « électrospinnés » ont été évalués en tant que séparateur pour des électrolytes aqueux super-concentrés (également appelés water-in-salt). Leurs excellentes propriétés de mouillage et de rétention permettent d’assurer le fonctionnement d’une batterie LiMn₂O₄/TiO₂ à des régimes atteignant 10C tout en diminuant la quantité d’électrolyte nécessaire
This work focuses on the comparison of two processes for the elaboration of a solid hybrid electrolyte made of a mix of two polymers (PEO and PVDF-HFP), a lithium salt (LiTFSI), and of a silica network made in situ via a sol-gel method and functionalized with imidazolium groups. At first, the influence of the different components on the physicochemical and electrochemical properties of electrolytes made by dry casting is studied. Conductivities of 10⁻⁴ S/cm at 80 °C allow us to cycle LiFePO₄/Li batteries at a C/10 rate at the same temperature. A skeleton of hybrid PVDF-HFP/silica (functionalized or not) nanofibers is synthesized by electrospinning and its porosity is filled with a PEO/LiTFSI mix. The particular architecture of this type of electrolyte enables the decoupling of conduction and mechanical properties. Conductivities of 5.10-4 S/cm at 80 °C allow the cycling of LiFePO₄/Li batteries at a C/2 rate at the same temperature. The same electrospun hybrid membranes are evaluated as separators for hybrid water-in-salt electrolytes. Thanks to their excellent wetting and retention properties, LiMn₂O₄/TiO₂ batteries are cycled at a 10C rate with a low quantity of electrolyte
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Lancel, Gilles. "Synthèse et caractérisation de membranes hybrides pour la conduction des ions lithium, et application dans les batteries lithium-air à électrolyte aqueux". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066011/document.

Testo completo
Abstract (sommario):
La technologie lithium-air à électrolyte aqueux pourrait révolutionner le stockage de l'énergie, mais la protection du lithium métallique par une vitrocéramique conductrice du lithium reste une limitation importante. Cela rend le système plus fragile, limite sa cyclabilité et augmente la chute ohmique. L'objectif de ce travail a été de remplacer cette vitrocéramique par une membrane hybride réalisée par extrusion électro assistée ou electrospinning, qui combine des propriétés d'étanchéité à l'eau, de flexibilité et de conductivité du lithium. La conductivité ionique est apportée par la partie céramique, pour laquelle les matériaux Li1,4Al0,4Ti1,6(PO4)3 (LATP) et Li0,33La0,57TiO3 (LLTO) ont été étudiés. L'étanchéité est assurée par un polymère fluoré. Différentes voies de synthèse des poudres ont été étudiées et comparées en termes de pureté, de microstructure, de surface spécifique et de propriétés électrochimiques. En particulier, des particules de LATP sub-microniques ont été obtenues pour la première fois par chauffage micro-onde, en des temps aussi courts que 2 min. Des membranes ont ensuite été réalisées à partir de suspensions. Dans une seconde approche, un réseau de nanofibres interconnectées et conductrices du lithium a été réalisé par couplage entre la chimie sol-gel et le procédé d'electrospinning. L'imprégnation de ce réseau donne une membrane hybride flexible, conductrice du lithium et étanche à l'eau. Un renforcement mécanique par les fibres inorganiques est observé. Cette approche a été appliquée aux deux matériaux LATP et LLTO. Ce travail ouvre de nombreuses perspectives pour les batteries lithium-air, lithium soufre et lithium-ion
Aqueous lithium-air batteries could be a revolution in energy storage, but the main limitation is the use of a thick glass-ceramic lithium ionic conductor to isolate the metallic lithium from the aqueous electrolyte. This makes the system more fragile, limits its cyclability and increases ohmic resistance. The aim of this work is to replace the glass-ceramic by a hybrid membrane made by electrospinning, which combines water tightness, flexibility and lithium-ions conductivity. The ionic conductivity is provided by a nanostructured solid electrolyte ceramic: both Li1,4Al0,4Ti1,6(PO4)3 (LATP) and Li0,33La0,57TiO3 (LLTO) were studied. The water tightness is ensured by a fluorinated polymer. Different powders synthesis methods are reported and compared in terms of purity, microstructure, specific surface area and electrochemical properties. Especially, the LATP microwave-assisted synthesis is reported for the first time. Sub-micrometric LATP particles were obtained in times as short as 2 min. The fabrication of hybrid membranes from suspension is then reported. In a second approach, the coupling between sol-gel chemistry and electrospinning made possible the fabrication of a self-standing lithium-conducting network, made of interconnected crystalline nanofibers. After an impregnation step, a flexible, lithium-conducting and watertight hybrid membrane is obtained. A mechanical reinforcement is observed, which is attributed to the inorganic nanofibers. This approach is exposed for both LATP and LLTO solid electrolytes. This work opens new prospects in lithium-air, lithium-sulfur and lithium-ion batteries
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Maouacine, Koceila. "Matériaux hybrides poreux silice/polymère comme électrolytes pour batterie lithium-ion tout solide". Electronic Thesis or Diss., Aix-Marseille, 2023. http://www.theses.fr/2023AIXM0024.

Testo completo
Abstract (sommario):
La conception de batteries lithium-ion utilisant un électrolyte solide est actuellement l’une des voies les plus étudiées pour s’affranchir des problèmes de sécurité lié à ces dispositifs. Dans ces travaux de thèse, nous proposons une nouvelle approche d'élaboration d'un électrolyte hybride poreux silice/polymère, contenant une fraction massique plus élevée de silice mésoporeuse que de polymère. Deux morphologies de matériaux hybrides de silice ont été étudiées : sous forme de poudres compressées (pastilles) et sous forme de films minces. Dans la première partie du travail, une poudre de silice hybride a été synthétisée puis calcinée pour libérer la porosité. La silice mésoporeuse a, ensuite, été fonctionnalisée par imprégnation en solution avec différents polymères de type PEG de faible poids moléculaire puis, par un sel de lithium, le LiTFSI. Les poudres hybrides ont été compressées sous forme de pastilles, présentant une porosité inter- et intraparticulaire. Il a été montré que, les pastilles hybrides présentent des propriétés de conductivité ionique prometteuse lorsque les porosités inter et intraparticulaires sont remplies par le complexe PEG-LiTFSI pour PEG de faible masse molaire (300-600 g/mol). Dans la seconde partie, des films de silice mésoporeuse ont été déposés sur une électrode de carbone vitreux en utilisant une électrode à disque rotatif (RDE). Après avoir caractérisé ces films du point des propriétés texturales et de la microstructure, ces derniers ont été fonctionnalisés par le complexe PEG-LiTFSI via un procédé d’imprégnation et l’étude préliminaire de leur conductivité ionique a été réalisée
The design of lithium-ion batteries using a solid electrolyte is currently one of the most studied ways to overcome safety problem of these devices. In this thesis work, we propose a new approach to develop a porous silica/polymer hybrid electrolyte, containing a higher weight fraction of mesoporous silica than polymer. Two morphologies of silica hybrid materials were studied: as compressed powders (pellets) and as thin films. In the first part of the work, a hybrid silica powder was synthesized and then calcined to liberate the porosity. The mesoporous silica was then functionalized with different polymers of PEG of low molecular weight then by a simple solution impregnation. The hybrid powders were shaped as pellets, presenting inter- and intra-particle porosity. It was shown that the hybrid pellets present promising ionic conductivity properties when the inter- and intraparticle porosities are filled with the PEG-LiTFSI complex for PEG of low molar mass (300-600 g/mol). In the second part, mesoporous silica films were deposited on a glassy carbon electrode using a rotating disc electrode (RDE). After the characterization of these films from a textural properties and a microstructure point of view, they were functionalized by the PEG-LiTFSI complex via an impregnation process and the preliminary study of their ionic conductivity was performed
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Lancel, Gilles. "Synthèse et caractérisation de membranes hybrides pour la conduction des ions lithium, et application dans les batteries lithium-air à électrolyte aqueux". Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066011.

Testo completo
Abstract (sommario):
La technologie lithium-air à électrolyte aqueux pourrait révolutionner le stockage de l'énergie, mais la protection du lithium métallique par une vitrocéramique conductrice du lithium reste une limitation importante. Cela rend le système plus fragile, limite sa cyclabilité et augmente la chute ohmique. L'objectif de ce travail a été de remplacer cette vitrocéramique par une membrane hybride réalisée par extrusion électro assistée ou electrospinning, qui combine des propriétés d'étanchéité à l'eau, de flexibilité et de conductivité du lithium. La conductivité ionique est apportée par la partie céramique, pour laquelle les matériaux Li1,4Al0,4Ti1,6(PO4)3 (LATP) et Li0,33La0,57TiO3 (LLTO) ont été étudiés. L'étanchéité est assurée par un polymère fluoré. Différentes voies de synthèse des poudres ont été étudiées et comparées en termes de pureté, de microstructure, de surface spécifique et de propriétés électrochimiques. En particulier, des particules de LATP sub-microniques ont été obtenues pour la première fois par chauffage micro-onde, en des temps aussi courts que 2 min. Des membranes ont ensuite été réalisées à partir de suspensions. Dans une seconde approche, un réseau de nanofibres interconnectées et conductrices du lithium a été réalisé par couplage entre la chimie sol-gel et le procédé d'electrospinning. L'imprégnation de ce réseau donne une membrane hybride flexible, conductrice du lithium et étanche à l'eau. Un renforcement mécanique par les fibres inorganiques est observé. Cette approche a été appliquée aux deux matériaux LATP et LLTO. Ce travail ouvre de nombreuses perspectives pour les batteries lithium-air, lithium soufre et lithium-ion
Aqueous lithium-air batteries could be a revolution in energy storage, but the main limitation is the use of a thick glass-ceramic lithium ionic conductor to isolate the metallic lithium from the aqueous electrolyte. This makes the system more fragile, limits its cyclability and increases ohmic resistance. The aim of this work is to replace the glass-ceramic by a hybrid membrane made by electrospinning, which combines water tightness, flexibility and lithium-ions conductivity. The ionic conductivity is provided by a nanostructured solid electrolyte ceramic: both Li1,4Al0,4Ti1,6(PO4)3 (LATP) and Li0,33La0,57TiO3 (LLTO) were studied. The water tightness is ensured by a fluorinated polymer. Different powders synthesis methods are reported and compared in terms of purity, microstructure, specific surface area and electrochemical properties. Especially, the LATP microwave-assisted synthesis is reported for the first time. Sub-micrometric LATP particles were obtained in times as short as 2 min. The fabrication of hybrid membranes from suspension is then reported. In a second approach, the coupling between sol-gel chemistry and electrospinning made possible the fabrication of a self-standing lithium-conducting network, made of interconnected crystalline nanofibers. After an impregnation step, a flexible, lithium-conducting and watertight hybrid membrane is obtained. A mechanical reinforcement is observed, which is attributed to the inorganic nanofibers. This approach is exposed for both LATP and LLTO solid electrolytes. This work opens new prospects in lithium-air, lithium-sulfur and lithium-ion batteries
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Weldekidan, Ephrem Terefe. "Design of lithium ion conducting porous hybrid materials for the development of solid Li-battery electrolytes". Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0707.

Testo completo
Abstract (sommario):
Dans ce travail, des matériaux hybrides polymères-silice poreuse sous forme de poudre et de film mince ont été synthétisés et caractérisés. L'étude préliminaire de leurs conductivité ionique Li+ a également été réalisée. Les poudres hybrides ont été synthétisées par voie sol-gel en utilisant des triblocs classiques (Pluronic, P123) et des diblocs copolymères amphiphiles bifonctinels fabriqués en laboratoire comme agents dirigeant la structure (SDA). Dans le premier cas, la modification post-synthétique a été utilisée pour fonctionnaliser la surface des pores de la silice avec du PEO. Dans un second temps, la fonctionnalisation de la surface des pores avec le bloc hydrophile (PEO) a été réalisée par extraction du bloc hydrophobe. Des films de silice avec des mésocanaux ordonnés de manière hexagonale et orientés verticalement ont été synthétisés sur la surface de l'électrode via un procédé d'auto-assemblage électro-assisté dans des conditions hydrodynamiques. Les films formés sont mésoporeux (3 nm de diamètre) et entièrement accessibles. Un film de 660 nm d'épaisseur a été obtenu en 200 secondes. Ce film a été fonctionnalisé avec du PEO puis du sel de lithium par le biais d'une méthode d'imprégnation en solution. La conductivité ionique des matériaux hybrides a été étudiée après la mise en forme de la poudre sous forme de pastille ou de film directement formé à la surface de l'électrode. Les résultats montrent la conductivité des ions Li+ apportée aux matériaux. Les pastilles ont une porosité interparticulaire de 40% et le remplissage avec l’électrolyte polymère a un effet positif sur l’optimisation de la conductivité des pastilles
In this work, porous polymer-silica hybrid materials as a powder and thin film are synthesized and characterized. The preliminary study of their Li+ ionic conductivity properties are carried out as well. Here, the polymer electrolyte is embedded in silica matrix - polymer-in-ceramic approach. The hybrid powders are synthesized through sol-gel using conventional triblock (Pluronic, P123) and laboratory made bifunctional diblock amphiphilic copolymers as structure directing agents (SDA). In the first case, post-synthetic modification is used to functionalize the pore surface of silica with PEO. The second allowed to direct functionalization the pore surface with hydrophilic block (PEO) through extraction of hydrophobic block. Particle-free mesoporous silica films with hexagonally ordered and vertically oriented mesochannels are synthesized on electrode surface via electro-assisted self-assembly method under hydrodynamic condition. The resulting films are mesoporous (a diameter of 3 nm) and fully accessible. A film with thickness of 660 nm was grown in 200 s, and functionalized with PEO and then lithium salt through solution impregnation method. The ionic conductivity properties of hybrids were performed after shaping the powder as a pellet or with the hybrid film directly formed on the electrode surface. The results showed that the Li+ conductivity brought to the materials. The pellets have 40 % interparticle porosity and filling this with polymer electrolyte has positive effect on optimizing conductivity of the pellets (2.0 x 10-7 Scm-1 for 35 % filling and 6.8 x 10-7 Scm-1 for 100% filling at 25 °C)
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Yahata, Yoshikazu. "Extended Design of Concentrated-Polymer-Brush-Decorated Hybrid Nanoparticles and Their Use for Phase-Separation Control". Kyoto University, 2018. http://hdl.handle.net/2433/232486.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Martín, Dalmas Joël. "Modélisation multi-échelle du transport du lithium dans des électrolytes Li-ion solides et hybrides et leurs interfaces". Electronic Thesis or Diss., Université Grenoble Alpes, 2023. http://www.theses.fr/2023GRALY098.

Testo completo
Abstract (sommario):
Les électrolytes solides hybrides (HSE) offrent une alternative prometteuse aux électrolytes liquides classiques dans les batteries Li-ion. Ils intègrent des charges céramiques, souvent sous forme de nanoparticules, dans les électrolytes polymères pour résoudre le principal défi des électrolytes polymères solides (SPE) : leur conductivité réduite par rapport aux alternatives telles que les électrolytes liquides ou céramiques. Cependant, l'impact de l'ajout de charges céramiques aux SPE purs reste incertain. La littérature présente deux ensembles de résultats distincts. Le premier, provenant principalement de recherches expérimentales menées il y a deux décennies, préconise une nette amélioration de la conductivité des SPE grâce à l'intégration de charges céramiques passives telles que la silice ou l'alumine, à diverses concentrations et températures. En revanche, une perspective opposée met en évidence des résultats défavorables des céramiques sur la mobilité ionique au sein des SPE, en particulier lorsque le polymère est à l'état amorphe.Cette thèse vise à répondre à la question cruciale : l'inclusion de nanoparticules céramiques dans les électrolytes polymères solides améliore-t-elle ou entrave-t-elle la mobilité ionique ? Nous utilisons des simulations de dynamique moléculaire pour analyser deux systèmes hybrides composés de Polyéthylène Oxide (PEO) comme polymère, LiTFSI comme sel de lithium, et de silice ou d'alumine comme composants céramiques. Nos simulations explorent les comportements dynamiques et les interactions de ces matériaux sur des échelles de temps prolongées, jusqu'à plusieurs dizaines de nanosecondes, avec le champ de force OPLS-AA. Les paramètres du champ de force sont soigneusement examinés à partir de diverses sources littéraires, chacune ayant été validée individuellement par comparaison avec des données expérimentales.Nous analysons leurs propriétés structurales, examinant leur corrélation avec le comportement dynamique des ions. Cette analyse fournit un compte rendu détaillé des variations dans la dynamique du système. Nos résultats montrent une grande précision en reproduisant le comportement dépendant de la température observé dans les études expérimentales des SPE purs. De plus, nos simulations reproduisent fidèlement les mécanismes de solvatation du sel dans le PEO, validant ainsi nos conclusions pour les SPE purs.Nos résultats concernant l'utilisation de nanoparticules de silice révèlent une réduction substantielle de la conductivité, indépendamment de la concentration ionique. Cette réduction peut en grande partie s'expliquer par l'équation de diffusion, car l'espace occupé par les nanoparticules devient inactif et incapable de soutenir la diffusion ionique, perturbant le mouvement des ions. Nous identifions deux régimes de concentration : un au-dessus et un en dessous d'une concentration seuil de 2 mol/L, correspondant au point de conductivité maximale. Ces régimes présentent des distributions ioniques contrastées et des propriétés de coordination parmi les espèces. Dans le régime de faible concentration, les ions lithium sont principalement couplés aux atomes d'oxygène du PEO, conduisant à sa saturation à 2 mol/L. Dans le second régime, l'excès d'ions lithium interagit avec les anions TFSI, influençant les interactions entre les autres ions du système.L'absence d'amélioration de la conductivité dans nos simulations concorde avec les mesures expérimentales récentes, à l'inverse des rapports antérieurs sur les électrolytes hybrides céramique/polyéthylène-oxyde. Des résultats similaires sont observés dans nos simulations pour les nanoparticules d'alumine. Même avec des paramètres de champ de force modifiés, nos simulations indiquent constamment une réduction de la conductivité lors de l'ajout de nanoparticules d'alumine
Hybrid Solid Electrolytes (HSEs) offer a promising alternative to conventional liquid electrolytes in the field of Li-ion batteries. These HSEs incorporate ceramic fillers, typically in nanoparticle form, into polymeric electrolytes. This integration aims to address the primary challenge encountered by Solid Polymeric Electrolytes (SPEs): their lower conductivity when compared to alternatives such as liquid or ceramic electrolytes. However, it remains uncertain whether the addition of ceramic fillers to pure SPEs yields a positive impact. The literature presents two distinct sets of findings. The first, stemming from early experimental research conducted two decades ago, advocates a significant improvement in SPE conductivity through the incorporation of passive ceramic fillers such as silica or alumina across various concentrations and temperatures. Conversely, an opposing perspective has emerged, highlighting outcomes that demonstrate an adverse effect of ceramics on the ionic mobility within SPEs, particularly when the polymer is in its amorphous phase.The ongoing debate in this field calls for a needed clarification. In this thesis, we seek to provide answers to a critical question: Does the inclusion of ceramic nanoparticles in Solid Polymeric Electrolytes enhance or impede ion mobility? To address this inquiry, we employ molecular dynamics simulation techniques to analyze two hybrid systems comprised of Polyethylene Oxide (PEO) as the polymer, LiTFSI as the lithium salt, and either silica or alumina as the ceramic components. Our approach involves classical molecular dynamics simulations using the OPLS-AA force field, enabling us to explore the dynamic behaviors and interactions of these materials over extended time scales, typically spanning tenths of nanoseconds. The force field parameters are examinated from various literature sources, each having undergone individual validation through comparisons with experimental data.We carried out an analysis of their structural properties, closely examining their correlation with the dynamic behavior of ions. This analysis provides a detailed account of the shifts in the system's dynamics.Our results demonstrate a high precision in replicating the temperature-dependent behavior observed in experimental studies of pure SPEs. Moreover, our simulations reproduce the solvation mechanisms of the salt on PEO, serving as a robust validation of our findings for pure SPEs.Our findings concerning the use of silica nanoparticles reveal a substantial reduction in conductivity upon their addition, regardless of the ionic concentration. Most of this reduction can be accounted for by the diffusion equation, resulting from the fact that the space occupied by the nanoparticles is made inactive and unable to sustain ionic diffusion, interupting the movement of the ions. We identify two distinct concentration regimes: one above and one below a threshold concentration of 2 mol/L, which coincides with the point of maximum conductivity. These regimes exhibit contrasting ionic distributions and coordination properties among species. In the low-concentration regime, lithium ions are predominantly coupled to oxygen atoms within the PEO, leading to its saturation at 2 mol/L. In the second regime, the surplus of lithium ions interacts with TFSI anions, influencing interactions among other ions in the system.The absence of conductivity enhancement observed in our simulations aligns with recent experimental measurements, contrary to earlier reports on hybrid ceramic/polyethylene-oxide electrolytes. Similar outcomes are evident in our results for alumina nanoparticles. In the specific case of alumina nanoparticles, we explored the utilization of a new set of force field parameters, resulting in significant alterations in the internal organization of the electrolyte. Despite these variations, our simulations consistently indicate a reduction in conductivity upon the addition of alumina nanoparticles
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Electrolyte solide hybride"

1

Kim, Ji Sook, Sun Hwa Lee e Dong Wook Shin. "Fabrication of Hybrid Solid Electrolyte by LiPF6 Liquid Electrolyte Infiltration into Nano-Porous Na2O-SiO2-B2O3 Glass Membrane". In Solid State Phenomena, 1027–30. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.1027.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Bejjanki, Dinesh, e Sampath Kumar Puttapati. "Supercapacitor Basics (EDLCs, Pseudo, and Hybrid)". In Multidimensional Nanomaterials for Supercapacitors: Next Generation Energy Storage, 29–48. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815223408124010004.

Testo completo
Abstract (sommario):
Over the past few years, supercapacitors have been spotlighted because of the challenges faced by other energy storage systems. The supercapacitor possesses excellent power density and long-term durability with an eco-friendly nature. Due to their wide range of advantages, supercapacitors are applicable especially in electric vehicles, heavy-duty vehicles, telecommunication, electric aircraft, and consumer electronic products. As per the charge storage mechanism, supercapacitors are divided into three categories based on their charge-storing method: electric double-layer capacitors (EDLCs), pseudocapacitors, and hybrid capacitors. The electrode materials such as graphene, activated carbon, metal oxides, conducting polymers, etc., were widely applied, for better performance. The electrolyte is a crucial component in the mechanism of the supercapacitor to run the system at a higher voltage and thus there are various electrolytes such as solid, inorganic, and organic based on the application of the materials, and the electrolytes are chosen. However, the supercapacitors suffer from low energy density. Currently, research is more focused on advanced materials and various synthesis methods to overcome the drawbacks. This chapter provides a detailed understanding of supercapacitors with redox and non-redox reactions -the broad classification of the supercapacitor -their charge storage mechanism -various electrode materials -electrolytes (aqueous, non-aqueous, and solid) and current collectors, etc. Finally, the parameters that help in estimating the performance of supercapacitors are (specific capacitance, energy density, and power density) included.
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Electrolyte solide hybride"

1

Bloomfield, Valerie J., e Robert Townsend. "Hydrodynamic Direct Carbon Fuel Cell". In ASME 2014 8th International Conference on Energy Sustainability collocated with the ASME 2014 12th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/es2014-6593.

Testo completo
Abstract (sommario):
There are many possibilities for the direct carbon fuel cell approach including hydroxide and molten carbonate electrolytes, solid oxides capable of consuming dry carbon, and hybrids of solid oxide and molten carbonate technologies. The challenges in fabricating this type of fuel cell are many including how to transport the dry solids into the reactant chamber and how to transport the spent fuel (ash) out of the chamber for continuous operation[1]. We accomplish ash removal by utilizing a hydrodynamic approach, where inert gas or steam is injected into the anode chamber causing the carbon particles to circulate. This provides a means of moving the particles to a location where they can be separated or removed from the system. The graphic below illustrates how we segregate the spent fuel from the fresh fuel by creating multiple chambers. Each sequential chamber will have a reduced performance until the fuel is fully spent. At that point, the electrolyte/ash mixture can be removed from the cell area and cleaned for recycling or discarded.
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Spoerke, Erik, Martha Gross, Amanda Peretti, Stephen Percival, Leo Small e Mark Rodriguez. "Hybrid Solid State ?Chaperone? Phases to Improve Solid State Sodium Electrolytes." In Proposed for presentation at the 239th Electrochemical Society Meeting held May 30 - June 3, 2021 in Virtual. US DOE, 2021. http://dx.doi.org/10.2172/1870279.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Yoshida, Hideki, Shinji Amaha e Hisataka Yakabe. "Hybrid Systems Using Solid Oxide Fuel Cell and Polymer Electrolyte Fuel Cell". In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66213.

Testo completo
Abstract (sommario):
In this paper, the concept of an SOFC (Solid Oxide Fuel Cell) and PEFC (Polymer Electrolyte Fuel Cell) hybrid system is presented. Large-scale SOFC systems operated in a thermally self-sustainable state produce excess heat. The excess heat can be used for producing hydrogen. Several variations of hydrogen production systems are presented here. One way is to produce the hydrogen by using an extra reformer. Another way is purifying the off-fuel of SOFCs. The produced hydrogen can be used as the fuel for PEFCs. The overall electrical efficiency of a combination of an SOFC and PEFCs is higher than that of a standalone SOFC. When the hydrogen produced by purifying the off-fuel of the SOFC is used as the fuel for PEFCs, the overall electrical conversion efficiency increases by around 20%.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Nishida, Kousuke, Toshimi Takagi e Shinichi Kinoshita. "Analysis of Electrochemical Performance and Exergy Loss in Solid Oxide Fuel Cell". In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38094.

Testo completo
Abstract (sommario):
A solid oxide fuel cell (SOFC) is expected to be applied to the distributed energy systems because of its high thermal efficiency and exhaust gas utilization. The exhaust heat from the SOFC can be transferred to the electric power by a gas turbine, and the high efficiency power generation can be achieved by constructing the SOFC and gas turbine hybrid system. In this study, the local processes in the electrodes and electrolyte of unit SOFC are analyzed taking into account the heat conduction, mass diffusion, electrode reactions and the transport of electron and oxygen ion. The temperature and concentration distributions perpendicular to the electrolyte membrane are shown. The effects of the operating conditions on the cell performance are also shown. Furthermore, the entropy generation and exergy loss of each process in the electrodes and electrolyte are analyzed and the reason for generating the exergy loss in the SOFC is clarified. It is noted that two electrode reactions are responsible for the major exergy loss.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Gallagher, Tanya M., Constantin Ciocanel e Cindy Browder. "Structural Load Bearing Supercapacitors Using a PEGDGE Based Solid Polymer Electrolyte Matrix". In ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2011. http://dx.doi.org/10.1115/smasis2011-5113.

Testo completo
Abstract (sommario):
The interest in developing multifunctional materials has greatly increased in the last decade. Power storage composites are just one class of multifunctional materials that has the potential to lead to significant size and weight reduction. Many electronic devices (i.e. laptops, cellphones, iPods, etc.) and mechanical systems that require or generate electrical power during operation (i.e., hybrid or fully electric cars, wind turbines, airplanes, etc.) could benefit substantially from these materials. While several types of power storage structural composites have been developed to date, i.e. composite batteries and fuel cells, structural load bearing super- and ultra-capacitors appear to be the most promising ones. To date, two classes of structural capacitors have been explored: dielectric and solid electrolyte capacitors; the former are suitable for applications where very high voltage bursts of electrical energy are needed, while the latter are suitable for applications where lower voltage levels are required (i.e. more general power storage/delivery applications). This paper describes the efforts made to develop and characterize electro-mechanically structural supercapacitors. The load-bearing supercapacitors discussed here have been made with carbon fiber weave electrodes and separators of various materials, glued together with a solid polymer electrolyte (SPE) matrix. Electrochemical characterization reported specific capacitances as high as 2.9μF/mm3 and energy densities as high as 4.9 kJ/g.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Hashim, Mohd Azman, Nadhrah Md Yatim, Nor Azura Che Mahmud, Nur Ezniera Shafieza Sazali, Ellisah Hamdan, Mohd Adib Yahya, Che Wan Zanariah Che Wan Ngah e Syahida Suhaimi. "Hybrid solid polymer electrolyte from diapers as separator for electrochemical double layer capacitor (EDLC)". In RECENT ADVANCEMENT ON APPLIED PHYSICS, INDUSTRIAL CHEMISTRY AND CHEMICAL TECHNOLOGY: Proceedings of the International Conference on Recent Advancements in Science and Technology 2017 (ICoRAST2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5041219.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Maclay, James D., Jacob Brouwer e G. Scott Samuelsen. "Diurnal Temperature and Pressure Effects on Axial Turbo-Machinery Stability in Solid Oxide Fuel Cell-Gas Turbine Hybrid Systems". In ASME 2009 7th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2009. http://dx.doi.org/10.1115/fuelcell2009-85057.

Testo completo
Abstract (sommario):
A dynamic model of a 100 MW solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system has been developed and subjected to perturbations in diurnal ambient temperature and pressure as well as load sheds. The dynamic system responses monitored were the fuel cell electrolyte temperature, gas turbine shaft speed, turbine inlet temperature and compressor surge. Using a control strategy that primarily focuses on holding fuel cell electrolyte temperature constant and secondarily on maintaining gas turbine shaft speed, safe operation was found to occur for expected ambient pressure variation ranges and for ambient temperature variations up to 28 K, when tested non-simultaneously. When ambient temperature and pressure were varied simultaneously, stable operation was found to occur when the two are in phase but not when the two are out of phase. The latter case leads to shaft over-speed. Compressor surge was found to be more likely when the system is subjected to a load shed initiated at minimum ambient temperature rather than at maximum ambient temperature. Fuel cell electrolyte temperature was found to be well-controlled except in the case of shaft over-speeds. Turbine inlet temperature remained in safe bounds for all cases.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Kolb, Gregory J., Richard B. Diver e Nathan Siegel. "Central-Station Solar Hydrogen Power Plant". In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76052.

Testo completo
Abstract (sommario):
Solar power towers can be used to make hydrogen on a large scale. Electrolyzers could be used to convert solar electricity produced by the power tower to hydrogen, but this process is relatively inefficient. Rather, efficiency can be much improved if solar heat is directly converted to hydrogen via a thermochemical process. In the research summarized here, the marriage of a high-temperature (∼1000 °C) power tower with a sulfuric acid/hybrid thermochemical cycle (SAHT) was studied. The concept combines a solar power tower, a solid-particle receiver, a particle thermal energy storage system, and a hybrid-sulfuric-acid cycle. The cycle is “hybrid” because it produces hydrogen with a combination of thermal input and an electrolyzer. This solar thermochemical plant is predicted to produce hydrogen at a much lower cost than a solar-electrolyzer plant of similar size. To date, only small lab-scale tests have been conducted to demonstrate the feasibility of a few of the subsystems and a key immediate issue is demonstration of flow stability within the solid-particle receiver. The paper describes the systems analysis that led to the favorable economic conclusions and discusses the future development path.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

K., Lee T., A. Ahmad e N. Hasyareeda. "Preparation and characterization on nano-hybrid composite solid polymer electrolyte of PVdF-HFP /MG49-ZrO2 for battery application". In THE 2014 UKM FST POSTGRADUATE COLLOQUIUM: Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2014 Postgraduate Colloquium. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4895231.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Okada Ahmed, João Jun, e Florian Alain Yannick Pradelle. "NUMERICAL SIMULATION OF AN HYBRID SYSTEM WITH PHOTOVOLTAIC PANELS, ELECTROLYZER AND SOLID OXID FUEL CELL". In 26th International Congress of Mechanical Engineering. ABCM, 2021. http://dx.doi.org/10.26678/abcm.cobem2021.cob2021-0259.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Electrolyte solide hybride"

1

Oh, Kyeong-Seok, Shuai Yuan e Sang-Young Lee. Scalable semi-solid batteries based on hybrid polymer-liquid electrolytes. Peeref, giugno 2023. http://dx.doi.org/10.54985/peeref.2306p1973287.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia