Letteratura scientifica selezionata sul tema "Electrodialysis with bipolar membranes"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Electrodialysis with bipolar membranes".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Articoli di riviste sul tema "Electrodialysis with bipolar membranes":

1

Medina-Collana, Juan Taumaturgo, Jimmy Aurelio Rosales-Huamani, Elmar Javier Franco-Gonzales e Jorge Alberto Montaño-Pisfil. "Factors Influencing the Formation of Salicylic Acid by Bipolar Membranes Electrodialysis". Membranes 12, n. 2 (26 gennaio 2022): 149. http://dx.doi.org/10.3390/membranes12020149.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Salicylic acid is an intermediate product in the synthesis of dyes, medications and aspirin. An electrodialysis module has been constructed with commercial cationic, anionic and bipolar membranes for the conversion of sodium salicylate into salicylic acid. The effect of operating conditions such as applied electric potential, salt concentration, initial acid concentration and volumetric flow on bipolar membrane electrodialysis (BMED) yields were investigated using Taguchi analysis. The results obtained in 210 min of work show an average concentration of salicylic acid of 0.0185 M, an average electric current efficiency of 85.3%, and a specific energy consumption of 2.24 kWh/kg of salicylic acid. It was concluded that the proposed bipolar membrane electrodialysis process is an efficient alternative to produce salicylic acid (SAH) from sodium salicylate (SANa) in an environmentally friendly manner. Furthermore, the production of sodium hydroxide was obtained as a by-product of the process carried out.
2

Jaroszek, Hanna, e Piotr Dydo. "Ion-exchange membranes in chemical synthesis – a review". Open Chemistry 14, n. 1 (1 gennaio 2016): 1–19. http://dx.doi.org/10.1515/chem-2016-0002.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractThe applicability of ion-exchange membranes (IEMs) in chemical synthesis was discussed based on the existing literature. At first, a brief description of properties and structures of commercially available ion-exchange membranes was provided. Then, the IEM-based synthesis methods reported in the literature were summarized, and areas of their application were discussed. The methods in question, namely: membrane electrolysis, electro-electrodialysis, electrodialysis metathesis, ion-substitution electrodialysis and electrodialysis with bipolar membrane, were found to be applicable for a number of organic and inorganic syntheses and acid/base production or recovery processes, which can be conducted in aqueous and non-aqueous solvents. The number and the quality of the scientific reports found indicate a great potential for IEMs in chemical synthesis.
3

Kozaderova, Olga A., Ksenia B. Kim, Petr E. Belousov, Anna V. Timkova e Sabukhi I. Niftaliev. "Electrodialysis of a sodium sulphate solution with experimental bentonite-modified bipolar membranes". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 23, n. 4 (24 novembre 2021): 518–28. http://dx.doi.org/10.17308/kcmf.2021.23/3670.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The aim of this work is to study the characteristics of the electrodialysis of a sodium sulphate solution with experimental bipolar membranes based on the MA-41 anion exchange membrane and a liquid sulphonated cation-exchanger modified with bentonite clays. The conversion of sodium sulphate was conducted by electrodialysis with bipolar membranes obtained by applying a liquid sulphonated cation-exchanger containing particles of bentonite clay to the MA-41 anion-exchange membrane.To increase the performance of membranes in terms of hydrogen and hydroxyl ions, we carried out organomodifications of bentonite with alkyldimethylbenzylammonium chloride and stearic acid at various concentrations. The bipolar membrane with the addition of bentonite modified with alkyldimethylbenzylammonium chloride (2 wt%) showed a higher performance in terms of H+-ions. The bipolar membrane with bentonite modified with stearic acid (3 wt%) added to its cation-exchangelayer is the most effective in terms of obtaining a flux of OH--ions. It was shown that a combination ofalkyldimethylbenzylammonium chloride (2 wt%) and stearic acid (3 wt%) used to modify bentonite can increase the performance of the bipolar membrane during the conversion of sodium sulphate, both in terms of the acid and alkali.
4

Hülber-Beyer, Éva, Katalin Bélafi-Bakó e Nándor Nemestóthy. "Low-waste fermentation-derived organic acid production by bipolar membrane electrodialysis—an overview". Chemical Papers 75, n. 10 (5 giugno 2021): 5223–34. http://dx.doi.org/10.1007/s11696-021-01720-w.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
AbstractOrganic acids, e.g, citric acid, fumaric acid, lactic acid, malic acid, pyruvic acid and succinic acid, have important role in the food industry and are potential raw materials for the sustainable chemical industry. Their fermentative production based on renewable raw materials requires innovatively designed downstream processing to maintain low environmental impact and resource efficiency throughout the production process. The application of bipolar membranes offers clean and effective way to generate hydrogen ions required for free acid production from its salt. The water dissociation reaction inside the bipolar membrane triggered by electric field plays key role in providing hydrogen ion for the replacement of the cations in organic acid salts. Combined with monopolar ion-exchange membranes in a bipolar membrane electrodialysis process, material flow can be separated beside the product stream into additional reusable streams, thus minimizing the waste generation. This paper focuses on bipolar membrane electrodialysis applied for organic acid recovery from fermentation broth.
5

Bhadja, Vaibhavee, Saroj Sharma, Vaibhav Kulshrestha e Uma Chatterjee. "Preparation of heterogeneous bipolar membranes and their performance evaluation for the regeneration of acid and alkali". RSC Advances 5, n. 71 (2015): 57632–39. http://dx.doi.org/10.1039/c5ra08260a.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Herrero-Gonzalez, Marta, Pedro Diaz-Guridi, Antonio Dominguez-Ramos, Raquel Ibañez e Angel Irabien. "Photovoltaic solar electrodialysis with bipolar membranes". Desalination 433 (maggio 2018): 155–63. http://dx.doi.org/10.1016/j.desal.2018.01.015.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Zhao, Di, Jinyun Xu, Yu Sun, Minjing Li, Guoqiang Zhong, Xudong Hu, Jiefang Sun et al. "Composition and Structure Progress of the Catalytic Interface Layer for Bipolar Membrane". Nanomaterials 12, n. 16 (21 agosto 2022): 2874. http://dx.doi.org/10.3390/nano12162874.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Bipolar membranes, a new type of composite ion exchange membrane, contain an anion exchange layer, a cation exchange layer and an interface layer. The interface layer or junction is the connection between the anion and cation exchange layers. Water is dissociated into protons and hydroxide ions at the junction, which provides solutions to many challenges in the chemical, environmental and energy fields. By combining bipolar membranes with electrodialysis technology, acids and bases could be produced with low cost and high efficiency. The interface layer or junction of bipolar membranes (BPMs) is the connection between the anion and cation exchange layers, which the membrane and interface layer modification are vital for improving the performance of BPMs. This paper reviews the effect of modification of a bipolar membrane interface layer on water dissociation efficiency and voltage across the membrane, which divides into three aspects: organic materials, inorganic materials and newly designed materials with multiple components. The structure of the interface layer is also introduced on the performance of bipolar membranes. In addition, the remainder of this review discusses the challenges and opportunities for the development of more efficient, sustainable and practical bipolar membranes.
8

George, Thomas Young, Lucie Mangold, Cliffton Wang, Daniel P. Schrag e Michael J. Aziz. "Electrochemical Direct Air Capture of Carbon Dioxide by a Redox-Mediated Salt Splitting Process". ECS Meeting Abstracts MA2023-02, n. 25 (22 dicembre 2023): 1389. http://dx.doi.org/10.1149/ma2023-02251389mtgabs.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Direct air capture of carbon dioxide is an important emerging direction for electrochemical separation technology. Carbon dioxide removal has a critical role to play in the coming century as a complement to deep decarbonization efforts, because removal may offset emissions we cannot avoid, such as agriculture for food security. Direct air capture might even be used to decrease the atmospheric carbon dioxide level if the value at which it stabilizes is deemed too high. Electrochemical methods allow us to power a carbon removal device directly by carbon-free electricity. Here, we present a salt splitting process, based on bipolar membrane electrodialysis, which begins with a neutral electrolyte (e.g. KCl), and creates a strong base (e.g., KOH) and a strong acid (e.g., HCl). The base may then be used to absorb carbon dioxide from ambient air; the acid is then used to extract the carbon dioxide by recombining with the base, reversing the salt splitting process. The process is driven by iron(II/III) hexacyanide redox on carbon cloth electrodes, which is kinetically facile and contributes relatively little to the cell voltage. Energy required for redox-mediated salt splitting depends on contributions from water dissociation in the bipolar membrane, ohmic resistances in ion exchange membranes and electrolyte layers, and electrode reactions. We show that the largest contribution to the energy required comes from the bipolar membrane, motivating further research on bipolar membrane development. We also discuss the role of ion exchange membranes in this system: these membranes must provide high ion conductivity while providing selectivity against leakage of acid and base products. Several commercial membranes were screened for conductivity and water content, and their electrodialysis performance is compared. Finally, we use technoeconomic modeling to assess how electrodialysis operating conditions and electrolyte composition affect energy, land, and water demands of a continuously operating direct air capture process, with redox-mediated salt splitting as the centerpiece. Figure 1
9

Herrero-Gonzalez, Marta, e Raquel Ibañez. "Chemical and Energy Recovery Alternatives in SWRO Desalination through Electro-Membrane Technologies". Applied Sciences 11, n. 17 (31 agosto 2021): 8100. http://dx.doi.org/10.3390/app11178100.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Electro-membrane technologies are versatile processes that could contribute towards more sustainable seawater reverse osmosis (SWRO) desalination in both freshwater production and brine management, facilitating the recovery of materials and energy and driving the introduction of the circular economy paradigm in the desalination industry. Besides the potential possibilities, the implementation of electro-membrane technologies remains a challenge. The aim of this work is to present and evaluate different alternatives for harvesting renewable energy and the recovery of chemicals on an SWRO facility by means of electro-membrane technology. Acid and base self-supply by means of electrodialysis with bipolar membranes is considered, together with salinity gradient energy harvesting by means of reverse electrodialysis and pH gradient energy by means of reverse electrodialysis with bipolar membranes. The potential benefits of the proposed alternatives rely on environmental impact reduction is three-fold: (a) water bodies protection, as direct brine discharge is avoided, (b) improvements in the climate change indicator, as the recovery of renewable energy reduces the indirect emissions related to energy production, and (c) reduction of raw material consumption, as the main chemicals used in the facility are produced in-situ. Moreover, further development towards an increase in their technology readiness level (TRL) and cost reduction are the main challenges to face.
10

Huang, Chuanhui, e Tongwen Xu. "Electrodialysis with Bipolar Membranes for Sustainable Development". Environmental Science & Technology 40, n. 17 (settembre 2006): 5233–43. http://dx.doi.org/10.1021/es060039p.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Tesi sul tema "Electrodialysis with bipolar membranes":

1

Balster, Jörg Henning. "Membrane module and process development for monopolar and bipolar membrane electrodialysis". Enschede : University of Twente [Host], 2006. http://doc.utwente.nl/57595.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Xia, Jiabing [Verfasser], e Ulrich [Akademischer Betreuer] Nieken. "Reverse electrodialysis with bipolar membranes (REDBP) as an energy storage system / Jiabing Xia ; Betreuer: Ulrich Nieken". Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2018. http://d-nb.info/1175951293/34.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Lundblad, Helena. "Split of sodium and sulfur in a Kraft mill and internal production of sulfuric acid and sodium hydroxide". Thesis, KTH, Skolan för kemivetenskap (CHE), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-158486.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
The removal of lignin in a Kraft pulp mill, with the aim to utilize the lignin as more value added green product than just firing lignin in black liquor, is possible with a LignoBoost plant. The LignoBoost plant uses sulfuric acid in the process and this results in an increased net input of sulfur to the pulp mills recovery cycle. The sodium/sulfur balance in a Kraft pulp mill is an important factor to be able to run a mill optimal. The increased input of sulfur into the mill when implementing a LignoBoost plant is therefore an issue to address. A too high sulfur/sodium ratio in the Kraft pulp mill is often solved by purging electrostatic precipitator dust from the recovery boiler. The major component of the ESP dust is sodium sulfate. When purging ESP dust from the recovery boiler the mill loose sodium and the need of sodium make-up increases. A large extent of the ESP dust that is not purged is returned to the recovery cycle of the mill via the evaporation plant. If the recycled sodium sulfate could be split and returned to the recovery cycle as one controlled sodium- and one controlled sulfur component or at least split into two flows where sulfur is enriched in one flow and sodium in the other flow, the sodium/sulfur balance would be easier controlled. In this master thesis the split of sodium and sulfur in sodium sulfate is addressed. The aim is to study opportunities to: • Enrich sodium and sulfur in two flows from the dissolved ESP dust, which is normally recycled to the evaporation plant. • Produce one sulfur component and one sodium component that can be utilized in the Kraft pulp mill, especially in an integrated LignoBoost process. • Accomplish this by using an electrochemical split of the sodium sulfate from the ESP dust to generate sodium hydroxide and sulfuric acid.   To be able to produce one sulfur component and one sodium component from the dissolved ESP dust an electrodialysis with or without bipolar membranes is the method to use decided after contact with Eka Chemicals research and development department and literature studies. An electrodialysis cell produces sodium hydroxide and sulfuric acid, from the sodium sulfate solution, that can be used in the Kraft pulp mill. The difficulty by using an electrochemical cell with ion selective membranes is the need of a pure feed to the cell. If a high content of contaminations, such as multivalent ions, is present in the feed solution to the cell scaling can be formed. Scaling leads to shorter membrane life that result in higher operational cost for the cell stack. Due to the multivalent ions in the electrostatic dust a pre-treatment such as carbonate- and hydroxide precipitation removal of the ions is suggested, which results in a decrease of the multivalent ions in the feed solution.   In previous work concerning electrochemical split of sodium sulfate the lack of utilization for the produced acid became negative in an economical point of view. The need of sulfuric acid to the LignoBoost plant is an advantage for the economical study. In this master thesis is:   • An economical case study for the implementation of an electrochemical cell, electrodialysis with or without a bipolar membrane, in a Kraft pulp mill performed. • A sensitivity analysis performed and evaluated in the aim of addressing the change in payback time due to alternating: Sodium price Membrane life Utilization of the acid produced from the electrochemical cell. The economical case study concerns a Kraft pulp mill with a LignoBoost plant. Utilization of the acid to the LignoBoost- and tall oil plant is varied, as is the membrane life for the cell stack. The membrane life is varied due to the difficulty of predicting the ESP-feed solutions affect on the membranes. The feed solution has to be tested in a cell to decide the real life for the membrane in this case.   The electrodialysis cell with bipolar membranes indicates promising economical gain for future implementation in a mill with LignoBoost lignin removal compared to the electrodialysis cell that indicates no economical gain for future implementation in a mill. For a mill with both a LignoBoost plant and a tall oil plant, i.e. optimized utilization of acid from the electrodialysis with bipolar membrane, and a five years membrane life in the cell, a payback of one and a half year can be reached. The same case but for an electrodialysis results in nine and a half payback years. The sensitivity analysis show that compared to the electrodialysis with bipolar membrane, the electrodialysis cell is more vulnerable to changes for the acid utilization, sodium hydroxide price and membrane life. The BME cell is most affected by changes in the sodium hydroxide price and the ED cell affects most by changes in the membrane life.
4

Abou-Diab, Mira. "Production éco-circulaire de peptides antibactériens, antifongiques et antioxydants déminéralisés à partir d'hémoglobine bovine par électrodialyse avec membranes bipolaires : étude de faisabilité, mécanisme enzymatique, optimisation des paramètres, comparaison avec l'hydrolyse conventionnelle et prévention du colmatage". Electronic Thesis or Diss., Université de Lille (2018-2021), 2021. http://www.theses.fr/2021LILUR031.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Le cruor bovin, déchet des abattoirs est produit en très grande quantité dans le monde. Ce coproduit est composé principalement d'hémoglobine, une protéine riche en peptides bioactifs après son hydrolyse enzymatique. Cependant, lors de l'hydrolyse conventionnelle par la pepsine, des agents chimiques sont nécessaires pour ajuster et réguler le pH de la solution et, les hydrolysats finaux produits contiennent des niveaux élevés en sels minéraux. Pour pallier ces inconvénients, il a été proposé d'appliquer dans cette étude, pour la première fois, une technologie verte, appelée électrodialyse avec membrane bipolaire (EDMB), comme méthode alternative à l'hydrolyse enzymatique conventionnelle de l'hémoglobine afin d’obtenir des peptides bioactifs purifiés. Les objectifs de cette thèse étaient de tester la faisabilité de ce nouveau procédé pour la production de peptides bioactifs à partir d'hémoglobine bovine, d'établir les conditions optimales, d'éviter le colmatage membranaire et d'appliquer un nouveau procédé original d’EDMB à « multiple-étapes » permettant la production de peptides bioactifs déminéralisés sans ajout de produits chimiques. Des configurations bipolaires/monopolaires (anioniques ou cationiques) utilisant les ions H+ et OH- générés par les membranes bipolaires pour réguler le pH ont été étudiées et comparées à un procédé conventionnel utilisant des acides et des bases chimiques. La configuration d’EDMB formée avec les membranes cationiques a permis la production d'hydrolysats contenant une faible concentration en sels minéraux mais avec la présence d’un colmatage sur la membrane cationique, alors que la configuration d’EDMB utilisant des membranes anioniques a permis la production d'hydrolysats sans colmatage mais avec une concentration en sel similaire à celle de l’hydrolyse conventionnelle (contrôle). En se basant sur ces résultats, une nouvelle configuration d’EDMB à 3 compartiments a été mise en place et étudiée pour dénaturer l'hémoglobine, inactiver la réaction enzymatique et déminéraliser à 85% l'hydrolysat peptidique en simultané. Cependant, un colmatage a encore été observé sur la membrane anionique en raison de la précipitation de l'hème. Pour cette raison, une étape supplémentaire de décoloration a été réalisée avant la déminéralisation pour éviter le colmatage en utilisant l'acide électro-généré. Les peptides décolorés et déminéralisés récupérés ont montré une activité antioxydante, une activité antibactérienne contre plusieurs souches bactériennes (Gram + et Gram -) et pour la première fois une activité antifongique contre de nombreuses souches de moisissures et de levures. Dans un contexte d’économie circulaire, cette technologie durable s'avèrerait efficace pour effectuer plusieurs opérations simultanément et présente un potentiel important au niveau industriel pour l'hydrolyse du sang, puisqu'elle produit des bio-peptides purifiés ayant une faible teneur en sels minéraux et pouvant être utilisés comme conservateurs naturels sur la viande
Bovine cruor, a slaughterhouse waste, is produced in large quantities all around the world. This co-product was mainly composed of hemoglobin, a protein rich in bioactive peptides after its enzymatic hydrolysis. However, during conventional hydrolysis, chemical agents are necessary to adjust/regulate the pH of the solution and the final hydrolysates produced contain high levels of mineral salts. Therefore, in this study, it is proposed to apply, for the first time, a green technology, named electrodialysis with bipolar membrane (EDBM), as an alternative method to the conventional enzymatic hydrolysis of hemoglobin to obtain purified bioactive peptides. The main objectives of the present thesis were to test the feasibility of this new process to produce bioactive peptides from bovine hemoglobin, to establish the optimal conditions, to avoid membrane fouling and to apply a new original « multiple-step » EDMB process allowing the production of demineralized bioactive peptides without the addition of chemical salts. Bipolar/monopolar (anionic or cationic) configurations using the H+ and OH- generated by the bipolar membranes to regulate the pH were investigated and compared to a conventional process using chemical acid and base. The EDBM configuration formed with cationic membranes allowed the production of hydrolysates containing a low concentration of mineral salts but with fouling formation on the cationic membrane, while EDBM configuration formed with anionic membranes allowed the production of hydrolysates without fouling but with a similar salt concentration than the control. Based on these results, a new 3 compartments EDBM configuration was carried-out for denaturing the hemoglobin, inactivating the enzymatic reaction and demineralizing up to 85% the hemoglobin hydrolysate simultaneously. However, a fouling was still observed on the anionic membrane due to hem precipitation. For this reason, an additional step of discoloration was tested before the demineralization to avoid fouling using the electrogenerated acid. The discolored and demineralized peptides recovered showed antioxidant activity, antibacterial activity against many bacterial strains (Gram + and Gram -) and for the first time antifungal activity against many molds and yeasts strains. Moving towards a circular economy, this sustainable technology has found to be effective in performing multiple operations simultaneously and has a great potential for industrial hydrolysis of blood, since it produces purified biopeptides with a low mineral content and can be used as natural preservatives on meat
5

Lu, Wei. "Étude de l'échange d'ions modulé électriquement : application du couplage échange d'ions-électrodialyse à la séparation de biomolécules". Thesis, Vandoeuvre-les-Nancy, INPL, 2010. http://www.theses.fr/2010INPL027N/document.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Le présent travail vise à étudier le couplage de l’échange d’ions et de l’électrodialyse. Cette étude est appliquée à la séparation de biomolécules. Un des objectifs est de diminuer la génération d’effluents salins produits par les étapes d’échange d’ions utilisées de façon classique dans les bioséparations. Une première approche a conduit à la conception d’une architecture avec un mode de fonctionnement cyclique en 3 étapes qui permet de purifier certaines familles de peptides sans utiliser de tampon de pH ni générer d’effluents. Le dispositif expérimental est constitué d’une cellule d’électrodialyse dans laquelle sont introduites des résines échangeuses d’anions. Les trois étapes sont les suivantes : fixation des biomolécules sur la résine initialement sous forme carbonate, élution par une solution de dioxyde de carbone dissous dans l’eau, électrorégénération de la résine sous sa forme initiale, conduisant simultanément à la régénération de la solution d’acide carbonique. L’étape d’électrorégénération a été modélisée et les simulations permettent d’améliorer la compréhension des processus couplés mis en jeu comme les équilibres d’échange d’ions, les équilibres en solution, l’électromigration. Une deuxième approche a ensuite consisté à étudier les possibilités de contrôle du pH par voie électrochimique, afin de limiter l’utilisation de solutions tampons. La dissociation de l’eau, conduisant à la formation de protons et d’ions hydroxyles, a été plus particulièrement étudiée en mettant à profit les propriétés des contacts dits « bipolaires » sous l’effet d’un champ électrique. Il s’est alors avéré que les choix du type de résine et de la densité de courant permettent de jouer sur le pH Toutefois ce travail doit être poursuivi par la recherche d’architectures et de modes opératoires qui permettent d’obtenir un pouvoir tampon adéquat
The present work aims to study the coupling of ion exchange and electrodialysis. This study is applied to the separation of biomolecules. One objective is to reduce the generation of saline wastewater produced by the ion exchange steps used conventionally in bioseparations. One approach has led to the design of architecture with a cyclic mode in 3 steps to purify some families of peptides without using a buffer pH or generate wastes. The experimental device consists of an electrodialysis cell in which are introduced anion exchange resins. The three steps are: loading of biomolecules on the resin initially in the carbonate form, elution with a solution of carbon dioxide dissolved in water, electroregeneration of the resin in its original form leading simultaneously to the regeneration of the carbonic acid solution. Using a modelling of the electroregeneration step, simulations can improve the understanding of coupled processes as the ion exchange equilibria, the equilibria in solution, the electromigration. A second approach has then been to study the possibilities of controlling the pH by electrochemical means to limit the use of buffers. The dissociation of water, leading to the formation of protons and hydroxyl ions, has been particularly studied by accounting the properties of contacts called « bipolar » as a result of an electric field. It was established that the choice of resin type and the current density can modify the pH. However this work must be pursued through research of architectures and operating procedures that deliver appropriate buffer capacity
6

CULCASI, Andrea. "ELECTRICAL ENERGY STORAGE DEVICES BASED ON pH AND SALINITY GRADIENTS: MODELLING, EXPERIMENTS AND PILOTING". Doctoral thesis, Università degli Studi di Palermo, 2021. http://hdl.handle.net/10447/478993.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Davis, Jake Ryan. "Production of Expendable Reagents from Raw Waters and Industrial Wastes". Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/344216.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
A couple of processes for electrosynthetic production of expendable reagents, namely acids, bases, and oxidants, from the native salt content of raw waters and industrial wastes were investigated, and the composition of mixed acids and bases made of sodium sulfate or sodium chloride salts were predicted using a model predicated on conservation principles, mass action relations, and Pitzer equations. Electrodialysis with bipolar membranes (BMED) was used to produce acids and bases in a single pass. Product concentration was limited only by the salt content of the feed water. The current efficiency for acid production was slightly higher than that for base, but neither dropped below 75%. Acid and base current utilization showed the same trends with respect to feed salt content and flow velocity, with higher efficiency at higher feed salt concentrations and flow velocities. Operating the BMED stack near the limiting current density of the bipolar membrane (BLCD) or above the limiting current density of the diluate compartment (LCD) decreased current efficiency and increased electrical power dissipation. Electrodialytic acid and base production was approximately10 times cheaper than the chemicals' f.o.b. unit costs as quoted on Alibaba.com. The mechanism and cost of on site peroxodisulfuric acid production by electrolysis of sulfuric acid solutions with boron doped diamond film anodes was investigated experimentally and with molecular dynamics (MD) and density functional theory (DFT) simulations. The cost of on site peroxodisulfate production was approximately 4 times less expensive than purchasing a 25 lb bag. It was shown that direct discharge of sulfate species produces sulfate radicals, which subsequently combined to form peroxodisulfuric acid. The likely hood of these reactions was dependent on electrode surface condition. Sulfate radicals could also be produced in solution by reaction with hydroxyl radicals generated by water discharge.
8

Jaouadi, Meyssa. "Étude d'un procédé hybride de séparation couplant l’électrodialyse à membrane bipolaire et l’échange d'ions : application à la valorisation de solutions diluées d'acide organique". Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0208/document.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Le présent travail est dédié à l’étude d’un procédé hybride couplant l’électrodialyse à membrane bipolaire et l’échange d’ions. Cette étude est appliquée au traitement de solutions diluées d’acide acétique. L’objectif est double : acquérir une compréhension théorique des processus de transfert et des mécanismes qui impactent la consommation énergétique de ce système hybride et, de façon plus appliquée, proposer une configuration de cellule qui permette d’éliminer l’acide de la solution traitée en la transférant vers un compartiment de concentration. Cette configuration doit permettre d’obtenir le taux de purification le plus élevé possible tout en minimisant la consommation d’énergie. Des critères visant à optimiser le choix des résines échangeuses d’ions (fortes ou faibles) dans les compartiments de dilution sont proposés. L’intérêt de l’utilisation d’une résine cationique forte sous forme H+ dans le compartiment de concentration est par ailleurs mise en évidence, conduisant à une diminution de la résistance du compartiment et de ce fait de la consommation d’énergie. Une étude réalisée sur des systèmes « couplés » et « découplés » a permis d’identifier les contributions résistives des différents éléments de l’empilement. Cette approche a conduit à la détermination des paramètres d’un modèle qui permet de prévoir la résistance électrique d’un lit de résine dans une solution donnée. Les consommations spécifiques d’énergie (kWh/kg d’acide transféré) ont été évaluées en fonction du taux de purification souhaité. L’ensemble de l’étude a permis d’établir des recommandations pour la conception de la cellule et pour le choix des paramètres opératoires
This work is dedicated to the study of a hybrid separation process involving bipolar membrane electrodialysis and ion exchange. This study is applied to the treatment of diluted effluents. The aim is first to acquire a theoretical understanding of transfer processes and mechanisms that affect energy consumption of this hybrid system. Then, in a more applied way, the objective is to be able to propose a cell configuration that allows to remove the acid from the treated solution by transferring it to a concentration compartment. This configuration must allow to obtain the highest purification rates as possible while minimizing energy consumption. Criteria aiming at optimizing ion exchange resins (strong or weak) in dilution compartment are proposed. The interest of the introduction of strong cationic resin under H+ form in the concentrated compartment is highlighted, as it enables reducing compartment resistance and hence energy consumption. Furthermore, experimental measurements successively conducted with “decoupled” and “coupled” systems identified resistive contributions of the different elements of the stack. This approach led to the determination of parameters of a model which predicts the resin bed electrical resistance in a given solution. Specific energy consumption (kWh/Kg transferred acid) was evaluated as a function of the desired purification rate. All the work led to recommendations for the cell design and for the choice of operating parameters
9

Schab, Frédéric. "Étude comparative des procédés d'électrodialyse et d'électrodéionisation : application à la fabrication d'acide lactique". Thesis, Vandoeuvre-les-Nancy, INPL, 2007. http://www.theses.fr/2007INPL035N/document.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Le présent travail porte sur l’étude comparative des procédés d’électrodialyse et d’électrodéionisation. Les possibilités d’application des procédés électro-membranaires à la production d’acide lactique par voie fermentaire sont investiguées. Deux axes de recherche sont choisis : le premier consiste à extraire de manière continue le lactate de sodium hors du milieu de fermentation. Pour cela, un empilement d’électrodialyse ne comportant que des membranes anioniques est couplé au fermenteur : environ 95 % des ions lactate sont extraits lors de l’opération. Par comparaison avec une fermentation témoin en mode batch, aucune inhibition de la fermentation n’est observée, et la productivité est multipliée par 13. Le deuxième axe de recherche consiste à convertir le lactate de sodium en acide lactique : un taux de purification comparable à celui obtenu en échange d’ions est recherché. Un procédé continu d’électrodéionisation à membranes bipolaires permettant d’atteindre 99,9 % de taux de conversion est élaboré pour le traitement de produit dilué. Est présentée finalement la modélisation mathématique d’un compartiment d’électodéionisation : les points expérimentaux sont fortement similaires aux points recalculés
This work deals with the comparative study of electrodialysis and electrodeionization. The possibilities to integrate the electro-membrane processes in the lactic acid fermentive production lines are investigated. Two main research ways are chosen : the first one lies in the continuous extraction of natrium lactate out of the fermentation middle. For this, an electrodialysis stack of only anionic membranes is coupled with the fermenter : approximately 95 % of lactate are removed during the operation. By comparison with a standard fermentation in batch mode, no inhibition is observed, and the productivity is increased by 13. The second way is to convert the natrium lactate in lactic acid : a high purity rate is seeked. A continuous electrodeioniation process including bipolar membranes, leading to 99,9% conversion rate, is elaborated for the treatment of diluted solutions. Finally is presented the mathematic calculation of an electrodeionization compartment : experimental points and calculated values are very similar
10

Gabrielsson, Erik O. "Monopolar and Bipolar Membranes in Organic Bioelectronic Devices". Doctoral thesis, Linköpings universitet, Fysik och elektroteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-110406.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
In the 1970s it was discovered that organic polymers, a class of materials otherwise best know as insulating plastics, could be made electronically conductive. As an alternative to silicon semiconductors, organic polymers offer many novel features, characteristics, and opportunities, such as producing electronics at low costs using printing techniques, using organic chemistry to tune optical and electronic properties, and mechanical flexibility. The conducting organic polymers have been used in a vast array of devices, exemplified by organic transistors, light-emitting diodes, and solar cells. Due to their softness, biocompatibility, and combined electronic and ionic transport, organic electronic materials are also well suited as the active material in bioelectronic applications, a scientific and engineering area in which electronics interface with biology. The coupling of ions and electrons is especially interesting, as ions serve as signal carriers in all living organisms, thus offering a direct translation of electronic and ionic signals. To further enable complex control of ionic fluxes, organic electronic materials can be integrated with various ionic components, such as ion-conducting diodes and transistors. This thesis reports a background to the field of organic bioelectronic and ionic devices, and also presents the integration of ionic functions into organic bioelectronic devices. First, an electrophoretic drug delivery device is presented, capable of delivering ions at high spatiotemporal resolution. The device, called the organic electronic ion pump, is used to electronically control amyloid-like aggregation kinetics and morphology of peptides, and offers an interesting method for studying amyloids in vitro. Second, various ion-conducting diodes based on bipolar membranes are described. These diodes show high rectification ratio, i.e. conduct ions better for positive than for negative applied voltage. Simple ion diode based circuits, such as an AND gate and a full-wave rectifier, are also reported. The AND gate is intended as an addressable pH pixel to regulate for example amyloid aggregation, while the full-wave rectifier decouples the electrochemical capacity of an electrode from the amount of ionic charge it can generate. Third, an ion transistor, also based on bipolar membranes, is presented. This transistor can amplify and control ionic currents, and is suitable for building complex ionic logic circuits. Together, these results provide a basic toolbox of ionic components that is suitable for building more complex and/or implantable organic bioelectronic devices.

Libri sul tema "Electrodialysis with bipolar membranes":

1

Davis, Thomas A. A first course in ion permeable membranes. Romsey, England: Electrochemical Consultancy, 1997.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Grebeni͡uk, V. D. Ėlektromembrannoe razdelenie smeseĭ. Kiev: Nauk. dumka, 1992.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Koumoundouros, James A. Recaustization of kraft black liquor via bipolar electrodialysis: Final report. Plainfield, Ill: HPD Inc., 1990.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Strathmann, H. Ion-exchange membrane separation processes. Amsterdam: Elsevier, 2004.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Koumoundouros, James. Recaustization of kraft black liquor via bipolar electrodialysis. U.S. Dept. of Energy. Office of Industri, 1990.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Bose, Arun. Inorganic Membranes for Energy and Environmental Applications. Springer, 2010.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Capitoli di libri sul tema "Electrodialysis with bipolar membranes":

1

Strathmann, Heiner. "Electrodialysis with Bipolar Membranes". In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_64-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Strathmann, Heiner. "Electrodialysis with Bipolar Membranes". In Encyclopedia of Membranes, 634–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_64.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Strathmann, Heiner. "Electrodialysis". In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_677-1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Strathmann, Heiner. "Electrodialysis". In Encyclopedia of Membranes, 632–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_677.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Böddeker, Karl W. "Electrodialysis". In Liquid Separations with Membranes, 51–56. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97451-4_4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Dydo, Piotr, e Marian Turek. "Reverse Electrodialysis". In Encyclopedia of Membranes, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_519-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Strathmann, H. "Electrodialysis". In Synthetic Membranes: Science, Engineering and Applications, 197–223. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4712-2_8.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Dydo, Piotr, e Marian Turek. "Reverse Electrodialysis (RED)". In Encyclopedia of Membranes, 1732–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_519.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Ferreira, Carlos A., Franciélli Müller e Franco D. R. Amado. "Ionic Membranes". In Electrodialysis and Water Reuse, 41–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40249-4_5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Dydo, Piotr. "Boron Removal by Electrodialysis". In Encyclopedia of Membranes, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-40872-4_75-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Atti di convegni sul tema "Electrodialysis with bipolar membranes":

1

Bai, Peng, Paul Sharratt, Tze Yuen Yeo e Jie Bu. "Mineral Carbonation Accelerated by a Bipolar Membrane Electrodialysis Approach". In 14th Asia Pacific Confederation of Chemical Engineering Congress. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-1445-1_523.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Ionescu, Viorel. "A simple one-dimensional model for analysis of a bipolar membrane used in electrodialysis desalination". In Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies XI, a cura di Marian Vladescu, Ionica Cristea e Razvan D. Tamas. SPIE, 2023. http://dx.doi.org/10.1117/12.2643277.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

ABOU DIAB, Mira, Laurent Bazinet e Naima Nedjar. "Development of a New Innovative Process for the Production of Bioactive Peptides Resulting from the Enzymatic Hydrolysis of Bovine Hemoglobin: Electrodialysis with Bipolar Membranes". In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.212.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Faucher, Mélanie, Véronique Perreault, Sami Gaaloul, Ozan Ciftci e Laurent Bazinet. "Phospholipid Recovery from Sweet Whey and Whey Protein Concentrate: Use of Electrodialysis with Bipolar Membrane Combined with a Dilution". In Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists’ Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.470.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Abou Diab, Mira. "Feasibility of Electrodialysis with Bipolar Membrane for Regulating the pH of the Reaction During the Hydrolysis of Hemoglobin to Obtain Bioactive Peptides". In Virtual 2020 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2020. http://dx.doi.org/10.21748/am20.218.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Klaysom, Chalida, Leatitia Germain, Shawn Burr, Bradley P. Ladewig, Lianzhou Wang, Joe D. da Costa e G. Q. M. Lu. "Preparation of new composite membranes for water desalination using electrodialysis". In Smart Materials, Nano-and Micro-Smart Systems, a cura di Nicolas H. Voelcker e Helmut W. Thissen. SPIE, 2008. http://dx.doi.org/10.1117/12.810443.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Tanaka, Nobuyuki, Tetsuya Yamaki, Masaharu Asano, Yasunari Maekawas, Kaoru Onuki e Ryutaro Hino. "Stability of Radiation Grafted Membranes in Electro-Electrodialysis of HIX Solution". In 18th International Conference on Nuclear Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/icone18-29359.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
Japan Atomic Energy Agency has been conducting research and development on a thermochemical water-splitting cycle featuring iodine- and sulfur-compounds (called an IS process) as one of promising heat utilization systems of High Temperature Gas-Cooled Reactors. We have prepared polymer electrolyte membranes by the radiation-induced graft polymerization and cross-linking methods and then have investigated their applicability to electro-electrodialysis (EED) for concentrating HI in an HI-I2-H2O mixture. For practical applications, EED membranes are required to be stable in the severe environment of high-temperature strongly acidic solutions. We thus examined thermal, chemical and electrochemical stabilities of the radiation-grafted membranes under the conditions of the actual EED operation over 100 hours, while measuring the time evolution of a cell voltage and a change in the ion exchange capacity between the EED experiment. The results showed that chemical cross-linking in the graft chains could largely improve the membrane stability.
8

Barreau, J. M., T. Bouet, C. Gavach, J. Seta, P. Amblard e X. Bouisson. "Chemical Resistance of Electrodialysis Membranes for their Utilisation in a Water Recycling System". In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/921402.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Amaral, Sean, Neil Franklin, Michael Jurkowski e Mansour Zenouzi. "Salinity Gradient Power Experiment Using Reverse Electrodialysis". In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40248.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Abstract (sommario):
A relatively new form of alternative energy known as reverse electrodialysis (RED) appears to be one of the promising energy sources of the future. This technology harvests the energy stored in the salinity gradient between two different liquids, and converts it directly into electric power. This power is generated by pumping water through an array of alternating pairs of cation and anion exchange membranes called cells. An experimental system was designed and assembled with cells 61 cm × 16.5 cm. Along with having much larger dimensions than the prototype systems reported in the literature, the design has an adjustable number of cells in the stack, allowing users to obtain test results at a variety of settings. Comparing the output of systems with few cells to systems with a higher number of cells will help us to optimize the stack size in terms of hydrodynamic losses. Tests results have shown a voltage output of 1.98V, 83% of the predicted output. The current and power produced by the system did not meet theoretical output levels, but our group believes a redesign of the electrode rinse system will bring these values up to expectations. Future works will benefit from the learning experience.
10

Caprarescu, Simona. "REMOVAL OF NICKEL IONS FROM SYNTHETIC WASTEWATER BY ELECTRODIALYSIS USING POLYMER MEMBRANES DOPED WITH PLANT EXTRACT". In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/52/s20.097.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Rapporti di organizzazioni sul tema "Electrodialysis with bipolar membranes":

1

Koumoundouros, J., S. Oshen e J. Lynch. Recaustization of kraft black liquor via bipolar electrodialysis. Office of Scientific and Technical Information (OSTI), maggio 1990. http://dx.doi.org/10.2172/6716272.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Bourcier, W., K. O'Brien, A. Sawvel, M. Johnson, K. Bettencourt, S. Letant, T. Felter et al. FY05 LDRD Final Report Molecular Engineering of Electrodialysis Membranes 03-ERD-060. Office of Scientific and Technical Information (OSTI), febbraio 2006. http://dx.doi.org/10.2172/898481.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri

Vai alla bibliografia