Letteratura scientifica selezionata sul tema "Electrodes, Oxide"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Electrodes, Oxide".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Electrodes, Oxide"
Tanumihardja, Esther, Douwe S. de Bruijn, Rolf H. Slaats, Wouter Olthuis e Albert van den Berg. "Monitoring Contractile Cardiomyocytes via Impedance Using Multipurpose Thin Film Ruthenium Oxide Electrodes". Sensors 21, n. 4 (18 febbraio 2021): 1433. http://dx.doi.org/10.3390/s21041433.
Testo completoHO, M. Y., P. S. KHIEW, D. ISA, T. K. TAN, W. S. CHIU e C. H. CHIA. "A REVIEW OF METAL OXIDE COMPOSITE ELECTRODE MATERIALS FOR ELECTROCHEMICAL CAPACITORS". Nano 09, n. 06 (agosto 2014): 1430002. http://dx.doi.org/10.1142/s1793292014300023.
Testo completoSchlack, Sebastian, Hendrik Wulfmeier e Holger Fritze. "Impact of electrode conductivity on mass sensitivity of piezoelectric resonators at high temperatures". Journal of Sensors and Sensor Systems 11, n. 2 (15 novembre 2022): 299–313. http://dx.doi.org/10.5194/jsss-11-299-2022.
Testo completoHo, Mui Yen, Poi Sim Khiew, Dino Isa e Wee Siong Chiu. "Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors". Functional Materials Letters 07, n. 06 (dicembre 2014): 1440012. http://dx.doi.org/10.1142/s1793604714400128.
Testo completoChuma, Takeshi, Haruhiko Toda, Morihiro Saito, Jun Kuwano e Hidenobu Shiroishi. "Oxygen Reduction Electrode Properties of Perovskite-Related Oxides Sr(Fe,Co,Ru)O3-δ at Low Temperatures". Key Engineering Materials 320 (settembre 2006): 243–46. http://dx.doi.org/10.4028/www.scientific.net/kem.320.243.
Testo completoGaire, Madhu, Najma Khatoon e Douglas Chrisey. "Preparation of Cobalt Oxide–Reduced Graphitic Oxide Supercapacitor Electrode by Photothermal Processing". Nanomaterials 11, n. 3 (12 marzo 2021): 717. http://dx.doi.org/10.3390/nano11030717.
Testo completoSon, Seong Ho, Do Won Chung e Won Sik Lee. "Development of Noble Metal Oxide Electrode for Low Oxygen Evolution". Advanced Materials Research 47-50 (giugno 2008): 750–53. http://dx.doi.org/10.4028/www.scientific.net/amr.47-50.750.
Testo completoCirocka, Anna, Dorota Zarzeczańska e Anna Wcisło. "Good Choice of Electrode Material as the Key to Creating Electrochemical Sensors—Characteristics of Carbon Materials and Transparent Conductive Oxides (TCO)". Materials 14, n. 16 (22 agosto 2021): 4743. http://dx.doi.org/10.3390/ma14164743.
Testo completoRossini, Matteo, Fabrizio Ganci, Claudio Zanca, Bernardo Patella, Giuseppe Aiello e Rosalinda Inguanta. "Nanostructured Lead Electrodes with Reduced Graphene Oxide for High-Performance Lead–Acid Batteries". Batteries 8, n. 11 (3 novembre 2022): 211. http://dx.doi.org/10.3390/batteries8110211.
Testo completoBarnett, Scott A. "(High-Temperature Energy, Materials, & Processes Division Outstanding Achievement Award Address) Mechanisms of Oxide Exsolution and Electrode Applications in Solid Oxide Cells". ECS Meeting Abstracts MA2022-02, n. 47 (9 ottobre 2022): 1769. http://dx.doi.org/10.1149/ma2022-02471769mtgabs.
Testo completoTesi sul tema "Electrodes, Oxide"
Nwosu, Nkem O. E. "Optimisation of electroless co-deposited solid oxide fuel cell electrodes". Thesis, Edinburgh Napier University, 2013. http://researchrepository.napier.ac.uk/Output/6448.
Testo completoAstuti, Yeni. "Bio-functionalised nanostructured metal oxide electrodes". Thesis, Imperial College London, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429459.
Testo completoMakgae, Mosidi Elizabeth. "Environmental electrochemistry of organic compounds at metal oxide electrodes". Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49947.
Testo completoENGLISH ABSTRACT: This study investigates the electrochemical oxidation of phenol. Phenol is a major toxin and water pollutant. In addition, during water treatment it reacts with chlorine to produce carcinogenic chlorophenols. lts treatment down to trace levels is therefore of increasing concern. For this purpose, dynamically stable anodes for the breakdown of phenols to carbon dioxide or other less harmful substances were developed and characterized. The anodes were prepared from mixed oxides of tin (Sn) and the precious metals ruthenium (Ru), tantalum (Ta) and iridium (Ir), which in tum were prepared using sol-gel techniques. This involved dip-coating the aqueous salts of the respective metals onto titanium substrates and heating to temperatures of several hundreds of degree Celsius. The properties of these mixed oxide thin films were investigated and characterized using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM), elemental dispersive energy X-ray analysis (EDX), X-ray diffraction (XRD), Rutherford backscattering spectrometry (RBS), particle induced X-ray emission (PIXE) and electrochemical measurements. A variety of different electrode materials including Til Sn02-Ru02-Ir02, Ti/Ta20s-Ir02 and Ti/RhOx-Ir02 were developed and tested for their potential as oxidation catalysts for organic pollutants in wastewaters. Depending on the anode type, phenol was found to be electrochemically degraded, to different extents, on these surfaces during electrolysis. It was however found that the oxidation rate not only depended on the chemical composition but also on the oxide morphology revealed, resulting from the preparation procedure. The Ti/SnOz-Ru02-Ir02 film was found to be the most efficient surface for the electrolytic breakdown of phenol. This film oxidized phenol at a potential of 200 mV vs Ag/AgC!. The activity of the catalytic systems was evaluated both on the basis of phenol removal efficiency as well as the kinetics of these reactions. Phenol removal efficiency was more than 90% for all the film surfaces prepared and the rate of the reaction followed first order kinetics. A pathway for the electrochemical degradation of phenol was derived using techniques such as HPLC to identify the breakdown products. These pathway products included the formation of benzoquinone and the further oxidation of benzoquinone to the carboxylic acids malic, malonic and oxalic.
AFRIKAANSE OPSOMMING: Die onderwerp van hierdie studie is die elektrochemiese oksidasie van fenol deur nuwe gemengde-oksied elektrodes. Fenol is 'n belangrike gifstof en besoedelingsmiddel in water. Daarbenewens kan fenolook met chloor reageer tydens waterbehandeling om sodoende karsinogeniese chlorofenole te vorm. Dit is dus belangrik dat metodes ondersoek word wat die konsentrasie van fenol in water verminder. Hierdie studie behels die bereiding en karakterisering van nuwe dinamiese stabiele anodes (DSA) vir die afbreek van fenol tot koolstofdioksied en ander minder gevaarlike verbindings. Hierdie nuwe anodes is berei vanaf die gemengde-okside van die edelmetale tin (Sn), ruthenium (Ru), tantalum (Ta) en iridium (Ir), met behulp van sol-gel tegnieke. Die finale stap in die bereiding behels kalsinering van die oksides by temperature van "n paar honderd grade Celsius. Hierdie nuwe elektrodes is later gebruik om die oksidasie van fenol te evalueer. Die gemengde-oksied dunlae/anodes IS d.m.v. die volgende analitiesetegnieke gekarakteriseer: termiese-gravimetriese analise (TGA), skandeerelektronmikroskopie (SEM), atoomkragmikroskopie (AFM), elementverstrooiingsenergie- X-straalanalise (EDX), X-straaldiffraksie (XRD), Rutherford terug-verstrooiingspektroskopie (RBS), partikel-geinduseerde X-straal emissie (PIXE), en elektrochemiese metings. 'n Verskeidenheid elektrodes van verskillende materiale is berei en hul potensiaal as oksidasie-kataliste vir organiese besoedelingsmiddels in afloopwater bepaal. Hierdie elektrodes het die volgende ingesluit: Ti/Sn02-Ru02-Ir02, Ti/Ta20s-Ir02 en Ti/RhOx-Ir02. Gedurende elektrolise is fenol elektrochemies afgebreek tot verskillende vlakke, afhangende van die tipe elektrode. Die oksidasietempo het egter nie alleen van die chemiese samestelling van die elektrode afgehang nie, maar ook van die morfologie van die okside, wat op hulle beurt van die voorbereidingsprosedure afgehang het. Daar is bevind dat die Ti/Sn02-Ru02-Ir02 elektrode die mees effektiewe oppervlakke vir die afbreek van fenol is. Hier het die oksidasie van fenol by 'n potensiaal van 200 mV plaasgevind. Die aktiwiteite van die katalitiese sisteme IS bepaal op grond van hulle fenolverwyderingsdoeltreffendheid. Die kinetika van die reaksies is ook bepaal. Al die elektrodes het >90% fenolverwyderingsdoeltreffendheid getoon en die reaksietempos was van die eerste-orde. Deur van analitiese tegnieke soos hoëdrukvloeistofchromatografie (HPLC) gebruik te maak is die afbreekprodukte van fenol geïdentifiseer en 'n skema vir die elektrochemiese afbreek van fenol uitgewerk. Daar is bevind dat bensokinoon gevorm het, wat later oksidasie ondergaan het om karboksielsure te vorm.
Hernández, Rodríguez Elba María. "Solid Oxide Electrolysis Cells electrodes based on mesoporous materials". Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/665269.
Testo completoUna de las principales desventajas de las fuentes de energías renovables es que producen energía eléctrica de forma discontinua. Los electrolizadores de alta temperatura basados en óxidos sólidos (SOEC) se presentan como una tecnología prometedora para el almacenamiento de energía eléctrica. Alcanzando eficiencias mayores de un 85%, los electrolizadores SOEC permite convertir energía eléctrica en energía química mediante la reducción de las moléculas de agua (H2O), dióxido de carbono (CO2), o la combinación de ambas; generándose hidrógeno (H2), monóxido de carbono (CO) o gas de síntesis (H2 +CO) como producto. El trabajo que se presenta en esta tesis tiene como objetico mejorar el rendimiento de los electrolizadores SOEC mediante la utilización de óxidos metálicos mesoporosos, caracterizados por poseer alta área superficial y ser estables a altas temperaturas. Esta tesis está organizada en ocho capítulos. Los capítulos 3, 4, 5, 6 y 7 presentan los resultados alcanzados: El capítulo 3 presenta la caracterización estructural de los materiales mesoporosos y de los electrodos fabricados. Además, la temperatura de adhesión del material mesoporoso ha sido optimizada y se ha fijado a 900 °C. El capítulo 4 compara electrolizadores fabricados soportados por el electrodo de combustible y por el electrolito. Los resultados muestran que las densidades de corriente más altas fueron inyectadas en los electrolizadores soportados por el electrodo de combustible, considerándose esta configuración la más apropiada. El capítulo 5 presenta la influencia de la microstructura de la intercara del electrodo de oxígeno en el rendimiento de los electrolizadores SOEC. La caracterización electroquímica, apoyada por la caracterización microestructural, ha demostrado que la máxima densidad de corriente ha sido inyectada por el electrolizador cuya barrera de difusión ha sido depositado por láser pulsado (PLD) y la capa funcional del electrodo de oxígeno mediante infiltración de materiales mesoporosos. El capítulo 6 estudia el electrodo de oxígeno optimizado. Durante 1400 h de operación continua y caracterización microstructural, se ha demostrado la estabilidad de este electrodo. Por último, el capítulo 7 muestra los resultados obtenidos del escalado de los electrodos mesoporosos en celdas de mayor área (25 cm2). La caracterización electroquímica muestra alta flexibilidad ante las composiciones de gases utilizadas, y estabilidad de los electrodos mesoporosos propuestos.
Koep, Erik Kenneth. "A Quantitative Determination of Electrode Kinetics using Micropatterned Electrodes". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10524.
Testo completoBaez, Baez Victor Antonio. "Metal oxide coated electrodes for oxygen reduction". Thesis, University of Southampton, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241271.
Testo completoGraves, John Edward. "The electrochemistry of titanium oxide ceramic electrodes". Thesis, University of Southampton, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305486.
Testo completoMacDonald, Gordon Alex. "Nanoscale Characterization of the Electrical Properties of Oxide Electrodes at the Organic Semiconductor-Oxide Electrode Interface in Organic Solar Cells". Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/347338.
Testo completoLiu, Yujing. "Nanostructured transparent conducting oxide electrodes through nanoparticle assembly". Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-149076.
Testo completoBaker, Priscilla G. L. "Sol-gel preparation, characterisation and electrochemistry of mixed metal tin oxide electrodes". Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/50096.
Testo completoLibri sul tema "Electrodes, Oxide"
Sato, Norio. Electrochemistry at metal and semiconductor electrodes. Amsterdam: Elsevier, 1998.
Cerca il testo completoHaschke, Sandra. Electrochemical Water Oxidation at Iron(III) Oxide Electrodes. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09287-0.
Testo completoInternational Conference on Oxide Materials for Electronic Engineering--Fabrication, Properties and Applications (2012 Lʹviv, Ukraine). Oxide materials for electronic engineering: Fabrication, properties and applications : selected, peer reviewed papers from the International Scientific Conference on Oxide Materials for Electronic Engineering - Fabrication, Properties and Applications (OMEE 2012), September 3-7, 2012, Lviv, Ukraine. Durnten-Zurich, Switzerland: TTP, Trans Tech Publications Ltd, 2013.
Cerca il testo completoS, Licht, a cura di. Semiconductor electrodes and photoelectrochemistry. Weinheim: Wiley-VCH, 2002.
Cerca il testo completoJacek, Lipkowski, e Ross P. N, a cura di. Adsorption of molecules at metal electrodes. New York, NY: VCH, 1992.
Cerca il testo completoInternational Symposium on Solid Oxide Fuel Cells (10th 2007 Nara, Japan). Solid oxide fuel cells 10: (SOFC-X). A cura di Eguchi K e Electrochemical Society. Pennington, N.J: Electrochemical Society, 2007.
Cerca il testo completoInternational Symposium on Solid Oxide Fuel Cells (6th 1999 Honolulu, Hawaii). Solid oxide fuel cells: (SOFC VI) : proceedings of the Sixth International Symposium. A cura di Singhal Subhash C, Dokiya M, Electrochemical Society. High Temperature Materials Division., Electrochemical Society Battery Division e SOFC Society of Japan. Pennington, NJ: Electrochemical Society, 1999.
Cerca il testo completoSzklarczyk, Marek. Fotokataliza na elektrodach półprzewodnikowych. Warszawa: Wydawnictwa Uniwersytetu Warszawskiego, 1990.
Cerca il testo completoLluís, Miribel-Català Pere, e SpringerLink (Online service), a cura di. A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices: Three-Electrodes Amperometric Biosensor Approach. Dordrecht: Springer Science+Business Media B.V., 2011.
Cerca il testo completoAma, Onoyivwe Monday, e Suprakas Sinha Ray, a cura di. Nanostructured Metal-Oxide Electrode Materials for Water Purification. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43346-8.
Testo completoCapitoli di libri sul tema "Electrodes, Oxide"
Chiku, Masanobu. "Nickel Oxide Electrodes". In Encyclopedia of Applied Electrochemistry, 1366–68. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_512.
Testo completoWirtz, G. P., e H. S. Isaacs. "Oxide Electrodes at High Temperatures". In Solid State Batteries, 483–87. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5167-9_36.
Testo completoTrasatti, Sergio. "Hydrogen Evolution on Oxide Electrodes". In Modern Chlor-Alkali Technology, 281–94. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2880-3_24.
Testo completoIhlefeld, Jon F., Mark D. Losego e Jon-Paul Maria. "Base Metal Bottom Electrodes". In Chemical Solution Deposition of Functional Oxide Thin Films, 571–92. Vienna: Springer Vienna, 2013. http://dx.doi.org/10.1007/978-3-211-99311-8_23.
Testo completoKaur, Gurbinder. "Interaction of Glass Seals/Electrodes and Electrolytes". In Solid Oxide Fuel Cell Components, 315–74. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25598-9_8.
Testo completoMogensen, Mogens, e Peter Holtappels. "Ni-Based Solid Oxide Cell Electrodes". In Solid Oxide Fuels Cells: Facts and Figures, 25–45. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4456-4_2.
Testo completoWroblowa, Halina S. "Rechargeable Manganese Oxide Electrodes and Cells". In Electrochemistry in Transition, 147–59. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-9576-2_11.
Testo completoChukwuneke, Chikaodili, Joshua O. Madu, Feyisayo V. Adams e Oluwagbenga T. Johnson. "Application of Metal Oxides Electrodes". In Nanostructured Metal-Oxide Electrode Materials for Water Purification, 127–49. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43346-8_8.
Testo completoNiwa, Koichi, Jeffrey S. Cross, Mineharu Tsukada, Kazuaki Kurihara e Nobuo Kamehara. "Properties of Fram Capacitors with Oxide Electrodes". In Ceramic Transactions Series, 311–17. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118408186.ch28.
Testo completoFourcade, Julien, e Olivier Citti. "New Tin Oxide Electrodes for Glass Melting". In 73rd Conference on Glass Problems, 183–99. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118710838.ch14.
Testo completoAtti di convegni sul tema "Electrodes, Oxide"
Jadhav, S. L., A. L. Jadhav, V. S. Jamdade, K. R. Kharat, A. A. Deshmane e A. V. Kadam. "Controlled Synthesis of Cobalt Oxide Electrode by Electrodeposition for Supercapacitor Application". In National Conference on Relevance of Engineering and Science for Environment and Society. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.118.56.
Testo completoGreene, Eric S., e Wilson K. S. Chiu. "Mass Transfer in Functionally Graded Solid Oxide Fuel Cell Electrodes". In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82531.
Testo completoRecknagle, Kurtis P., Emily M. Ryan e Moe A. Khaleel. "Numerical Modeling of the Distributed Electrochemistry and Performance of Solid Oxide Fuels Cells". In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64232.
Testo completoSohal, M. S., J. E. O’Brien, C. M. Stoots, V. I. Sharma, B. Yildiz e A. Virkar. "Degradation Issues in Solid Oxide Cells During High Temperature Electrolysis". In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33332.
Testo completoDias, N. S., A. F. Silva, P. M. Mendes e J. H. Correia. "Non-invasive iridium oxide biopotential electrodes". In IECON 2009 - 35th Annual Conference of IEEE Industrial Electronics (IECON). IEEE, 2009. http://dx.doi.org/10.1109/iecon.2009.5414851.
Testo completoChu, Sangwook, Konstantinos Gerasopoulos e Reza Ghodssi. "Biotemplated hierarchical nickel oxide supercapacitor electrodes". In 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2015. http://dx.doi.org/10.1109/memsys.2015.7051160.
Testo completoAhmad, Mahmoud Al, e Shereen Hasan. "Stretchable ruthenium oxide nanoparticles coated electrodes". In 2016 18th Mediterranean Electrotechnical Conference (MELECON). IEEE, 2016. http://dx.doi.org/10.1109/melcon.2016.7495449.
Testo completoChakraborty, Bitan, Alexandra Joshi-Imre e Stuart F. Cogan. "Sputtered Ruthenium Oxide Neural Stimulation Electrodes". In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2021. http://dx.doi.org/10.1109/embc46164.2021.9630483.
Testo completoKim-Lohsoontorn, P., H. B. Yim e J. M. Bae. "Electrochemical Performance of Ni-YSZ, Ni/Ru-GDC, LSM-YSZ, LSCF and LSF Electrodes for Solid Oxide Electrolysis Cells". In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33017.
Testo completoJu, W. T., e S. H. Hong. "Development of Fabrication Processes for Tubular Solid Oxide Fuel Cell (SOFC) by Plasma Spraying". In ITSC 1998, a cura di Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p1067.
Testo completoRapporti di organizzazioni sul tema "Electrodes, Oxide"
Sholklapper, Tal Zvi. Nanostructured Solid Oxide Fuel Cell Electrodes. Office of Scientific and Technical Information (OSTI), gennaio 2007. http://dx.doi.org/10.2172/926313.
Testo completoWorrell, W. L. Zirconia-based electrodes for solid oxide fuel cells. Office of Scientific and Technical Information (OSTI), dicembre 1989. http://dx.doi.org/10.2172/7022625.
Testo completoGorte, Raymond J., e John M. Vohs. The Development of Nano-Composite Electrodes for Solid Oxide Electrolyzers. Office of Scientific and Technical Information (OSTI), marzo 2014. http://dx.doi.org/10.2172/1124583.
Testo completoRitter, James A. Supercapacitors and Batteries from Sol-Gel Derived Carbon - Metal Oxide Electrodes. Fort Belvoir, VA: Defense Technical Information Center, febbraio 2001. http://dx.doi.org/10.21236/ada392659.
Testo completoGopalan, Srikanth, e Ben Levitas. Core-Shell Heterostructures as Functional Materials for Solid Oxide Fuel Cell (SOFC) Electrodes. Office of Scientific and Technical Information (OSTI), giugno 2022. http://dx.doi.org/10.2172/1872369.
Testo completoProf. Anil V. Virkar. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES. Office of Scientific and Technical Information (OSTI), aprile 2000. http://dx.doi.org/10.2172/784599.
Testo completoVirkar, Anil V. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES. Office of Scientific and Technical Information (OSTI), aprile 2000. http://dx.doi.org/10.2172/788101.
Testo completoAnil V. Virkar. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES. Office of Scientific and Technical Information (OSTI), settembre 2001. http://dx.doi.org/10.2172/833838.
Testo completoAnil V. Virkar. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES. Office of Scientific and Technical Information (OSTI), marzo 2002. http://dx.doi.org/10.2172/833840.
Testo completoAnil V. Virkar. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES. Office of Scientific and Technical Information (OSTI), giugno 2001. http://dx.doi.org/10.2172/833876.
Testo completo