Letteratura scientifica selezionata sul tema "Electrochemical silicon etching"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Electrochemical silicon etching".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Electrochemical silicon etching"
Syari’ati, Ali, e Veinardi Suendo. "Effect of Electrochemical Reaction Enviroment on the Surface Morphology and Photoluminescence of Porous Silicon". Materials Science Forum 737 (gennaio 2013): 60–66. http://dx.doi.org/10.4028/www.scientific.net/msf.737.60.
Testo completoCao, Dao Tran, Cao Tuan Anh e Luong Truc Quynh Ngan. "Vertical-Aligned Silicon Nanowire Arrays with Strong Photoluminescence Fabricated by Metal-Assisted Electrochemical Etching". Journal of Nanoelectronics and Optoelectronics 15, n. 1 (1 gennaio 2020): 127–35. http://dx.doi.org/10.1166/jno.2020.2684.
Testo completoAl-Jubouri, Furqan Saleh, Hamida I. Salman e Ahmed K. Al-Kadumi. "The effective of time etching and different acids on the morphological porous silicon". IOP Conference Series: Earth and Environmental Science 1120, n. 1 (1 dicembre 2022): 012045. http://dx.doi.org/10.1088/1755-1315/1120/1/012045.
Testo completoKi, Bugeun, Keorock Choi, Kyunghwan Kim e Jungwoo Oh. "Electrochemical local etching of silicon in etchant vapor". Nanoscale 12, n. 11 (2020): 6411–19. http://dx.doi.org/10.1039/c9nr10420h.
Testo completoMartin Kralik, Michaela Hola e Stanislav Jurecka. "Optical Properties of Porous Silicon Solar Cells for Use in Transport". Communications - Scientific letters of the University of Zilina 21, n. 3 (15 agosto 2019): 53–58. http://dx.doi.org/10.26552/com.c.2019.3.53-58.
Testo completoKim, Jeong, Sang Wook Park, In Sik Moon, Moon Jae Lee e Dae Won Kim. "Porous Silicon Layer by Electrochemical Etching for Silicon Solar Cell". Solid State Phenomena 124-126 (giugno 2007): 987–90. http://dx.doi.org/10.4028/www.scientific.net/ssp.124-126.987.
Testo completoJin, Dahee, Ju-Myung Kim, Ran Yi e Ji-Guang Zhang. "A New Approach to Synthesis of Porous Si Anode for Li-Ion Batteries Via Organic-Solvent Assisted Etching". ECS Meeting Abstracts MA2024-02, n. 5 (22 novembre 2024): 570. https://doi.org/10.1149/ma2024-025570mtgabs.
Testo completoSadowski, Horst, Reinhard Helbig e Stefan Rysy. "Electrochemical etching of silicon carbide". Journal of Solid State Electrochemistry 3, n. 7-8 (10 settembre 1999): 437–45. http://dx.doi.org/10.1007/s100080050179.
Testo completoMohd Radzi, Ahmad Afif Safwan, M. A. Yarmo, M. Rusop e Saifollah Abdullah. "Surface Morphology and Si 2p Binding Energy Investigation of Multilayer Porous Silicon Nanostructure". Advanced Materials Research 620 (dicembre 2012): 17–21. http://dx.doi.org/10.4028/www.scientific.net/amr.620.17.
Testo completoLiu, Lan, Yan Xue, Xiao Ming Ren e Rui Zhen Xie. "Influence of Electrochemical Etching Parameters on Morphology of Porous Silicon". Advanced Materials Research 1055 (novembre 2014): 68–72. http://dx.doi.org/10.4028/www.scientific.net/amr.1055.68.
Testo completoTesi sul tema "Electrochemical silicon etching"
Rieger, Melissa Marie. "The electrochemical etching of silicon in nonaqueous solutions". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/10214.
Testo completoDixon, Elizabeth. "The chemical and electrochemical anisotropic etching of silicon". Thesis, University of Portsmouth, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310413.
Testo completoNgampeerapong, Chonmanart. "Nanopore Array Fabrication on Bulk Silicon and Silicon Membranes by Electrochemical Etching". Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-187023.
Testo completoPastushenko, Anton. "Silicon-based nanomaterials obtained by electrochemical etching of metallurgical substrates". Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI048.
Testo completoSilicon is the second most abundant element in the Earth crust after oxygen. Its use in metallurgy, building and electronic industry requires a huge fabrication level. Depending on the contamination level allowed, the price of this material varies in the orders of magnitude. This thesis focuses on the use of dirtiest metallurgical grade silicon and iron disilicide substrates for hydrogen storage and photoluminescence applications. The initial substrates were subjected to electrochemical etching in hydrofluoric acid-containing solutions. Anodization of metallurgical grade silicon substrate produces nanostructured porous silicon with somewhat shifted parameters (comparing with electronic grade porous silicon with the same resistivity), as it was studied in this thesis in details. It was shown, that metallurgical grade porous silicon can be applied as hydrogen storage material. Hydrogen generation is studied here based on the influences of some technically critical parameters: porosity, alkali concentration, volume and temperature. Electrochemical treatment of metallurgical grade iron disilicide substrates produces luminescent iron fluorosilicate hexahydrate, covering the residual nanostructured iron disilicide/silicon. Here, the influence of anodization parameters on photoluminescent properties is studied. Also, etching mechanism is proposed as for the new material never anodized
Todorov, Trifonov Trifon. "Photonic Bandgap Analysis and Fabrication of Macroporous Silicon by Electrochemical Etching". Doctoral thesis, Universitat Rovira i Virgili, 2004. http://hdl.handle.net/10803/8477.
Testo completoEl silicio macroporoso con su elevada constante dieléctrica, sus altas relaciones de aspecto y su total compatibilidad con la industria microelectrónica es un modelo excelente para estudiar las propiedades ópticas de cristales fotónicos bidimensionales y asimismo tridimensionales. Adicionalmente, se ha demostrado que el silicio macroporoso tiene varias aplicaciones únicas en muchos otros campos, como la electrónica, el micromecanizado, la detección de gases y la biotecnología. La investigación del silicio macroporoso crece continuamente debido a su enorme potencial de aplicaciones.
El trabajo presentado en esta tesis trata dos temas: simulación de la estructura de bandas fotónicas y análisis de cristales fotónicos bidimensionales, y la fabricación de estructuras bidimensionales basadas en silicio macroporoso para aplicaciones como cristales fotónicos en el espectro infrarrojo.
Debido a que muchas posibles aplicaciones de los cristales fotónicos están basadas
en sus bandas fotónicas prohibidas, es interesante diseñar cristales fotónicos con una banda
prohibida absoluta, que sea tan grande como es posible. En esta tesis describimos el método para alargar la banda fotónica absoluta, mostrando el papel de la simetría en el diseño de estructuras fotónicas óptimas. Hemos estudiado como reduciendo la simetría mediante incorporación de elementos adicionales en la celda unitaria o mediante cambio de la forma de los "átomos" afecta la relación de dispersión de los dos modos de polarización (TM y TE) en cristales fotónicos bidimensionales. Nuestro objetivo ha sido optimizar la magnitud de la banda fotónica absoluta, reduciendo la simetría de las celdas cuadrada y triangular y construir de este modo estructuras nuevas, llamadas celdas híbridas. Usando el método de las deferencias finitas en el dominio de tiempo (FDTD) hemos realizado un detallado análisis numérico de la relación de dispersión en celdas híbridas bidimensionales que consisten en columnas de aire en silicio.
En el caso de celda cuadrada, la reducción de la simetría ha sido aplicada con éxito para maximizar la magnitud de la banda prohibida. Para la celda cuadrada que consiste en columnas cilíndricas de aire, la incorporación de una columna adicional aumenta tres veces la magnitud de la PBG absoluta. En el caso de celda cuadrada de columnas cuadradas de aire, la rotación de las columnas juega un papel crítico en la creación de la PBG absoluta.
Si las columnas cuadradas no están rotadas no existe una PBG absoluta. La magnitud de la PBG absoluta se ha mejorado considerablemente a través de la combinación de incorporación de una columna adicional y rotación de las columnas cuadradas. Además, se genera una nueva PBG absoluta que se encuentra para un amplio rango de ángulos de rotación y dimensiones de las columnas, que están lejos de la condición de empaquetamiento (cuando las columnas se tocan). Esto favorece la fabricación de los cristales fotónicos.
La PBG absoluta es de mayor magnitud para la celda triangular formada por columnas cilíndricas de aire. Los resultados de las simulaciones demuestran que modificando la estructura triangular mediante incorporación de columnas adicionales o mediante columnas cuadradas (aunque las columnas estén rotadas) no mejora la PBG absoluta, por lo menos en el caso estudiado de estructura aire/silicio. La adición de columnas adicionales en la celda triangular reduce la magnitud de la PBG absoluta.
Hemos realizado un detallado análisis cuantitativo de las PBG absolutas para 2D celdas triangulares y hexagonales, considerando que entre las columnas y la matriz dieléctrica hay una capa superficial de otro material dieléctrico. Esta capa superficial puede ser indeseada (resultado del proceso de fabricación) o puede ser creada intencionadamente.
Las propiedades de las bandas fotónicas se ven afectadas del grosor y también de la constante dieléctrica de la capa superficial. Los resultados de las simulaciones demuestran que para estructuras que están formadas por columnas de aire en un material dieléctrico la existencia de una capa superficial reduce la magnitud de la PBG absoluta. Por otro lado, para estructuras formadas de columnas dieléctricas en aire la capa superficial puede mejorar la PBG cuando la constante dieléctrica de la capa es mayor que la de las columnas.
Esto proporciona mayor flexibilidad en la realización práctica de estos 2D cristales fotónicos. Por ejemplo, en ciertas ocasiones es imposible obtener pilares dieléctricos con un diámetro determinado o de un material concreto por limitaciones tecnológicas. Sin embargo, los pilares se pueden fabricar de un material con menor constante dieléctrica para el cual existe una técnica bien desarrollada. Después los pilares se pueden cubrir con el material deseado mediante deposición, obteniendo las mismas propiedades como en el caso de la estructura sin capa superficial.
Hemos desarrollado un equipo de ataque electroquímico para fabricación de 2D estructuras periódicas basadas en la formación de silicio macroporoso. Asimismo, hemos realizado un estudio de la influencia de los parámetros del ataque electroquímico sobre la morfología de los poros. Crecimiento estable de macroporos se puede obtener sólo si todos los parámetros del proceso de ataque (resistividad del substrato, concentración de HF, corriente de ataque, potencial anódico, temperatura, etc.) están ajustados apropiadamente.
Las condiciones óptimas ocupan una pequeña parte de todos los posibles parámetros del proceso. Por ejemplo, concentraciones de HF mayores de 10 wt.%, que se usan generalmente para crecer películas micro- y mesoporosas, no son apropiadas para crecer macroporos con una profundidad grande y una forma cilíndrica. Potenciales relativamente altos (para nuestras muestras mayores de 2 V) aumentan inevitablemente la formación de "breakdown-type" poros. Por otro lado, potenciales relativamente bajos (menores de 1 V) generalmente producen un crecimiento inestable de los poros que están parcial o totalmente recubiertos de silicio microporoso.
La corriente aplicada es el parámetro más crítico del proceso. Densidades de la corriente mayors de la densidad crítica Jps, que depende de la temperatura y de la concentración de HF, situaría el proceso en la región de electropulido. El control de la corriente durante el proceso es una tarea clave. Mantener la corriente de ataque constante durante todo el proceso es insuficiente para el crecimiento estable de macroporos cilíndricos. Se han identificado dos efectos que influyen la forma de los poros en profundidad. Primero, la concentración de HF disminuye cerca de la punta de los poros debido a las limitaciones por difusión en poros estrechos y hondos. Este efecto produce un incremento del diámetro del poro cerca de la punta. Segundo, la superficie interna de los poros aumenta para prolongados tiempos de ataque, provocando un incremento de la corriente de oscuridad y por lo tanto la formación de poros cónicos. Su diámetro decrece en profundidad. El incremento de la corriente de ataque de manera adecuada, tal que se produzca crecimiento de poros con forma cónica inversa, es un método para compensar la conicidad inicial de los poros. Si el ataque se realiza a temperaturas más bajas y burbujeando el electrolito con nitrógeno se puede reducir la corriente de oscuridad, formando poros menos cónicos. Otro método efectivo es el uso de un surfactante apropiado. Los surfactantes se usan por lo general para prevenir degradación causada por las burbujas de hidrógeno que se pegan en la superficie de la muestra. Hemos probado dos diferentes tipos de surfactants (TritonX-100 no iónico y SDS aniónico). Hemos observado que la adición de surfactantes no iónicos aumenta la corriente de oscuridad y la formación de poros cónicos. Por otro lado, el uso de surfactantes aniónicos reduce considerablemente la corriente de oscuridad y poros cilíndricos se pueden producir casi sin dificultad.
Aplicando las reglas explicadas arriba se han obtenido matrices altamente uniformes de macroporos con diferente distribución y dimensiones.
Por último, también se presentan algunos resultados preliminares sobre aplicaciones novedosas de silicio macroporoso. Las características estructurales de las matrices de macroporos se han utilizado para fabricar pilares de óxido de silicio que podrían encontrar aplicaciones en la biotecnología como plataformas tridimensionales para detección de reconocimiento de moléculas o como matrices de microjeringas. También se ha fabricado un filtro que consiste en membranas de silicio macroporoso y se han medido sus características ópticas. Este filtro se comporta como pasabajas cuando la luz incidente es paralela a los poros. Los resultados obtenidos son solamente cuantitativos y sugieren una futura optimización del proceso de ataque para fabricar muestras de alta calidad.
Asimismo se ha introducido modulación periódica del diámetro de los poros en profundidad y se han fabricado matrices de "ratchet-type" macroporos, los cuales podrían tener aplicaciones como dispositivos para separación de partículas. Se ha demostrado que mediante unos pocos pasos adicionales las matrices de macroporos modulados se pueden convertir en microestructuras tridimensionales de huecos interconectados. Esta técnica se puede aplicar para la fabricación de cristales fotónicos tridimensionales.
Photonic crystals are artificially created materials that can do to photons what an ordinary semiconductor does to electrons: that is to say, they can exhibit a photonic band gap, a situation in which photons with certain energies cannot propagate inside the crystal, regardless of polarization and propagation direction. The photonic band gap is therefore likely to be the true optical analog of the fundamental gap of a semiconductor. Since their invention in 1987, photonic crystals have triggered considerable interest because of their unusual optical properties. The unique properties of photonic crystals also led to their study being recognized as a new and major field of optoelectronics.
Macroporous silicon, with its high dielectric contrast, very high aspect ratios and full compatibility with the silicon microelectronic industry is an excellent model system for studying the optical properties of two-dimensional and even three-dimensional photonic crystals. Besides, macroporous silicon has been shown to have several unique uses in many other fields, like electronics, micromachining, gas sensing and biotechnology. Research into macroporous silicon is continuously growing, prompted by its enormous potential for applications.
The work presented in this thesis deals with two subjects: photonic band structure simulations and analysis of 2D photonic crystals, and the fabrication of macroporous silicon structures suitable for application as 2D infrared photonic crystals.
Since many potential applications of photonic crystals are based on their photonic band gaps, it is of interest to design photonic crystals with an absolute band gap that is as large as possible. In this thesis we describe a way to enlarge the absolute photonic band gap, showing the role that symmetry plays in designing optimal photonic structures. We have examined how reducing symmetry by inserting additional elements into the lattice unit cell or by changing the shape of the scatterers alters the dispersion behavior of the TMand TE-polarization modes in 2D photonic crystals. Our goal was to maximize the absolute PBG width by breaking the symmetry of the simple square and triangular lattices and thus to construct new structures, the so-called hybrid lattices. Using the FDTD method for photonic band structure calculations, we performed a detailed numerical analysis of the photonic dispersion relation in 2D hybrid lattices that consist of air holes drilled in silicon.
For square lattices, the symmetry reduction approach has been successfully applied to maximize the absolute PBG width. In the case of square lattices of circular air rods, the inclusion of an additional rod increases the absolute PBG threefold. For the case of square lattices of square air rods, the rotation of the rods plays a critical role in the opening of an absolute PBG. No absolute PBG was found if the square rods were not rotated. The size of the absolute PBG is improved most significantly by a combination of the inclusion of an additional rod and the rotation of square rods. Moreover, a new absolute PBG is generated that persists over a wide range of rotation angles and filling fractions, which are far from the closed-packed condition. This greatly favors the fabrication of photonic crystals.
The largest absolute PBG is the one for the triangular lattice of circular air rods.
Our results have shown that modifying the triangular structure by adding interstitial rods or using square rods (even though the rods are rotated) is not a good way of achieving a larger absolute PBG, at least for the special case of air/silicon structures. Adding more rods to the lattice unit cell cannot further enlarge the absolute PBG width.
We have made a detailed quantitative analysis of the absolute PBGs in 2D triangular and honeycomb lattices considering that there is an interfacial (shell) layer between the rods and the background dielectric matrix. This interfacial layer may be the unwanted result of the fabrication process itself or created intentionally. The properties of the photonic gaps are strongly affected by the thickness and the dielectric constant of the shell layer. The results of band structure simulations show that for structures consisting of air rods embedded in a dielectric background this layer reduces the absolute photonic gap.
For structures consisting of dielectric rods in air, however, an interfacial layer can yield larger photonic gaps if the dielectric constant of the layer is greater than that of the rods.
This provides further flexibility in the practical realization of such 2D photonic crystals.
For example, in certain cases we may not be able to obtain dielectric rods of the required diameter or of the particular material we need because of technological limitations.
However, we are enabled to grow the rods of materials with lower dielectric constants, for which a well-developed technology exists. The rods can then be covered with the required dielectric by deposition, thus achieving almost the same gap properties as those of the ideal shell-less structure.
We have developed an electrochemical etching set-up for fabricating 2D periodic structures based on macroporous silicon formation. We have also made a detailed study of how the electrochemical etching parameters influence the pore morphology. Straight and stable macropores can only be etched if all parameters of the etching process (doping level, HF concentration, etching current, anodic potential, temperature, etc.) are properly adjusted. The optimal conditions are only a very tiny part of the total parametric space, which requires a fine control of the process. For example, HF concentrations higher than 10 wt.%, which are commonly used for growing micro- and mesoporous films, are not suitable for growing deep, straight macropores. Relatively high anodic potentials (e.g. even higher than 2 V for our samples) inevitably enhance the formation of spiking breakdowntype pores on macropore walls. On the other hand, low anodic potentials (less than 1 V) usually lead to unstable pore growth with macropores that are partially or fully filled with microporous silicon.
Of all etching parameters the applied etching current is the most critical. Current densities greater than the critical current density Jps, which depends on the temperature and electrolyte concentration, will move the system into the electropolishing regime.
Controlling the etching current during the process is a key issue. Keeping the etching current constant was found not to be sufficient to grow deep, straight macropores. Two effects that influence the pore shape in depth were identified. First, the decrease in HF concentration towards the pore tips because of diffusional limitations leads to an increase of the pore diameter close to the tip. Second, the pore surface area increases for long anodization times, which leads to an increase in the dark current density and yields conical pores, the diameter of which decreases with depth. Increasing the etching current accordingly, which means to etch pores with the reverse conical shape is one of the methods to reduce the pore conicity. Performing the etching at lower temperatures and bubbling the electrolyte with nitrogen can reduce the dark current and produce less conical pores. Another effective way is to use appropriate surfactants. Surfactants are commonly used to prevent degeneration caused by bubbles sticking to the sample surface. Two surfactants of different types (nonionic TritonX-100 and anionic SDS) were tested. We found that the addition of nonionic surfactants increases the dark current contribution and thus enhances the formation of conical pores. On the other hand, the use of anionic surfactants considerably reduces the dark current and straight pores can be formed almost without difficulty. Highly uniform macropore arrays with different arrangements and dimensions were obtained by applying these "compensation" rules.
Finally, we have also presented some preliminary results of our work on novel applications of macroporous silicon. The structural features of the etched macropore arrays have been exploited to fabricate high-aspect-ratio silicon dioxide pillars, which may have applications in biotechnology as a 3D sensor platform for molecular recognition detections or as dense arrays of microsyringes for fluid delivery or precise chemical reaction stimulation. We have also fabricated a macroporous filter consisting of through-wafer pores and measured its optical characteristics. For light incidence parallel to the pores, a shortpass spectral behavior has been observed. The obtained results are only qualitative and suggest that further optimization of the etching process is needed in order to produce higher quality samples. We were also able to introduce periodic modulations of the pore diameter in depth and to fabricate ratchet-type macropore arrays, which have been envisioned for applications as ratchet devices for large-scale particle separation. We have shown that by a few post-etching steps the modulated macropore arrays can be converted into microstructures consisting of interconnected voids in all three dimensions. The technique used can be exploited for the fabrication of fully 3D photonic crystals.
Rashid, Mohd Marzaini Bin Mohd. "Optoelectronic properties of nano-structured silicon carbide prepared by anodic electrochemical etching". Thesis, University of Newcastle upon Tyne, 2017. http://hdl.handle.net/10443/3786.
Testo completoNehmann, Julia-Beatrix [Verfasser]. "Investigation of HF-based electrochemical etching solutions for porous silicon / Julia-Beatrix Nehmann". Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2014. http://d-nb.info/1065397801/34.
Testo completoSURYAMOORTHY, SOWMYA. "ETCHING TECHNOLOGIES IN SUPPORT OF THE DEVELOPMENT OF A COHERENT POROUS SILICON WICK FOR A MEMS LHP". University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1078211112.
Testo completoJuhasz, Robert. "Silicon nanowires, nanopillars and quantum dots : Fabrication and characterization". Doctoral thesis, Stockholm : Solid state elechtronics, Laboratory of materials and semiconductor physics, School of information and communication technology, Royal institute of technology (KTH), 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-420.
Testo completoDefforge, Thomas. "Optimisation de la gravure de macropores ordonnés dans le silicium et de leur remplissage de cuivre par voie électrochimique : application aux via traversants conducteurs". Thesis, Tours, 2012. http://www.theses.fr/2012TOUR4033/document.
Testo completoThese thesis works deal with the achievement of Through Silicon Via (TSV) essential technological issue for microelectronic device 3D integration. For this purpose, we opted for a “full-electrochemical” way of TSV production because of lower fabrication costs as compared to dry etching and deposition techniques. Indeed, ordered through silicon macropores were carried out by silicon anodization in hydrofluoric acid-containing solution and then filled by copper electrochemical deposition. The main objective is to determine if the macroporous silicon arrays can be a viable alternative as Deep Reactive Ion Etching (DRIE).The etching parameters of through silicon macropore arrays were studied both in low-doped n- and p-type silicon. The electrolyte composition as well as the density of the initiation sites was optimized to enable the growth of high aspect ratio, high density through silicon ordered macropores. After silicon anodization, through via were filled with copper. By optimizing the copper deposition parameters (bath composition and applied potential), the resistance per via was measured equal to 32 mΩ (i.e. 1.06 times higher than the theoretical copper bulk resistivity)
Libri sul tema "Electrochemical silicon etching"
Dixon, Elizabeth. The chemical and electrochemical anisotropic etching of silicon. Portsmouth: University of Portsmouth, School of Pharmacy, Biomedical and Physical Sciences, 1997.
Cerca il testo completoCapitoli di libri sul tema "Electrochemical silicon etching"
Santos, Abel, e Tushar Kumeria. "Electrochemical Etching Methods for Producing Porous Silicon". In Electrochemically Engineered Nanoporous Materials, 1–36. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20346-1_1.
Testo completoIzuo, Shinichi, Hiroshi Ohji, Patrick J. French e Kazuhiko Tsutsumi. "Electrochemical Etching for n-type Silicon using a Novel Etchant". In Transducers ’01 Eurosensors XV, 632–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_150.
Testo completoKim, Jeong, Sang Wook Park, In Sik Moon, Moon Jae Lee e Dae Won Kim. "Porous Silicon Layer by Electrochemical Etching for Silicon Solar Cell". In Solid State Phenomena, 987–90. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/3-908451-31-0.987.
Testo completoTsu, R., e D. Babić. "Doping of a quantum dot and self-limiting effect in electrochemical etching". In Porous Silicon Science and Technology, 111–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-662-03120-9_7.
Testo completoBlackwood, Daniel J., e Ee Jin Teo. "Box 13: Silicon Micro/Nano-Fabrication Using Proton Beam Writing and Electrochemical Etching". In Ion Beams in Nanoscience and Technology, 323–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00623-4_27.
Testo completoMonnier, Lisa. "Elaboration of Self-Organized and Perforated Polymeric Thin Films for Precise Localization of Electrochemical Etching of Silicon". In ATHENA Research Book, Volume 2, 389–94. University of Maribor, University Press, 2023. http://dx.doi.org/10.18690/um.4.2023.21.
Testo completoHorányi, T. S., e P. Tüttö. "Electrochemical etching and profiling of silicon". In Semiconductor Materials Analysis and Fabrication Process Control, 316–21. Elsevier, 1993. http://dx.doi.org/10.1016/b978-0-444-89908-8.50066-0.
Testo completoGonzález, Enrique, e Helmut Föll. "Fundamentals of Silicon Porosification via Electrochemical Etching". In Porous Silicon: From Formation to Application: Formation and Properties, Volume One, 29–46. CRC Press, 2015. http://dx.doi.org/10.1201/b19342-5.
Testo completo"Fundamentals of Silicon Porosification via Electrochemical Etching". In Porous Silicon: From Formation to Application: Formation and Properties, Volume One, 46–63. CRC Press, 2016. http://dx.doi.org/10.1201/b19342-8.
Testo completoBurham, Norhafizah, Azrul Azlan Hamzah e Burhanuddin Yeop Majlis. "Self-Adjusting Electrochemical Etching Technique for Producing Nanoporous Silicon Membrane". In New Research on Silicon - Structure, Properties, Technology. InTech, 2017. http://dx.doi.org/10.5772/67719.
Testo completoAtti di convegni sul tema "Electrochemical silicon etching"
Long, Yuhong, Liangcai Xiong, Tielin Shi e Zirong Tang. "Study of Excimer Laser Electrochemical Etching Silicon". In 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2007. http://dx.doi.org/10.1109/nems.2007.352243.
Testo completoStarosvetsky, David, Mark Kovler e Joseph Yahalom. "Electrochemical etching of silicon in aqueous solutions". In Design, Test, and Microfabrication of MEMS/MOEMS, a cura di Bernard Courtois, Selden B. Crary, Wolfgang Ehrfeld, Hiroyuki Fujita, Jean Michel Karam e Karen W. Markus. SPIE, 1999. http://dx.doi.org/10.1117/12.341179.
Testo completoBarillaro, G., e A. Nannini. "Buried Microchannels by Electrochemical Etching of Silicon". In Proceedings of the 11th Italian Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812793393_0050.
Testo completoAzeredo, Bruno, Keng Hsu e Placid Ferreira. "Direct Electrochemical Imprinting of Sinusoidal Linear Gratings Into Silicon". In ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8835.
Testo completoXu, Liang, Jinchuan You e Lianwei Wang. "Investigation of nanostructure on silicon by electrochemical etching". In Sixth International Conference on Thin Film Physics and Applications. SPIE, 2008. http://dx.doi.org/10.1117/12.792382.
Testo completoWang, Guozheng, Zhenhua Jiang, Yang Wang, Cong Wang, Jikai Yang e Qingduo Duanmu. "Photo-electrochemical etching of macroporous silicon arrays used in silicon microchannel plates". In 2012 International Conference on Optoelectronics and Microelectronics (ICOM). IEEE, 2012. http://dx.doi.org/10.1109/icoom.2012.6316321.
Testo completoSeidel, H. "The mechanism of anisotropic, electrochemical silicon etching in alkaline solutions". In IEEE 4th Technical Digest on Solid-State Sensor and Actuator Workshop. IEEE, 1990. http://dx.doi.org/10.1109/solsen.1990.109827.
Testo completoDing Yuan, Pengliang Ci, Fei Tian, Jing Shi, Shaohui Xu, Peisheng Xin e Lianwei Wang. "The improvement of electrochemical etching process for silicon microchannel plates". In 2009 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2009. http://dx.doi.org/10.1109/nems.2009.5068734.
Testo completoBru, Didac Vega, David Cardador Maza e Angel Rodriguez Martinez. "Electrochemical Etching of silicon with sub-500 nm feature size". In 2017 Spanish Conference on Electron Devices (CDE). IEEE, 2017. http://dx.doi.org/10.1109/cde.2017.7905245.
Testo completoXiaoming Chen, Jilei Lin, Shaohui Xu, Peisheng Xin e Lianwei Wang. "Oxidation of high area ratio silicon microchannels fabricated by electrochemical etching". In 2008 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2008. http://dx.doi.org/10.1109/nems.2008.4484290.
Testo completoRapporti di organizzazioni sul tema "Electrochemical silicon etching"
Ross, F. M., e P. C. Searson. Dynamic observation of electrochemical etching in silicon. Office of Scientific and Technical Information (OSTI), marzo 1995. http://dx.doi.org/10.2172/71306.
Testo completo