Letteratura scientifica selezionata sul tema "Electric vehicle integration"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Electric vehicle integration".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Electric vehicle integration"
Simarro-García, Ana, Raquel Villena-Ruiz, Andrés Honrubia-Escribano e Emilio Gómez-Lázaro. "Effect of Penetration Levels for Vehicle-to-Grid Integration on a Power Distribution Network". Machines 11, n. 4 (23 marzo 2023): 416. http://dx.doi.org/10.3390/machines11040416.
Testo completoZainuri, Fuad, Danardono A. S. Danardono A.S, M. Adhitya, R. Subarkah, Rahman Filzi, Tia Rahmiati, M. Hidayat Tullah et al. "Analytical Conversion of Conventional Car to Electric Vehicle Using 5KW BLDC Electric Motor". Jurnal Penelitian Pendidikan IPA 10, n. 9 (25 settembre 2024): 6703–8. http://dx.doi.org/10.29303/jppipa.v10i9.8599.
Testo completoFang, Tingke, Annette von Jouanne, Emmanuel Agamloh e Alex Yokochi. "Opportunities and Challenges of Fuel Cell Electric Vehicle-to-Grid (V2G) Integration". Energies 17, n. 22 (12 novembre 2024): 5646. http://dx.doi.org/10.3390/en17225646.
Testo completoShrishail Hatti. "A Study on Latest trends in Automobile Industries with Reference to Electric Vehicles and Smart Grids". International Research Journal on Advanced Engineering and Management (IRJAEM) 2, n. 08 (29 agosto 2024): 2779–85. http://dx.doi.org/10.47392/irjaem.2024.0404.
Testo completoZaman, Shah, Nouman Ashraf, Zeeshan Rashid, Munira Batool e Javed Hanif. "Integration of EVs through RES with Controlled Interfacing". Electrical, Control and Communication Engineering 19, n. 1 (1 giugno 2023): 1–9. http://dx.doi.org/10.2478/ecce-2023-0001.
Testo completoOta, Yutaka. "Electric Vehicle Integration into Power Systems". IEEJ Transactions on Power and Energy 138, n. 9 (1 settembre 2018): 753–56. http://dx.doi.org/10.1541/ieejpes.138.753.
Testo completoOta, Yutaka. "Electric vehicle integration into power systems". Electrical Engineering in Japan 207, n. 4 (giugno 2019): 3–7. http://dx.doi.org/10.1002/eej.23168.
Testo completoHao, Ceng Ceng, Yue Jin Tang e Jing Shi. "Study on the Harmonic Impact of Large Scale Electric Vehicles to Grid". Applied Mechanics and Materials 443 (ottobre 2013): 273–78. http://dx.doi.org/10.4028/www.scientific.net/amm.443.273.
Testo completoHariprasad, Besta, Goturu Sreenivasan, Sambugari Anil Kumar e Bestha Mallikarjuna. "Vehicle-to-Grid Power Transfer Method for Electric Vehicles using off-board charger". International Journal of Electrical and Electronics Research 12, n. 4 (30 novembre 2024): 1203–10. https://doi.org/10.37391/ijeer.120411.
Testo completoRay, Richik. "Series-Parallel Hybrid Electric Vehicle Parameter Analysis using MATLAB". International Journal for Research in Applied Science and Engineering Technology 9, n. 10 (31 ottobre 2021): 421–28. http://dx.doi.org/10.22214/ijraset.2021.38433.
Testo completoTesi sul tema "Electric vehicle integration"
Xi, Xiaomin. "Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration". The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366106454.
Testo completoWagner, David. "Sustaining Uber: Opportunities for Electric Vehicle Integration". Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/pomona_theses/168.
Testo completoLi, Mengyu. "GIS-BASED MODELING OF ELECTRIC VEHICLES AND THE AUSTRALIAN ELECTRICTY GRID". Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21880.
Testo completoFLAMMINI, MARCO GIACOMO. "Reference electric distribution network modelling and integration of electric vehicle charging stations". Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2827703.
Testo completoBerthold, Florence. "Integration of Plug-in Hybrid Electric Vehicle using Vehicle-to-home and Home-to-Vehicle Capabilities". Thesis, Belfort-Montbéliard, 2014. http://www.theses.fr/2014BELF0241/document.
Testo completoThe challenge for the next few years is to reduce CO2 emissions, which are the cause of global climate warming. CO2 emissions are mainly due to thermal engines used in transportation. To decrease this emission, a viable solution lies in using non-polluting electric vehicles recharged by low CO2 emission energy sources. New transportation penetration has effected on energy production. Energy production has already reached peaks. At the same time, load demand has drastically increased. Hence, it has become imperative to increase daily energy production. It is well-known that world energy production is mainly produced thermal pollutant power plants, except in Québec, where energy is produced by hydro power plants.The more recent electricity utility trend is that electric, and plug-in hybrid electric vehicles (EV, PHEV) could allow storage and/or production of energy. EV/PHEV batteries can supply the electric motor of the vehicle, and act as an energy storage that assists the grid to supply household loads. This power flow is called vehicle-to-grid, V2G. In this dissertation, the V2G power flow is specifically called vehicle-to-home, V2H. That is battery is used during peak. Moreover, the EV battery is charged during the night, when energy production is low and cheap. This important aspect of V2H is that the vehicle battery is not connected to the grid, but is a part of a house micro-grid.This dissertation presents an offline optimization technique, which includes different energy flows, between the home, EV/PHEV, and a renewable energy source (such as photovoltaic - PV and/or wind) which forms the micro-grid. This optimization has been realized through the dynamic programming algorithm. The optimization objective is to minimize energy cost, including fuel cost, electricity cost, and renewable energy cost.Two fuzzy logic controllers, one located in the vehicle and the second one in the house, have been designed, tested by simulation (online simulation) and validated by experiments.The research analyses two seasonal case studies: one in winter and the other one in summer. In the winter case, a cost reduction of 40% for the offline simulation, 27% for the online simulation and 29% for the experiment is realized whereas in the summer case a cost reduction of 62% for the offline simulation, 60% for the online simulation and 64% for the experiment is presented
GUERCIONI, GUIDO RICARDO. "Integration of dual-clutch transmissions in hybrid electric vehicle powertrains". Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2706035.
Testo completoCooke, David William. "Powertrain Modeling, Design, and Integration for the World’s Fastest Electric Vehicle". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1431081117.
Testo completoMowry, Andrew Maxwell. "Integration challenges for fast-charging infrastructure to support electric vehicle adoption". Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129127.
Testo completoCataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 59-64).
Highway fast-charging stations located between major population centers are necessary to address consumer charging concerns and thus to support the continued adoption of electric vehicles to meet decarbonization policy targets. Yet such stations, if sized to support anticipated demand, may cause operational difficulties on the power grid. Using a spatially resolved model of the power transmission network and a detailed market simulator, we characterize the effects of large-scale EV fast-charging on the Texas ERCOT system. We further explore three strategies to mitigate these effects -- energy storage colocation, network reinforcement, and demand flexibility --
and quantify their costs. This analysis is unique in its focus on highway fast-charging, in its nodal representation of the power grid, and in its measurement of transmission-level impacts. We find that highway fast-charging stations do have the potential to cause transmissionlevel impacts, especially by exacerbating local transmission constraints. Inter-zonal transfer constraints and increased costs due to the dispatching of more expensive generation also contribute to system costs. We develop a general method to identify the most impactful charging stations, but we find that the determination of cost-effective mitigation strategies for each station requires a more tailored approach. Our analysis indicates that transmission reinforcement and battery co-location are relatively competitive mitigation strategies, but that demand flexibility is not.
When considering policies to promote fast-charger development, policymakers should focus on involving multiple stakeholders who can contribute different expertise to identify costefficient solutions. Specifically, we suggest a central role for power utilities due to their experience planning transmission reinforcement, but we also highlight an important role for private developers, especially in the United States, for political feasibility and overall cost controls.
by Andrew Maxwell Mowry.
S.M. in Technology and Policy
S.M.inTechnologyandPolicy Massachusetts Institute of Technology, School of Engineering, Institute for Data, Systems, and Society, Technology and Policy Program
Kang, Xueying. "Vehicle-infrastructure integration (VII) enabled plug-in hybrid electric vehicles (PHEVS) for traffic and energy management". Connect to this title online, 2009.
Cerca il testo completoMohamed, Ahmed A. S. Mr. "Bidirectional Electric Vehicles Service Integration in Smart Power Grid with Renewable Energy Resources". FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3529.
Testo completoLibri sul tema "Electric vehicle integration"
Vahidinasab, Vahid, e Behnam Mohammadi-Ivatloo, a cura di. Electric Vehicle Integration via Smart Charging. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4.
Testo completoBayram, İslam Şafak. Plug-in electric vehicle grid integration. Norwood, MA: Artech House, 2017.
Cerca il testo completoGarcia-Valle, Rodrigo, e João A. Peças Lopes, a cura di. Electric Vehicle Integration into Modern Power Networks. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-0134-6.
Testo completoGarcia-Valle, Rodrigo. Electric Vehicle Integration into Modern Power Networks. New York, NY: Springer New York, 2013.
Cerca il testo completoAlam, Mohammad Saad, e Mahesh Krishnamurthy. Electric Vehicle Integration in a Smart Microgrid Environment. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9780367423926.
Testo completoNational Renewable Energy Laboratory (U.S.), a cura di. Electric vehicle grid integration for sustainable military installations. Golden, Colo.]: National Renewable Energy Laboratory, 2011.
Cerca il testo completoQiuwei Wu. Grid Integration of Electric Vehicles in Open Electricity Markets. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118568040.
Testo completoOvalle, Andrés, Ahmad Hably e Seddik Bacha. Grid Optimal Integration of Electric Vehicles: Examples with Matlab Implementation. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73177-3.
Testo completoLi, Kang, Yusheng Xue, Shumei Cui, Qun Niu, Zhile Yang e Patrick Luk, a cura di. Advanced Computational Methods in Energy, Power, Electric Vehicles, and Their Integration. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6364-0.
Testo completoArmstrong, Lee R. Electronic system integration and systems engineering. Warrendale, PA: Society of Automotive Engineers, 2002.
Cerca il testo completoCapitoli di libri sul tema "Electric vehicle integration"
Patel, Arpit J., Chaitali Mehta, Ojaswini A. Sharma, Amit V. Sant e V. S. K. V. Harish. "Electric vehicle technology". In Renewable Energy Integration with Building Energy Systems, 113–28. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003211587-6.
Testo completoYoung, Kwo, Caisheng Wang, Le Yi Wang e Kai Strunz. "Electric Vehicle Battery Technologies". In Electric Vehicle Integration into Modern Power Networks, 15–56. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0134-6_2.
Testo completoNikowitz, Michael, Steven Boyd, Andrea Vezzini, Irene Kunz, Michael Duoba, Kevin Gallagher, Peter Drage et al. "System Optimization and Vehicle Integration". In Advanced Hybrid and Electric Vehicles, 87–204. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26305-2_5.
Testo completoAbdi, Hamdi, Maryam Shahbazitabar e Mansour Moradi. "Operational Challenges of Electric Vehicle Smart Charging". In Electric Vehicle Integration via Smart Charging, 223–36. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_10.
Testo completoAlmeida, P. M. Rocha, F. J. Soares e João A. Peças Lopes. "Impacts of Large-Scale Deployment of Electric Vehicles in the Electric Power System". In Electric Vehicle Integration into Modern Power Networks, 203–49. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0134-6_7.
Testo completoAghajan-Eshkevari, Saleh, Mohammad Taghi Ameli e Sasan Azad. "Electric Vehicle Services to Support the Power Grid". In Electric Vehicle Integration via Smart Charging, 129–48. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_6.
Testo completoBordons, Carlos, Félix Garcia-Torres e Miguel A. Ridao. "Demand-Side Management and Electric Vehicle Integration". In Model Predictive Control of Microgrids, 147–68. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24570-2_6.
Testo completoShekari, Mohammadreza, Hamidreza Arasteh e Vahid Vahidinasab. "Recognition of Electric Vehicles Charging Patterns with Machine Learning Techniques". In Electric Vehicle Integration via Smart Charging, 49–83. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_3.
Testo completoGandoman, Foad H., Vahid Nasiriyan, Behnam Mohammadi-Ivatloo e Davood Ahmadian. "The Concept of Li-Ion Battery Control Strategies to Improve Reliability in Electric Vehicle (EV) Applications". In Electric Vehicle Integration via Smart Charging, 35–48. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_2.
Testo completoRabiee, Abbas, Andrew Keane e Alireza Soroudi. "Smart Charging of EVs to Harvest Flexibility for PVs". In Electric Vehicle Integration via Smart Charging, 149–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05909-4_7.
Testo completoAtti di convegni sul tema "Electric vehicle integration"
Karthick, S., M. Ramesh Babu, R. Leena Rose e Deepak Arumugam. "Battery Management In Grid Into Vehicle Integration For Smart Electric Vehicles". In 2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), 1–5. IEEE, 2024. https://doi.org/10.1109/icpects62210.2024.10780214.
Testo completoSingh, Aditi Ranjan, Anuj Chauhan, Karunesh Srivastava e Akash Gupta. "Solar Wireless Electric Vehicle Charger with Cooling Fan Integration". In 2024 International Conference on Electrical Electronics and Computing Technologies (ICEECT), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/iceect61758.2024.10739090.
Testo completoSolis, Dario, e Chris Schwarz. "Multirate Integration in Hybrid Electric Vehicle Virtual Proving Grounds". In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/dac-5634.
Testo completoDias, Fábio Gaiotto, Carlos José Minutti e Fabricio Oliveira Menezes. "Vehicle System Integration (Electric Parking Brake)". In 15th SAE Brasil International Brake and Motion Control Colloquium & Engineering Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2022. http://dx.doi.org/10.4271/2021-36-0414.
Testo completoDiaz-Londono, Cesar, Giambattista Gruosso, Paolo Maffezzoni e Luca Daniel. "Coordination Strategies for Electric Vehicle Chargers Integration in Electrical Grids". In 2022 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2022. http://dx.doi.org/10.1109/vppc55846.2022.10003274.
Testo completoQuigley, C. "Electronic system integration for hybrid and electric vehicles". In IET Hybrid Vehicle Conference 2006. IEE, 2006. http://dx.doi.org/10.1049/cp:20060604.
Testo completoLedinger, Stephan, David Reihs, Daniel Stahleder e Felix Lehfuss. "Test Device for Electric Vehicle Grid Integration". In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). IEEE, 2018. http://dx.doi.org/10.1109/eeeic.2018.8493902.
Testo completoAziz, Muhammad, Muhammad Huda, Bentang Arief Budiman, Erwin Sutanto e Poetro Lebdo Sambegoro. "Implementation of Electric Vehicle and Grid Integration". In 2018 5th International Conference on Electric Vehicular Technology (ICEVT). IEEE, 2018. http://dx.doi.org/10.1109/icevt.2018.8628317.
Testo completoBach Andersen, Peter, Rodrigo Garcia-Valle e Willett Kempton. "A comparison of electric vehicle integration projects". In 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). IEEE, 2012. http://dx.doi.org/10.1109/isgteurope.2012.6465780.
Testo completoAndersen, Peter Bach, Mattia Marinelli, Ole Jan Olesen, Claus Amtrup Andersen, Gregory Poilasne, Bjoern Christensen e Ole Alm. "The Nikola project intelligent electric vehicle integration". In 2014 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE, 2014. http://dx.doi.org/10.1109/isgteurope.2014.7028765.
Testo completoRapporti di organizzazioni sul tema "Electric vehicle integration"
Rolufs, Angela, Amelia Trout, Kevin Palmer, Clark Boriack, Bryan Brilhart e Annette Stumpf. Integration of autonomous electric transport vehicles into a tactical microgrid : final report. Engineer Research and Development Center (U.S.), settembre 2021. http://dx.doi.org/10.21079/11681/42007.
Testo completoRolufs, Angela, Amelia Trout, Kevin Palmer, Clark Boriack, Bryan Brilhart e Annette Stumpf. Autonomous Transport Innovation (ATI) : integration of autonomous electric vehicles into a tactical microgrid. Engineer Research and Development Center (U.S.), settembre 2021. http://dx.doi.org/10.21079/11681/42160.
Testo completoAbdul Hamid, Umar Zakir. Privacy for Software-defined Battery Electric Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, giugno 2024. http://dx.doi.org/10.4271/epr2024012.
Testo completoKisacikoglu, Mithat, Jason Harper, Rajendra Kandula, Alastair Thurlbeck, Akram Ali, Emin Ucer, Edward Watt, Md Shafquat Khan e Rasel Mahmud. High-Power Electric Vehicle Charging Hub Integration Platform (eCHIP): Design Guidelines and Specifications for DC Distribution-Based Charging Hub. Office of Scientific and Technical Information (OSTI), aprile 2024. http://dx.doi.org/10.2172/2335495.
Testo completoZhang, Yangjun. Unsettled Topics Concerning Flying Cars for Urban Air Mobility. SAE International, maggio 2021. http://dx.doi.org/10.4271/epr2021011.
Testo completoMonahan, Joseph F. Life-Cycle Cost Modeling to Determine whether Vehicle-to-Grid (V2G) Integration and Ancillary Service Revenue can Generate a Viable Case for Plug-in Electric Drive Vehicles. Fort Belvoir, VA: Defense Technical Information Center, giugno 2013. http://dx.doi.org/10.21236/ada586076.
Testo completoMoncada, Oscar, Zainab Imran, Connor Vickers, Konstantina Gkritza, Steven Pekarek, Dionysios Aliprantis, Aaron Brovont, Behnam Jahangiri e John E. Haddock. Full-Scale Dynamic Wireless Power Transfer and Pilot Project Implementation. Purdue University, 2024. http://dx.doi.org/10.5703/1288284317744.
Testo completoCoyner, Kelley, e Jason Bittner. Infrastructure Enablers and Automated Vehicles: Trucking. SAE International, luglio 2022. http://dx.doi.org/10.4271/epr2022017.
Testo completoAbdul Hamid, Umar Zakir. Product Governance and Management for Software-defined Battery Electric Vehicles. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, ottobre 2024. http://dx.doi.org/10.4271/epr2024025.
Testo completoTuffner, Francis K., Michael CW Kintner-Meyer e Krishnan Gowri. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity. Office of Scientific and Technical Information (OSTI), novembre 2012. http://dx.doi.org/10.2172/1060681.
Testo completo