Letteratura scientifica selezionata sul tema "Earth lower mantle"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Earth lower mantle".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Earth lower mantle"
Murakami, Motohiko, Amir Khan, Paolo A. Sossi, Maxim D. Ballmer e Pinku Saha. "The Composition of Earth's Lower Mantle". Annual Review of Earth and Planetary Sciences 52, n. 1 (23 luglio 2024): 605–38. http://dx.doi.org/10.1146/annurev-earth-031621-075657.
Testo completoSunil, K., e B. S. Sharma. "Thermoelastic properties of the earth lower mantle". International Journal of Modern Physics B 31, n. 14 (27 marzo 2017): 1750108. http://dx.doi.org/10.1142/s0217979217501089.
Testo completoTsuchiya, Taku, Jun Tsuchiya, Haruhiko Dekura e Sebastian Ritterbex. "Ab Initio Study on the Lower Mantle Minerals". Annual Review of Earth and Planetary Sciences 48, n. 1 (30 maggio 2020): 99–119. http://dx.doi.org/10.1146/annurev-earth-071719-055139.
Testo completoBower, Dan J., Michael Gurnis e Maria Seton. "Lower mantle structure from paleogeographically constrained dynamic Earth models". Geochemistry, Geophysics, Geosystems 14, n. 1 (gennaio 2013): 44–63. http://dx.doi.org/10.1029/2012gc004267.
Testo completoZhang, Li. "Bridgmanite across the lower mantle". Nature Geoscience 15, n. 12 (dicembre 2022): 964. http://dx.doi.org/10.1038/s41561-022-01099-7.
Testo completoNakagawa, Takashi, e Tomoeki Nakakuki. "Dynamics in the Uppermost Lower Mantle: Insights into the Deep Mantle Water Cycle Based on the Numerical Modeling of Subducted Slabs and Global-Scale Mantle Dynamics". Annual Review of Earth and Planetary Sciences 47, n. 1 (30 maggio 2019): 41–66. http://dx.doi.org/10.1146/annurev-earth-053018-060305.
Testo completoRevenaugh, Justin, e Thomas H. Jordan. "Mantle layering fromScSreverberations: 4. The lower mantle and core-mantle boundary". Journal of Geophysical Research: Solid Earth 96, B12 (10 novembre 1991): 19811–24. http://dx.doi.org/10.1029/91jb02163.
Testo completoYAMAZAKI, Daisuke. "High Pressure Earth Science. Rheological Properties of the Lower Mantle." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 9, n. 1 (1999): 19–25. http://dx.doi.org/10.4131/jshpreview.9.19.
Testo completoBovolo, C. Isabella. "The physical and chemical composition of the lower mantle". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, n. 1837 (31 ottobre 2005): 2811–36. http://dx.doi.org/10.1098/rsta.2005.1675.
Testo completoDay, James M. D., D. Graham Pearson e Lawrence A. Taylor. "Highly Siderophile Element Constraints on Accretion and Differentiation of the Earth-Moon System". Science 315, n. 5809 (12 gennaio 2007): 217–19. http://dx.doi.org/10.1126/science.1133355.
Testo completoTesi sul tema "Earth lower mantle"
Catalli, Krystle Carina. "The effect of trivalent cations on the major lower mantle silicates". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68885.
Testo completoCataloged from PDF version of thesis. Vita.
Includes bibliographical references (p. 151-165).
I have investigated the effect of composition, especially ferric iron and aluminum, on the equations of state and phase stability of perovskite and post-perovskite. The presence of trivalent cations decreases the bulk modulus of perovskite at pressures corresponding to the upper lower mantle. Ferric iron in perovskite undergoes a spin-pairing transition from the high spin state to low spin in the octahedral site. Ferric iron in the dodecahedral site remains high spin. In the absence of aluminum, the spin transition is gradual between 0 and 55 GPa, and bulk modulus increases at the completion of the spin transition. In the presence of aluminum, there is an abrupt increase in the amount of low spin ferric iron near 70 GPa, likely the result of site mixing. The high compressibility of the structure below 70 GPa results in the volume nearing that of magnesium endmember, MgSiO₃ , perovskite. Concurrent with the spin transition in aluminum-bearing perovskite, the structure stiffens. The increase in density and bulk modulus at -70 GPa results in an increase in bulk sound speed that may be related to heterogeneities in bulk sound speed observed seismically at 1200-2000 km depth in the Earth. The effect of composition on the perovskite to postperovskite phase transition was also investigated. No change in the spin state of ferric iron was found at the perovskite to post-perovskite phase transition: ferric iron is low spin in the octahedral site and high spin in the dodecahedral site. At the phase transition, ferric iron only slightly broadens the perovskite plus post-perovskite mixed phase region while ferrous iron and aluminum were each found to significantly broaden the mixed phase region to hundreds of kilometers thick. The effect of background mineral phases was assessed for a basaltic system, rich in aluminum. The coexisting minerals were found to significantly reduce the effect of the aluminum, producing a boundary that is potentially sharp enough for seismic detection in silicon-rich systems, such as basalt.
by Krystle Carina Catalli.
Ph.D.
Ammann, Michael W., John P. Brodholt, Andrew J. Walker e David P. Dobson. "Absolute diffusion rates in minerals of the Earth lower mantle from first principles". Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-189835.
Testo completoAmmann, Michael W., John P. Brodholt, Andrew J. Walker e David P. Dobson. "Absolute diffusion rates in minerals of the Earth lower mantle from first principles". Diffusion fundamentals 11 (2009) 43, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A13999.
Testo completoHassler, Deborah Renee 1961. "Plume-lithosphere interaction : geochemical evidence from upper mantle and lower crustal xenoliths from the Kerguelen Islands". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/54434.
Testo completoIncludes bibliographical references.
This study is a geochemical investigation of the evolution of the Kerguelen plume, on the basis of upper mantle and lower crustal xenoliths. Ultramafic xenoliths include harzburgites predominant, a lherzolite, dunites and pyroxenites, whereas lower crustal xenoliths are cumulate gabbros recrystallized under granulite facies conditions. On the basis of the whole rock major element characteristics and trace element abundance patterns in clinopyroxenes, the harzburgites were found to be residues of extensive melting at high pressures within the Kerguelen plume. These were then recrystallized at low pressures and metasomatized by plume generated melts. Details of the metasomatic process were determined from trace element variations in clinopyroxene in connection to texture. This demonstrated that meltrock reaction and the precipitation of new clinopyroxenes occurred by metasomatic carbonatitic melts. It was also found that some of the harzburgites had distinctly unradiogenic Os isotopic compositions and were identified as originating from the sub-Gondwanaland lithosphere. On the basis of major and trace element compositions, the granulite xenoliths were found to be originally gabbroic cumulates formed from plume-derived basaltic melts emplaced at the base of the crust by underplating and subsequently recrystallized isobarically under granulite conditions. The Sr, Nd and Os isotopic compositions of the peridotite and granulite xenoliths demonstrate that the Kerguelen plume is isotopically heterogeneous and displays a temporal progression toward more enriched Sr and Nd isotopic compositions from the Ninetyeast Ridge to granulite xenoliths to Kerguelen basalts and Heard Island basalts.
by Deborah Renee Hassler.
Ph.D.
Chabane, Saadi. "Quasi Harmonic approximation breakdown : consequences on the thermal transport at extreme conditions". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS297.pdf.
Testo completoThe lattice dynamics and vibrational properties of materials are typically well described by a harmonic model at low and moderate temperatures, where phonons are assumed to behave independently. However, at high temperatures, this assumption fails as phonon interactions become significant. Understanding these anharmonic interactions between lattice modes is crucial for both fundamental research and practical applications, as they significantly influence physical properties such as thermal transport and elastic properties.Thermal conductivity of the minerals constituting planetary interiors plays a key role in controlling heat transfer within planets, thereby influencing planetary dynamics and thermo-chemical history (Samuel et al., 2021). The heat flux from the core to the mantle directly impacts the degree of basal heating of the mantle, the rate of core cooling, and inner core growth, which in turn affect outer core dynamics and magnetic field generation and evolution. Thus, understanding phonon interactions provides insights into Earth's history and evolution.The aim of this thesis is to investigate the behavior of anharmonic terms at the extreme temperature and pressure conditions of Earth's lower mantle, focusing on Magnesium Oxide (MgO) which is an end-member for ferropericlase (Mg,Fe)O that constitutes 20% of the mantle's volume. This study employs Density Functional Theory (DFT) based methods, specifically Density Functional Perturbation Theory (DFPT) and the Stochastic Self-Consistent Harmonic Approximation (SSCHA). These methodologies allow access to anharmonicity up to the fourth-order (four-phonon interactions). The results will be benchmarked against Inelastic X-ray Scattering (IXS) and Infra-Red spectroscopy (IR) measurements conducted in our group at varying temperatures.Subsequently, we will discuss the thermal conductivity (TC) obtained through the Boltzmann transport equation as a function of temperature, emphasizing the importance of considering defects in the analysis of TC. We then explore the extreme conditions of Earth's lower mantle, with temperatures of thousands of Kelvin and pressures at the Mbar scale, to identify the behavior of anharmonicity in MgO throughout this region. Our theoretical treatment elucidates the microscopic origin of the observed drop in TC at the bottom of the lower mantle, attributed to the interplay between three- and four-phonon interactions and emphasizes on the importance of presence of defects on lattice thermal conductivity even at extreme T and P conditions
Lo, Nigro Giacomo. "Etude expérimentale des propriétés de fusion du manteau inférieur". Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2011. http://tel.archives-ouvertes.fr/tel-00697344.
Testo completoBybee, Grant Michael. "High-pressure megacrysts and lower crustal contamination: probing a mantle source for Proterozoic massif-type anorthosites". Thesis, 2014.
Cerca il testo completoLibri sul tema "Earth lower mantle"
SEDI 2000 (2000 : Exeter, England), a cura di. Earth's core and lower mantle. London: Taylor & Francis, 2003.
Cerca il testo completoA, Jones Christopher, Soward A. M e Zhang Keke, a cura di. Earth's core and lower mantle: Contributions from SEDI 2000, the 7th Symposium Study of the Earth's Deep Interior, Exeter, 30th July-4th August 2000. London: Taylor & Francis, 2003.
Cerca il testo completo1936-, Nicolas A., Vissers Reinoud Leonard Maria e European Union of Geosciences. Meeting, a cura di. Mantle and lower crust exposed in oceanic ridges and in ophiolites: Contributions to a specialized symposium of the VII [sic] EUG Meeting, Strasbourg, spring 1993. Dordrecht: Kluwer Academic Publishers, 1995.
Cerca il testo completoJones, C. A., A. M. Soward e K. Zhang. Earth's Core and Lower Mantle. Taylor & Francis Group, 2003.
Cerca il testo completoJones, C. A., Andrew M. Soward e K. Zhang. Earth's Core and Lower Mantle. Taylor & Francis Group, 2003.
Cerca il testo completoJones, C. A., Andrew M. Soward e K. Zhang. Earth's Core and Lower Mantle. Taylor & Francis Group, 2003.
Cerca il testo completoJones, C. A., Andrew M. Soward e K. Zhang. Earth's Core and Lower Mantle. Taylor & Francis Group, 2003.
Cerca il testo completoJones, C. A., Andrew M. Soward e K. Zhang. Earth's Core and Lower Mantle. Taylor & Francis Group, 2003.
Cerca il testo completoKaminsky, Felix V. The Earth's Lower Mantle: Composition and Structure. Springer, 2018.
Cerca il testo completoKaminsky, Felix V. The Earth's Lower Mantle: Composition and Structure. Springer, 2017.
Cerca il testo completoCapitoli di libri sul tema "Earth lower mantle"
Frost, Daniel J., e Robert Myhill. "Chemistry of the Lower Mantle". In Deep Earth, 225–40. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118992487.ch18.
Testo completoGarnero, Edward J., Allen K. McNamara e James A. Tyburczy. "Earth’s Lower Mantle, Structure". In Encyclopedia of Solid Earth Geophysics, 1–8. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_131-1.
Testo completoGarnero, Edward J., Allen K. McNamara e James A. Tyburczy. "Earth’s Structure, Lower Mantle". In Encyclopedia of Solid Earth Geophysics, 1–8. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_131-2.
Testo completoGarnero, Edward J., Allen K. McNamara e James A. Tyburczy. "Earth’s Structure, Lower Mantle". In Encyclopedia of Solid Earth Geophysics, 154–59. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8702-7_131.
Testo completoGarnero, Edward J., Allen K. McNamara e James A. Tyburczy. "Earth’s Structure, Lower Mantle". In Encyclopedia of Solid Earth Geophysics, 176–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58631-7_131.
Testo completoMerkel, Sébastien, e Patrick Cordier. "Deformation of Core and Lower Mantle Materials". In Deep Earth, 89–99. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118992487.ch7.
Testo completoMcDonough, William F. "The Composition of the Lower Mantle and Core". In Deep Earth, 143–59. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118992487.ch12.
Testo completoDorfman, Susannah M. "Phase Diagrams and Thermodynamics of Lower Mantle Materials". In Deep Earth, 241–52. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118992487.ch19.
Testo completoWicks, June K., e Thomas S. Duffy. "Crystal Structures of Minerals in the Lower Mantle". In Deep Earth, 69–87. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118992487.ch6.
Testo completoHirose, Kei. "Phase Transition and Melting in the Deep Lower Mantle". In Deep Earth, 209–24. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781118992487.ch17.
Testo completoAtti di convegni sul tema "Earth lower mantle"
Amini, Marghaleray, Chris Holmden e Klaus Peter Jochum. "The Calcium Isotope Composition of the Lower Mantle and Bulk Earth". In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.50.
Testo completoLibon, Lélia, Georg Spiekermann, Wolfgang Morgenroth, Melanie Sieber, Johannes Kaa, Christian Albers, Nicole Biedermann et al. "Carbon in the deep Earth: The fate of magnesite in the lower mantle." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.3519.
Testo completoPausch, Tristan, Jaseem Vazhakuttiyakam, Thomas Ludwig, Anthony Withers, Jürgen Konzett e Bastian Joachim-Mrosko. "Phosphorus in the deep Earth: An experimental investigation of Ca-phosphates at upper- to lower-mantle P-T conditions". In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.19581.
Testo completoTrunilina, Vera. "RARE-EARTH MINERALIZATION IN GRANITES OF THE NORTH-EAST OF THE VERKHOYANSK-KOLYMA OROGEN". In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/1.1/s01.17.
Testo completoFeng, Jianyun, Ying Zhang, Jun Luo, Yan Zeng, Xiaorui Yun, Dawei Liao, Zhiliang He et al. "Geological Analysis of Typical Geothermal Systems in East of China". In 58th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2024. http://dx.doi.org/10.56952/arma-2024-0167.
Testo completoAl-Busaidi, Salim, Qasim Hinaai, Rajeev Ranjan Kumar, Ying Ru Chen, Redha Hasan Al Lawatia, Dai Guo Yu, Amit Kumar Singh e Surej Kumar Subbiah. "Successful Drilling Campaign of High Angled Wells in Tight Gas Fields using 3D Geomechanical Modeling and Real-Time Monitoring". In SPE/IADC Middle East Drilling Technology Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/202123-ms.
Testo completoGupta, Abhishek, Vinnavadi C. Babu Sivakumar, Gaurav Dwivedi e Kashish Bhardwaj. "Novel Digitalized Sand Management Strategy for Incremental Hydrocarbon Production". In ADIPEC. SPE, 2024. http://dx.doi.org/10.2118/222723-ms.
Testo completoOsik Shaydurova, Anastasiya, Emanuele Paolini, Giovanni Corinaldesi e Pietro Bernardini. "Industrialization: D-Orbit’s experience with the AOCS Platform". In ESA 12th International Conference on Guidance Navigation and Control and 9th International Conference on Astrodynamics Tools and Techniques. ESA, 2023. http://dx.doi.org/10.5270/esa-gnc-icatt-2023-055.
Testo completoRapporti di organizzazioni sul tema "Earth lower mantle"
Mohammadi, N., D. Corrigan, A. A. Sappin e N. Rayner. Evidence for a Neoarchean to earliest-Paleoproterozoic mantle metasomatic event prior to formation of the Mesoproterozoic-age Strange Lake REE deposit, Newfoundland and Labrador, and Quebec, Canada. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330866.
Testo completo