Tesi sul tema "Dynamical instabilities"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Dynamical instabilities".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Lin, Min-Kai. "Dynamical instabilities in disc-planet interactions". Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/245135.
Testo completoTomadin, Andrea. "Dynamical instabilities in quantum many-body systems". Doctoral thesis, Scuola Normale Superiore, 2010. http://hdl.handle.net/11384/85874.
Testo completoPersson, Kristin Aslaug. "Thermodynamical and Dynamical Instabilities from Ab initio Electronic-Structure Calculations". Doctoral thesis, KTH, Physics, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3137.
Testo completoPersson, Kristin. "Thermodynamical and dynamical instabilities from Ab initio electronic-structure calculations /". Stockholm : Tekniska högsk, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3137.
Testo completoMadden, Francis. "Dynamical instabilities in a fluid spin-up and in an open flow system". Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293436.
Testo completoRostami, Masoud. "Dynamical influence of diabatic processes upon developing instabilities of Earth and planetary jets and vortices". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066186.
Testo completoThe thesis is devoted to understanding dynamical influence of diabatic effects, like moist convection, on instabilities of vortices in Earth and planetary atmospheres. A vertically integrated atmospheric model with relaxational parameterisation of phase transitions and related heat release, and with convective fluxes included in mass and momentum equations, the moist-convective rotating shallow water model, was used for this purpose. The previous version of the model was improved to include precipitable water and its vaporisation and entrainment. The approach consists in 1)detailed stability analysis of idealised, or extracted from the data, vortex profiles, 2)study of nonlinear saturation of the instabilities with the help of finite-volume high-resolution numerical code. The main results of the thesis are: 1. Demonstration and quantification of strong influence of moist effects upon instabilities of synoptic vortices, including cyclone-anticyclone asymmetry of mid-latitude vortices of weak intensity, and intensification of tropical-cyclone like vortices with formation of typical cloud patterns. 2. Explanation of the dynamical origin of the Saturn's North Polar hexagon, and of the lack of similar structure at the South Pole, in terms of instability of the coupled polar vortex and circumpolar jet, and their nonlinear saturation.3. Explanation of the observed structure of Mars' winter polar vortex in terms of instability of the latter, and its saturation in the presence of radiative heating/cooling and CO2 deposition (gas-solid phase transition). A new simple parameterisation of the latter process, including the influence of deposition nuclei, was developed in the thesis
Rostami, Masoud. "Dynamical influence of diabatic processes upon developing instabilities of Earth and planetary jets and vortices". Electronic Thesis or Diss., Paris 6, 2017. http://www.theses.fr/2017PA066186.
Testo completoThe thesis is devoted to understanding dynamical influence of diabatic effects, like moist convection, on instabilities of vortices in Earth and planetary atmospheres. A vertically integrated atmospheric model with relaxational parameterisation of phase transitions and related heat release, and with convective fluxes included in mass and momentum equations, the moist-convective rotating shallow water model, was used for this purpose. The previous version of the model was improved to include precipitable water and its vaporisation and entrainment. The approach consists in 1)detailed stability analysis of idealised, or extracted from the data, vortex profiles, 2)study of nonlinear saturation of the instabilities with the help of finite-volume high-resolution numerical code. The main results of the thesis are: 1. Demonstration and quantification of strong influence of moist effects upon instabilities of synoptic vortices, including cyclone-anticyclone asymmetry of mid-latitude vortices of weak intensity, and intensification of tropical-cyclone like vortices with formation of typical cloud patterns. 2. Explanation of the dynamical origin of the Saturn's North Polar hexagon, and of the lack of similar structure at the South Pole, in terms of instability of the coupled polar vortex and circumpolar jet, and their nonlinear saturation.3. Explanation of the observed structure of Mars' winter polar vortex in terms of instability of the latter, and its saturation in the presence of radiative heating/cooling and CO2 deposition (gas-solid phase transition). A new simple parameterisation of the latter process, including the influence of deposition nuclei, was developed in the thesis
Dufour, Oscar. "Enhanced agent-based models for pedestrian crowds : insights from empirical data at the Festival of Lights and refinements of mechanical interactions, pedestrian shapes, and decisional aspects". Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10338.
Testo completoWith the surge in mass events, crowd dynamics have become an increasingly important subject of study. Understanding how groups move and evolve in space, particularly at medium and high densities, is crucial for organising such events.The first section of this PhD dissertation presents one of the first field datasets on dense crowds. This dataset includes pedestrian trajectories and meta-information collected during the 2022 Festival of Lights in Lyon as part of the Franco-German MADRAS project. It includes up to 7000 trajectories, GPS data, and contact information. In addition, some rare events have been identified, providing an in-depth description of pedestrian dynamics in complex, real-life scenarios. Subsequently, I develop a theoretical framework for modelling crowd dynamics that integrates a decision-making component, where pedestrians regularly adjust their desired speed, and a mechanical layer that confronts these decisions with the surrounding physical reality. Most existing models fail to faithfully reproduce mechanical interactions, often relying on idealised interaction forces and simplified circular shapes. Drawing inspiration from the scientific literature on grain dynamics, I integrate more realistic mechanical interactions into the Newtonian equations, using damped springs that are tangential and normal to the contact surfaces. I also use anthropometric data to represent the human contour as faithfully as possible, in two dimensions, rather than using simple discs. This allows me to create a synthetic crowd that incorporates individual heterogeneity. Regarding decision-making, pedestrians strive to choose a desired speed while adhering to various metabolic, physical, and psychological constraints, largely supported by empirical data. These constraints include:- A destination constraint which considers the goal of reaching a specific location.- Biomechanical limits related to the muscular and articular capacities of pedestrians.- A cost associated with the misalignment between the body and the desired direction of movement.- A desire to preserve one's social bubble, a zone that individuals wish to keep free of any intrusion, whether from obstacles or neighbouring pedestrians.- An intention to avoid collisions or interpenetration of comfort spaces during movement based on the estimation of time to collision.This comfort space is modelled by a scalar field of discomfort whose contours are not simply circular. The model is implemented in C++ and tested in various scenarios. After validation in simple situations involving pairs of pedestrians or a pedestrian near a wall, I successfully compare the model's predictions with experiments involving the propagation of a push through a row of people, evacuations, and weaving movements between walls and pedestrians.Finally, I investigate collective phenomena that occur not only in crowds but also in vehicular traffic, specifically stop-and-go waves resulting from the growth of dynamical instabilities. To better understand these phenomena, I simulate a car-following model that relies on maintaining a constant time gap with the following vehicle. Although the deterministic version of the model is unconditionally stable, introducing noise intriguingly leads to the emergence of stop-and-go waves. I explain this observation using an analogy with the Kapitza pendulum, which develops a new stationary state under strong vibrations. Specifically, discontinuities in a suitably defined order parameter appear when noise or density exceeds a finite threshold, echoing a liquid-gas transition. This noise may stem from inaccuracies in drivers' and pedestrians' observations, difficulties in brain information processing, or unaccounted interactions. My research on crowd dynamics highlights the importance of integrating decision-making processes with mechanical interactions to deepen our understanding of complex collective behaviours, notably in crowded environments
Cordeiro, Timothy Joseph. "Dynamic instabilities imparted by CubeSat propulsion". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105612.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 120-123).
As the role of CubeSats evolves to include more challenging and complex missions in addition to technology demonstrations, the demand for agility have increased. As the technology improves and gains flight heritage, CubeSats are being deployed to accomplish more difficult missions including, but not limited to, large constellations and missions beyond Low Earth Orbit (LEO). To perform missions like station keeping for constellations, and to move beyond LEO, CubeSat developers are increasingly integrating propulsion into the design of their CubeSats. In addition, more complex payloads and communication systems require more power generation, which leads to larger deployed solar arrays. Meanwhile, the limiting factor for the CubeSat remains the size and weight constraints of the containerized launch deployers. In order to meet these constraints, the solar array design has to trade stiffness and strength for size. In this work, we investigate whether designs that use a combination of propulsion and solar arrays stress the dynamics of the solar panels and the hinges that hold them in place. Our approach uses SimXpert to perform dynamic simulations on CubeSat models, both 3U and 6U, with deployable solar panels and propulsion forces. By default, SimXpert treats every part as a rigid body and stress is not calculated. By doing a modal analysis of the panels in Nastran and importing the results into SimXpert, stress on the panels can be tracked during propulsive maneuvers. We determine that Margin of Safety (MoS) for the solar panels analyzed is over 100 when combined with three different COTS propulsion units. We also show the movement induced on the panels from propulsion can cause errors in body attitude ranging from 0.04 to 90 degrees. The worst case showed a difference becoming one degree in five seconds before growing exponentially to 90 degrees in 30 seconds.
by Timothy Joseph Cordeiro.
S.M.
Nguyen, Thi Thu Tra. "Dynamic instabilities of model granular materials". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSET007/document.
Testo completoThis thesis reports a laboratory study on the dynamic instabilities of model saturated granular material using a triaxial apparatus. The term instability consists of isotropic collapse and liquefaction under isotropic compression and of stick-slip under triaxial compression in drained condition. The instabilities spontaneously occur at unpredictable effective stress with unexpected buildup of excess pore pressure irrespective of fully drained condition, contrasting with the instability-free behaviour of natural granular materials. In isotropic compression, instantaneous local collapse happens and in triaxial compression, very large and quasi-periodic stick-slip occurs with sudden volumetric compaction and axial contraction. Sometimes, these local failures (collapse and stick-slip) can develop into total liquefaction failure, destroying completely the granular structure. High time-resolved data permit the discovery of a new family of dynamic and static liquefaction. Passive acoustic measurements allow the identification of typical spectral signature. For stick-slip phenomenon, the slip phase with constant duration of stress drop can be interpreted as dynamic consolidation at constant deviatoric stress, limited by a unique boundary inside the critical state line in the effective stress plane. The precise temporal sequence of mechanical measurements excludes the generated pore pressure as the main cause of the instabilities. However, the role of pore pressure is emphasised by consistent quantitative relations between the amplitude of incremental stresses, incremental strains and the ephemeral stabilised excess pore pressure developed during the dynamic event, leading to the quasi-deterministic nature of granular instabilities. These empirical relations are based only on the short-lived maximum vertical acceleration and governed separately by the confining pressure and the initial void ratio. The similarity of pore pressure evolution for different kinds of instability strongly suggests some common speculative triggering mechanisms, probably originated from different rearrangements of the granular micro-structure
Ozen, Ozgur. "Effect of vapor dynamics on interfacial instabilities". [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0006000.
Testo completoGillispie, Brian Douglas Stewart David. "Instabilities of elastic bodies in motion". Thesis supplements, 2009. http://ir.uiowa.edu/etd/238/.
Testo completoKaiser, Thomas. "Impact of Flow Rotation on Flame Dynamics and Hydrodynamic Stability". Thesis, Toulouse, INPT, 2019. http://oatao.univ-toulouse.fr/24115/1/Kaiser_Thomas.pdf.
Testo completoNikitas, Nikolaos. "Wind-induced dynamic instabilities of flexible bridges". Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546213.
Testo completoSinclair, Stephen W. "Dynamic instabilities in a nonlinear ring cavity". Thesis, University of Strathclyde, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293235.
Testo completoCitro, Vincenzo. "Unsteady and three-dimensional fluid dynamic instabilities". Doctoral thesis, Universita degli studi di Salerno, 2016. http://hdl.handle.net/10556/2220.
Testo completoHarper, C. M. "Turbulence and combustion instabilities in engines". Thesis, University of Leeds, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.343890.
Testo completoStamper, Megan Andrena. "The evolution and breakdown of submesoscale instabilities". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277822.
Testo completoKay, S. R. "Instabilities and dynamic behaviour in branched chain reactions". Thesis, University of Leeds, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378413.
Testo completoPeters, Eric David. "Dynamic instabilities imparted by CubeSat deployable solar panels". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93800.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 85-87).
In this work, multibody dynamics simulation was used to investigate the effects of solar panel deployment on CubeSat attitude dynamics. Nominal and partial/asymmetric deployments were simulated for four different solar panel assemblies. Trend lines were obtained for the evolution of the angular velocities and accelerations of the CubeSat about its center of mass for the duration of the deployment. The partial deployment simulations shed insight into the motions that an attitude control system may need to mitigate in the event of a deployment anomaly.
by Eric David Peters.
S.M.
Sundkvist, David. "Space Plasma Dynamics : Instabilities, Coherent Vortices and Covariant Parametrization". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-6051.
Testo completoHourlier-Fargette, Aurélie. "Soft interfaces : from elastocapillary snap-through to droplet dynamics on elastomers". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066089/document.
Testo completoThis thesis focuses on interactions between liquids and elastic solids. We first revisit the snap-through instability from an elastocapillary point of view, showing that capillary forces are able to counterbalance gravity by inducing snap-through with a droplet deposited below a downward buckled elastic strip clamped at both ends. Equilibrium, stability, and dynamics of drop-strip systems are investigated, demonstrating the influence of droplet size and droplet position along the buckled strip, and showing that capillarity is driving the system toward instability but elasticity is ruling the subsequent dynamics. Spin-off versions of the experiment are also designed, including a humidity-controlled mechanical switch and upscaled experiments using soap bubbles.We then focus on interactions between silicone elastomers and aqueous droplets to understand the mechanisms underlying an unexpected two-regime droplet dynamics observed on vertical silicone elastomer plates. After demonstrating that this two-regime dynamics is due to the presence of uncrosslinked oligomers in the elastomer, we show that the speed transition coincides with a surface tension transition. A quantitative study of the droplets speeds in the two regimes is performed, and the timescale needed for uncrosslinked oligomers to cover the water-air interface is investigated both for sessile and moving droplets. We eventually show that uncrosslinked chains are extracted from the elastomer at the water - air - silicone elastomer triple line, and demonstrate that extraction occurs in various setups such as partially immersed silicone elastomer plates or air bubbles sliding up PDMS planes immersed in a water bath
NICCOLINI, MARMONT DU HAUT CHAMP CARLO ALBERTO. ""Analysis of dynamic responses and instabilities in rotating machinery”". Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1080576.
Testo completoGibbons, Brian J. Jr. "Electromigration induced step instabilities on silicon surfaces". The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1143235175.
Testo completoArnould, Maëlis. "Some surface expressions of mantle convective instabilities". Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/19901.
Testo completoTHOMAS, DJEISSON HOFFMANN. "CONTROL SYSTEM TO SUPPRESS GAIN DYNAMIC INSTABILITIES OF AN EDFA". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2003. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3954@1.
Testo completoERICSSON DO BRASIL
Objetivando suprimir as instabilidades dinâmicas de ganho em um amplificador à fibra dopada com Érbio (EDFA), uma nova configuração de laser em anel é apresentada e demonstrada. Neste trabalho, analizamos os efeitos da variação do nível de atenuação no laço de re-alimentação sobre a resposta transitória do EDFA. Particularmente, observamos as excursões de ganho experimentadas pelo canal sobrevivente quando sete dentre oito canais da rede são adicionados ou removidos, à exemplo do que ocorre em sistemas WDM reais. Sob esta análise, avaliamos o desempenho do sistema em suprimir as instabilidades dinâmicas de ganho do EDFA.
A new ring laser configuration to eliminate the gain dynamic instabilities of an erbium doped fiber amplifier (EDFA) is proposed and demonstrated. We examine the effect of the attenuation level in the optical feedback path over thetransient response of the EDFA. In particular, we look at the transient gain excursions experienced by surviving channel when seven of eight channels are added or dropped, like in real WDM systems. Using this analysis as a guide, we highlight the robustness of the approach and evaluate its performance to EDFA gain stabilization.
Gorchon, Jon. "Current and field induced magnetization reversal in Pt/Co/Pt and (Ga, Mn)(As, P) ferromagnetic films". Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112143.
Testo completoEffectively manipulating the magnetic state of a ferromagnet has a great interest for possible technological applications. Understanding the underlying fundamental mechanisms is thus particularly important. In some cases, the understanding of some mechanisms may even importantly impact other areas of physics. This is the case for example with field induced magnetic domain walls motion in the creep regime, where the wall can be assimilated to an elastic interface and follows an universal behavior. This thesis presents through an experimental work on Pt/Co/Pt ultra-thin samples, a complete description of the temperature and field dependent domain wall dynamics. A self-consistent analysis allows the extraction of all control parameters, identifying the new Thermally Activated Flux Flow regime, and confirming universal thermal scaling exponents. A second study focuses on current induced domain wall motion in an extended geometry of a (Ga,Mn)(As,P) ferromagnetic film. This study unveils domain wall shape instabilities under a gradient of current. The instability limits are analytically predicted in agreement with the experimental observations. A third work concerns the magnetization reversal mechanism evidenced at the interface between a (Ga,Mn)(As,P) film and a non-ferromagnetic electrode under a current flow. The reversal is shown to be stochastic and mainly governed by the spin accumulation at the interface, which reduces importantly the local magnetization. A simplified model allows the description of the reversal probability and the time scales involved in the mechanism of reversal are accessed and discussed
Hillier, Andrew Stephen. "Numerical Study of Plasma Instabilities to Investigate Fine-Scale Prominence Dynamics". 京都大学 (Kyoto University), 2011. http://hdl.handle.net/2433/152029.
Testo completoKalmoni, N. M. E. "The role of magnetospheric plasma instabilities in auroral and substorm dynamics". Thesis, University College London (University of London), 2017. http://discovery.ucl.ac.uk/1546163/.
Testo completoMirat, Clément. "Analyse des instabilités de combustion dans des foyers de centrale thermique fonctionnant au fioul lourd". Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2015. http://www.theses.fr/2015ECAP0037/document.
Testo completoVibratory crises have been observed in EDF thermal power plants operating with heavy fuel oil. Such instabilities may lead to shutdown and damage the boiler. This work deals with combustion instabilities that can take place in boilers equipped with steam-assisted atomizers and where the airflow is swirled. These vibratory phenomena result from a resonant coupling between the combustion dynamics and the boiler acoustics. Analyses of combustion dynamics of non-premixed swirling spray flames remain rare and are difficult to realize on the real system. The objective of this work is to analyze the stability of EDF boilers using the response of generic non-premixed swirling spray flames submitted to acoustic velocity disturbances. This response is determined on an original device (DIFAV) equipped with a swirling vane and a twin-fluid atomizer operated with steam and dodecane. This burner is equipped with the main elements of those used in the thermal power plant, but has a reduced scale of 1/7000. The influence of the injector geometry and of the operating conditions on the spray generated by the injector can be studied. Spray visualizations at the outlet of the injector reveal the relationship between the topology of the two-phase flow in the injector and the measured droplet size. Measurements of the droplet diameter and velocity as a function of the gas-to-liquid ratio (GLR) have been performed at the outlet of the injector. These data have been compared to models and were used to estimate the evolution of the droplets diameter as a function of the GLR generated by the industrial injector. A modal analysis of the DIFAV combustor is then carried out and a simplified acoustic model made of three coupled cavities is developed. The natural frequencies and damping rates of the DIFAV combustor are determined experimentally when it is submitted to acoustic modulation. Acoustic simulations are performed with COMSOL Multiphysics on a simplified geometrical model of the industrial boiler. Three low frequency modes established between the plenums and the combustion chamber have been identified and may be unstable. Their sensitivity to modifications of the boiler geometry and boundary conditions are studied. Flame responses subjected to acoustic modulations of the airflow rate are then measured on the DIFAV combustor for several amplitudes and two flames topologies obtained at globally lean condition. Phase-conditioned flame visualizations and measurements of swirl number fluctuations during an acoustic forcing cycle are conducted to explain the mechanisms that control the evolution of gain of the Flame Describing Function (FDF). A high sensitivity of the phase of the FDF to the amplitude of the acoustic disturbance is observed. The Strouhal number based on the airflow velocity and the effective length of the flame is used to transpose these FDF on the industrial burner. FDF are integrated in the acoustic model of the DIFAV setup to carry out a stability analysis and predict the limit cycle oscillations as a function of the combustion chamber length. These calculations are compared to frequencies of self-sustained instability measured at the limit cycles in the DIFAV combustor. A reasonable agreement is obtained showing the validity of the stability analysis for the non-premixed two-phase flames investigated based on the knowledge of their FDF. Finally, a stability analysis of the EDF boiler is conducted with the COMSOL Multiphysics model by including the acoustic flame response of the industrial burner in the simulation. This FDF is deducted from the dimensionless FDF measured on the generic burner. The Rayleigh criterion is used to analyze the stability of the combustor as a function of the flame length for different boundary conditions. Indications are given to improve the stability of the EDF boiler
Krichene, Assaad. "Active identification and control of aerodynamic instabilities in axial and centrifugal compressors". Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/12062.
Testo completoMiranda, Juliana Albertoni de. "Dynamics of Brazil Current dipoles: barotropic instabilities and flow-western boundary interactions". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/21/21135/tde-09022015-095946/.
Testo completoA presente tese examina a natureza das interações entre jato e contorno e o papel de instabilidades barotrópicas no sistema Corrente do Brasil (CB) quando este ainda se encontra fluindo junto à margem continental oeste. A motivação se deu através da frequente observação de feições bipolares associadas ao escoamento da CB ao sul de Cabo Frio (RJ) e ao largo da Bacia de Santos (entre 22º e 28ºS). Tais observações se devem principalmente a imagens termais de temperatura da superfície do mar, a algumas raras observações \"in situ\" através de dados hidrográficos e medições diretas de velocidade. Assim, o principal foco é na formação de feições bipolares associadas ao fluxo médio, sendo a principal hipótese a de que instabilidade barotrópica é responsável pela formação destes dipolos ao longo da corrente quando esta tem que lidar com variações da topografia. Este estudo tenta abordar os problemas em uma perspectiva semi-teórica, e também através de modelagem numérica em uma abordagem de estudos de processo. Assim, inclui estudos semi-teóricos em configurações idealizadas relevantes para o sistema Corrente do Brasil ao largo de Cabo Frio, considerando a teoria quase-geostrófica como a aproximação apropriada para a dinâmica do sistema que queremos avaliar. Adicionalmente, a modelagem numérica é usada através da construção de cenários idealizados onde simplificamos a física a fim de isolar os processos que queremos investigar. Toda a análise dinâmica partiu de um conjunto de dados que compreendeu o sistema Corrente do Brasil ao largo de Cabo Frio. Validamos a teoria quase-geostrófica que estamos considerando e obtivemos as características cinemáticas do jato. Nas análises dinâmicas, começamos a investigação do problema partindo do cenário mais simples utilizado aqui, onde consideramos um campo de vorticidade potencial discretizado em camadas horizontais em um modelo quase-geostrófico de dinâmica de contornos. O modelo incorporou a presença de uma linha de costa retilínea orientada meridionalmente no contorno oeste. Posteriormente, incluímos mais complexidade no sistema, idealizando diferentes cenários de linha de costa e considerando um campo de vorticidade potencial quase-contínuo em um modelo numérico quase-geostrófico. Finalmente, construímos um cenário ainda mais complexo para a Corrente do Brasil, o qual incorporou a topografia real da região e a estratificação da coluna de água em um modelo numérico de equações primitivas. Dentre as principais conclusões, pudemos comprovar que instabilidade barotrópica pode promover a formação de dipolos. Além disso, variações no contorno podem consequentemente ser gatilhos para gerar perturbações no jato e dipolos se formam. Assim, locais de mudança abrupta de batimetria e orientação de linha de costa são preferidos para a formação de dipolos vorticais. Rua de vórtices e trens de instabilidade também podem se desenvolver à juzante de tais locais como consequência de se perturbar um jato potencialmente barotropicamente instável. Consequentemente, um cisalhamento horizontal é chave para a geração de dipolos vorticais. Um cisalhamento relativamente fraco não permite a formação de tais feições, e em vez disso, vórtices frontais são possivelmente gerados, com a predominância de anticiclones. Apesar de as três diferentes estratégias aplicadas aqui diferirem em termos de configurações dinâmicas e aproximações, estas ainda mantiveram aproximadamente o mesmo regime para a formação de dipolos. Variações na topografia tais como aquelas associadas com mudanças de orientação de costa próximo a Cabo Frio (23ºS) contam com o fato de dipolos vorticais e rua de vórtices serem frequentemente observados dentro da Bacia de Santos.
Armanini, Costanza. "Instabilities and dynamics of elastic rods in the presence of movable constraints". Doctoral thesis, Università degli studi di Trento, 2018. https://hdl.handle.net/11572/367733.
Testo completoArmanini, Costanza. "Instabilities and dynamics of elastic rods in the presence of movable constraints". Doctoral thesis, University of Trento, 2018. http://eprints-phd.biblio.unitn.it/2853/1/Thesis_Armanini.pdf.
Testo completoSainsbury-Martinez, Felix. "Flows, instabilities, and magnetism in stars and planets". Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/32072.
Testo completoLamraoui, Ammar. "Acoustique et dynamique de flamme dans un foyer turbulent prémélangé swirlé : application à l'étude du bruit de combustion dans les chambres de turbines à gaz". Phd thesis, Ecole Centrale Paris, 2011. http://tel.archives-ouvertes.fr/tel-00678248.
Testo completoSelçuk, Savas Can. "Numerical study of helical vortices and their instabilities". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066138/document.
Testo completoThe work presented in this manuscript is a contribution to the numerical study of helical vortex systems and their instabilities, as encountered in the near wake of rotors (wind turbines, helicopters,~...). In this work, such flows are locally modelled within the framework of helical symmetry. Using a dedicated DNS code, helical quasi-stationary basic state solutions are obtained for several configurations, and accurate tools for their characterisation are developed: angular velocity, core size and ellipticity, structure of the velocity and vorticity fields... An Arnoldi algorithm is then coupled to a linearised version of the code. The dominant instability modes with the same symmetry as the base flow are extracted as a function of the system parameters: number of vortices, helical pitch, core size, Reynolds number, presence of a central hub vortex. Under a critical helical pitch, the instability is dominated by a global displacement mode analogous to the pairing mode of an infinite array of point vortices or vortex rings. In the nonlinear regime, this mode gives rise to complex dynamics: overtaking events, leapfrogging and merging. Another linearised code is then used to extract modes characterised by a wavelength along the helix, which break the helical symmetry of the base flow. At low wavenumbers, these modes induce local displacements of the vortices and bring together portions of neighbouring coils. At large wavenumbers, another type of mode is found, which deforms the vortex cores through the elliptical instability mechanism
Dubois, Thibault. "Electron dynamics in crossed-field discharges". Electronic Thesis or Diss., Orléans, 2023. http://www.theses.fr/2023ORLE1069.
Testo completoCrossed-field plasma discharges have a wide variety of applications, including space propulsion (e.g. Hall thrusters) and materials processing (planar magnetrons). The crossed magnetic and electric field configuration creates features such as plasma turbulence and anisotropies in particle properties, the understanding of which require detailed information on electrons. Direct experimental study of these features would contribute to the development of high-fidelity numerical simulations of such plasmas, and to an improved understanding of their operation. An intense research effort has been devoted in recent years to the study of phenomena such as so-called "anomalous" electron transport across the field lines, which exceeds by several orders of magnitude that expected from collisions. The lack of complete understanding of this phenomenon limits the predictive capability of numerical codes for thrusters and other devices. Recent work has, however, established a link between this transport and high-frequency instabilities within the plasma. The complexity of this behavior (3D propagation, coupling effects) requires not only the development of high-performance, full-dimensional numerical codes, but also advanced diagnostics for electron behavior and properties.The nature of these discharges (such as high degrees of electron magnetization and energy, architecture) render invasive diagnostics such as Langmuir probes limited in their capacity to probe electron features. In this work, two diagnostics based on Thomson scattering were applied to the study of such features: THETIS (incoherent Thomson scattering), for measurement of individual electron properties such as temperature (more broadly, electron energy distribution functions), density and drift velocity, while PRAXIS (coherent Thomson scattering), for measurement of small-scale electron density fluctuations (associated with MHz-frequency waves). In a 1.5 kW Hall-effect thruster, the evolution of electron properties along the radial direction was directly measured. A radial variation in the electron properties, most marked for electron temperature, was observed. A linear kinetic theory model was used to evaluate the form of the dispersion relation corresponding to the measured plasma conditions, and this was compared with previous measurements made using PRAXIS. This analysis revealed a smoothing effect of the dispersion relation which could be accounted for due to the variation of electron properties along the characteristic measurement volume dimensions. In a HiPIMS planar magnetron, several discharge conditions were studied, with argon and helium, for peak currents ranging from 40 A to 600 A. Time-resolved features such as anisotropy of the drift velocity were measured, and an analysis of the contributions to the particle drifts was performed under varying conditions. The linear kinetic theory was adapted to the magnetron. The application of PRAXIS to measurements in the planar magnetron revealed the presence of two instabilities in the HiPIMS mode, one identified as the electron cyclotron drift instability (ECDI), studied in previous work, and the second mode propagating at an angle of 45° to the target surface. A preliminary analysis of the perturbative influence of a simple Langmuir probe in the plasma was also carried out on the planar magnetron, and it was observed that a systematic increase in the instability group velocity was occurred in the presence of such a probe.The application of advanced electron diagnostics to measurements in this work have enabled an improved characterization (including with high temporal resolution) of the electron properties and dynamics of these crossed-field devices
Peacock, Thomas. "Global dynamics in a liquid crystal flow". Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299157.
Testo completoKoutsogiannakis, Panagiotis. "Dynamics and instability of flexible structures with sliding constraints". Doctoral thesis, Università degli studi di Trento, 2022. https://hdl.handle.net/11572/362124.
Testo completoColinet, Pierre. "Amplitude equations and nonlinear dynamics of surface-tension and buoyancy-driven convective instabilities". Doctoral thesis, Universite Libre de Bruxelles, 1997. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212204.
Testo completoThis work is a theoretical contribution to the study of thermo-hydrodynamic instabilities in fluids submitted to surface-tension (Marangoni) and buoyancy (Rayleigh) effects in layered (Benard) configurations. The driving constraint consists in a thermal (or a concentrational) gradient orthogonal to the plane of the layer(s).
Linear, weakly nonlinear as well as strongly nonlinear analyses are carried out, with emphasis on high Prandtl (or Schmidt) number fluids, although some results are also given for low-Prandtl number liquid metals. Attention is mostly devoted to the mechanisms responsible for the onset of complex spatio-temporal behaviours in these systems, as well as to the theoretical explanation of some existing experimental results.
As far as linear stability analyses (of the diffusive reference state) are concerned, a number of different effects are studied, such as Benard convection in two layers coupled at an interface (for which a general classification of instability modes is proposed), surface deformation effects and phase-change effects (non-equilibrium evaporation). Moreover, a number of different monotonous and oscillatory instability modes (leading respectively to patterns and waves in the nonlinear regime) are identified. In the case of oscillatory modes in a liquid layer with deformable interface heated from above, our analysis generalises and clarifies earlier works on the subject. A new Rayleigh-Marangoni oscillatory mode is also described for a liquid layer with an undeformable interface heated from above (coupling between internal and surface waves).
Weakly nonlinear analyses are then presented, first for monotonous modes in a 3D system. Emphasis is placed on the derivation of amplitude (Ginzburg-Landau) equations, with universal structure determined by the general symmetry properties of the physical system considered. These equations are thus valid outside the context of hydrodynamic instabilities, although they generally depend on a certain number of numerical coefficients which are calculated for the specific convective systems studied. The nonlinear competitions of patterns such as convective rolls, hexagons and squares is studied, showing the preference for hexagons with upflow at the centre in the surface-tension-driven case (and moderate Prandtl number), and of rolls in the buoyancy-induced case.
A transition to square patterns recently observed in experiments is also explained by amplitude equation analysis. The role of several fluid properties and of heat transfer conditions at the free interface is examined, for one-layer and two-layer systems. We also analyse modulation effects (spatial variation of the envelope of the patterns) in hexagonal patterns, leading to the description of secondary instabilities of supercritical hexagons (Busse balloon) in terms of phase diffusion equations, and of pentagon-heptagon defects in the hexagonal structures. In the frame of a general non-variational system of amplitude equations, we show that the pentagon-heptagon defects are generally not motionless, and may even lead to complex spatio-temporal dynamics (via a process of multiplication of defects in hexagonal structures).
The onset of waves is also studied in weakly nonlinear 2D situations. The competition between travelling and standing waves is first analysed in a two-layer Rayleigh-Benard system (competition between thermal and mechanical coupling of the layers), in the vicinity of special values of the parameters for which a multiple (Takens-Bogdanov) bifurcation occurs. The behaviours in the vicinity of this point are numerically explored. Then, the interaction between waves and steady patterns with different wavenumbers is analysed. Spatially quasiperiodic (mixed) states are found to be stable in some range when the interaction between waves and patterns is non-resonant, while several transitions to chaotic dynamics (among which an infinite sequence of homoclinic bifurcations) occur when it is resonant. Some of these results have quite general validity, because they are shown to be entirely determined by quadratic interactions in amplitude equations.
Finally, models of strongly nonlinear surface-tension-driven convection are derived and analysed, which are thought to be representative of the transitions to thermal turbulence occurring at very high driving gradient. The role of the fastest growing modes (intrinsic length scale) is discussed, as well as scalings of steady regimes and their secondary instabilities (due to instability of the thermal boundary layer), leading to chaotic spatio-temporal dynamics whose preliminary analysis (energy spectrum) reveals features characteristic of hydrodynamic turbulence. Some of the (2D and 3D) results presented are in qualitative agreement with experiments (interfacial turbulence).
Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished
Ranalli, Joseph Allen. "Spatially Resolved Analysis of Flame Dynamics for the Prediction of Thermoacoustic Combustion Instabilities". Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/27657.
Testo completoPh. D.
Prieur, Kevin. "Dynamique de la combustion dans un foyer annulaire multi-injecteurs diphasique". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLC070/document.
Testo completoThese last decades have seen many innovations in the field of combustion to reduce fuel consumption and pollutant emissions. New types of injector, for example LPP - Lean Premixed Prevaporized, have then been developed to reduce the fuel / air ratio and aim to pre-vaporize the fuel upstream of the combustion in order to mix it better with the air coming from the compressor. Unfortunately this architecture makes annular chambers more sensitive to unsteady phenomena which disturb the functioning of the system, increase the heat flows towards the walls of the chamber, induce vibrations of structures, cause cyclic fatigue of mechanical parts and in extreme cases lead to irreversible damage. The objective of this thesis is to continue the effort undertaken at the EM2C laboratory on this topic and more particularly on the dynamics of combustion in annular chambers comprising a set of injectors. The thesis concerns more particularly the case where the injection of the fuel takes place in liquid form. This configuration reproduces, in idealized form, what can be found in practice in aeronautical engines. It is also a configuration studied at the fundamental level. The chamber, known as MICCA-Spray, is equipped with 16 swirled injectors that can be powered by liquid or gaseous fuel, thus enabling two-phase or fully premixed combustion. The system has quartz walls giving optical access to the flame zone. It is also equipped with a set of diagnostics such as microphones, photomultipliers and high-speed imaging systems
Hermeth, Sébastian. "Mechanisms affecting the dynamic response of swirled flames in gas turbines". Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0064/document.
Testo completoModern pollutant regulation have led to a trend towards lean combustion systems which are prone to thermo-acoustic instabilities. The ability of Large Eddy Simulation (LES) to handle complex industrial heavy-duty gas turbines is evidenced during this thesis work. First, LES is applied to an academic single burner in order to validate the modeling against measurements performed at TU Berlin and against OpenFoam LES simulations done at Siemens. The coupling between acoustic and combustion is modeled with the Flame Transfer Function (FTF) approach and swirl number fluctuations are identified changing the FTF amplitude response of the flame. Then, an industrial gas turbine is analyzed for two different burner geometries and operating conditions. The FTF is only slightly influenced for the two operating points but slight modifications of the swirler geometry do modify the characteristics of the FTF showing that a simple model taking only into account the flight time is not appropriate and additional mechanisms are at play. Those mechanisms are identified being the inlet velocity, the swirl and the inlet mixture fraction fluctuations. The latter is caused by two mechanisms: 1) the pulsating injected fuel flow rate and 2) the fluctuating trajectory of the fuel jets. Although the diagonal swirler is designed to provide good mixing, effects of mixing heterogeneities at the combustion chamber inlet occur. Mixture perturbations phase with velocity (and hence with swirl) fluctuations and combine with them to lead to different FTF results. Another FTF approach linking heat release to inlet velocity and mixture fraction fluctuation (MISO model) shows further to be a good solution for complex systems. A nonlinear analysis shows that the forcing amplitude not only leads to a saturation of the flame but also to changes of the delay response. Flame saturation is only true for the global FTF and the gain increases locally with increasing forcing amplitude. Both, the linear and the nonlinear flames, are not compact: flame regions located right next to each other exhibited significant differences in delay meaning that at the same instant certain parts of the flame damp the excitation while others feed it
Moisy, Frederic. "Instabilités, ondes, et turbulence en rotation". Habilitation à diriger des recherches, Université Paris Sud - Paris XI, 2010. http://tel.archives-ouvertes.fr/tel-00519073.
Testo completoMartin, Christopher Reed. "Systematic Prediction and Parametric Characterization of Thermo-Acoustic Instabilities in Premixed Gas Turbine Combustors". Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/30889.
Testo completoMaster of Science
Arnould, Maëlis. "Some surface expressions of mantle convective instabilities". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN036/document.
Testo completoEarth's lithosphere, which is the upper boundary layer of mantle convection, represents the interface between the external and internal envelopes of our Planet. The multiple interactions between the mantle and lithosphere generate lateral (plate tectonics) and vertical (dynamic topography) deformations of Earth's surface. Understanding the influence of the dynamics of mantle convective instabilities on the surface is fundamental to improve our interpretations of a large range of surface observations, such as the formation of sedimentary basins, continental motions, the location of hotspots, the presence of gravity anomalies or sea-level variations.This thesis aims at developing numerical models of whole-mantle convection self-generating plate-like tectonics in order to study the impacts of the development and the dynamics of mantle convective instabilities (such as slabs or mantle plumes) on the continuous reshaping of the surface.First, I focus on the influence of the coupling between mantle convective motions and plate tectonics on the development of dynamic topography (i.e. surface vertical deformations induced by mantle convection) at different spatial and temporal scales. The results suggest that Earth's surface can deform over large spatial scales (> 104 km) induced by whole-mantle convection to small-scales (< 500 km) arising from small-scale sub-lithospheric convection. The temporal variations of dynamic topography range between five and several hundreds of millions of years depending on the convective instabilities from which they originate. In particular, subduction initiation and slab break-off events control the existence of intermediate scales of dynamic topography (between 500 and 104 km). This reflects that the interplay between mantle convection and lithosphere dynamics generates complex spatial and temporal patterns of dynamic topography consistent with constraints for Earth.A second aim of this thesis is to understand the dynamics of mantle plumes and their interactionswith surface. I first characterize in detail the behaviour of mantle plumes arising in models ofwhole-mantle convection self-generating plate-like tectonics, in light of surface observations. Then, I study how the interactions between surface plate tectonics and mantle convection affect plume motions. Finally, I use observations of the thermal signature of plume/ridge interactions to propose a reconstruction of the relative motions between the Azores mantle plume and the Mid-Atlantic Ridge
Benton, Stuart Ira. "Capitalizing on Convective Instabilities in a Streamwise Vortex-Wall Interaction". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437664298.
Testo completoZimmermann, Oliver. "The influence of the dynamic ergodic divertor at TEXTOR on MHD instabilities and microturbulences". [S.l.] : [s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=973540486.
Testo completoAmorim, David. "Etude de l'instabilité de couplage des modes transverses dans le Grand Collisionneur de Hadrons du CERN". Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY041.
Testo completoThe High-Luminosity upgrade of the CERN LHC will increase its performance and the potential physics discoveries.The beam intensity will be multiplied by two to increase the collider luminosity.With such high intensities, collective effects and in particular beam coupling impedance are a possible performance limitation for the accelerator.After an introduction to accelerator physics and wake-fields, two collective effects codes will be detailed: PyHEADTAIL, a time-domain macro-particle code, and DELPHI, a Vlasov equation solver.Both are important to estimate coherent beam stability margins in the CERN accelerator complex, therefore a detailed comparison for different wakes and impedances, including the LHC model, will be presented.The current LHC stability limits will then be investigated with DELPHI simulations.In particular the Transverse Mode Coupling Instability, a fast instability occurring for high intensity beams with chromaticities close to zero, will be studied.The results will then be compared to measurements performed in the accelerator.Beam based measurements of several collimators will also be presented and compared to predictions from the impedance model.Combining these measurements and their comparison to simulations we will estimate the uncertainty on the LHC impedance model.To cope with the increased beam intensity, the impedance of the High Luminosity upgrade of the LHC will be reduced.The impact of different upgrade scenarios will be studied from the Transverse Mode Coupling Instability perspective.The potential benefits of an impedance reduction will be demonstrated through measurements in the LHC.Measurements performed in the LHC on a low impedance prototype collimator, the key component to the impedance reduction, will also be presented.These simulations and measurements will confirm the increase in the mode coupling threshold towards a value three times higher than the nominal bunch intensity