Letteratura scientifica selezionata sul tema "Dynamic stochastic models"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Dynamic stochastic models".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Dynamic stochastic models"
Assaf, A. George, Mike G. Tsionas e Florian Kock. "Dynamic quantile stochastic frontier models". International Journal of Hospitality Management 89 (agosto 2020): 102588. http://dx.doi.org/10.1016/j.ijhm.2020.102588.
Testo completoDror, Moshe, e Warren Powell. "Stochastic and Dynamic Models in Transportation". Operations Research 41, n. 1 (febbraio 1993): 11–14. http://dx.doi.org/10.1287/opre.41.1.11.
Testo completoReichman, David R. "On Stochastic Models of Dynamic Disorder†". Journal of Physical Chemistry B 110, n. 38 (settembre 2006): 19061–65. http://dx.doi.org/10.1021/jp061992j.
Testo completoYano, Makoto. "Comparative statics in dynamic stochastic models". Journal of Mathematical Economics 18, n. 2 (gennaio 1989): 169–85. http://dx.doi.org/10.1016/0304-4068(89)90020-7.
Testo completoZilcha, I. "Efficiency in Stochastic Dynamic Economic Models". IFAC Proceedings Volumes 22, n. 5 (giugno 1989): 357–61. http://dx.doi.org/10.1016/s1474-6670(17)53474-6.
Testo completoPopkov, Yu S. "Macrosystems Models of Dynamic Stochastic Networks". Automation and Remote Control 64, n. 12 (dicembre 2003): 1956–74. http://dx.doi.org/10.1023/b:aurc.0000008434.58605.1b.
Testo completoCreal, Drew D., e Ruey S. Tsay. "High dimensional dynamic stochastic copula models". Journal of Econometrics 189, n. 2 (dicembre 2015): 335–45. http://dx.doi.org/10.1016/j.jeconom.2015.03.027.
Testo completoFan, Ruzong, Bin Zhu e Yuedong Wang. "Stochastic dynamic models and Chebyshev splines". Canadian Journal of Statistics 42, n. 4 (3 novembre 2014): 610–34. http://dx.doi.org/10.1002/cjs.11233.
Testo completoTsionas, Efthymios G. "Inference in dynamic stochastic frontier models". Journal of Applied Econometrics 21, n. 5 (2006): 669–76. http://dx.doi.org/10.1002/jae.862.
Testo completoPopkov, Yuri S., Alexey Yu Popkov, Yuri A. Dubnov e Dimitri Solomatine. "Entropy-Randomized Forecasting of Stochastic Dynamic Regression Models". Mathematics 8, n. 7 (8 luglio 2020): 1119. http://dx.doi.org/10.3390/math8071119.
Testo completoTesi sul tema "Dynamic stochastic models"
Balijepalli, Narasimha Chandrasekhar. "Stochastic process models for dynamic traffic assignment". Thesis, University of Leeds, 2007. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.436385.
Testo completoChu, Qin. "Dynamic and stochastic models for container allocation". Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11742.
Testo completoCorneli, Marco. "Dynamic stochastic block models, clustering and segmentation in dynamic graphs". Thesis, Paris 1, 2017. http://www.theses.fr/2017PA01E012/document.
Testo completoThis thesis focuses on the statistical analysis of dynamic graphs, both defined in discrete or continuous time. We introduce a new extension of the stochastic block model (SBM) for dynamic graphs. The proposed approach, called dSBM, adopts non homogeneous Poisson processes to model the interaction times between pairs of nodes in dynamic graphs, either in discrete or continuous time. The intensity functions of the processes only depend on the node clusters, in a block modelling perspective. Moreover, all the intensity functions share some regularity properties on hidden time intervals that need to be estimated. A recent estimation algorithm for SBM, based on the greedy maximization of an exact criterion (exact ICL) is adopted for inference and model selection in dSBM. Moreover, an exact algorithm for change point detection in time series, the "pruned exact linear time" (PELT) method is extended to deal with dynamic graph data modelled via dSBM. The approach we propose can be used for change point analysis in graph data. Finally, a further extension of dSBM is developed to analyse dynamic net- works with textual edges (like social networks, for instance). In this context, the graph edges are associated with documents exchanged between the corresponding vertices. The textual content of the documents can provide additional information about the dynamic graph topological structure. The new model we propose is called "dynamic stochastic topic block model" (dSTBM).Graphs are mathematical structures very suitable to model interactions between objects or actors of interest. Several real networks such as communication networks, financial transaction networks, mobile telephone networks and social networks (Facebook, Linkedin, etc.) can be modelled via graphs. When observing a network, the time variable comes into play in two different ways: we can study the time dates at which the interactions occur and/or the interaction time spans. This thesis only focuses on the first time dimension and each interaction is assumed to be instantaneous, for simplicity. Hence, the network evolution is given by the interaction time dates only. In this framework, graphs can be used in two different ways to model networks. Discrete time […] Continuous time […]. In this thesis both these perspectives are adopted, alternatively. We consider new unsupervised methods to cluster the vertices of a graph into groups of homogeneous connection profiles. In this manuscript, the node groups are assumed to be time invariant to avoid possible identifiability issues. Moreover, the approaches that we propose aim to detect structural changes in the way the node clusters interact with each other. The building block of this thesis is the stochastic block model (SBM), a probabilistic approach initially used in social sciences. The standard SBM assumes that the nodes of a graph belong to hidden (disjoint) clusters and that the probability of observing an edge between two nodes only depends on their clusters. Since no further assumption is made on the connection probabilities, SBM is a very flexible model able to detect different network topologies (hubs, stars, communities, etc.)
Nori, Vijay S. "Algorithms for dynamic and stochastic logistics problems". Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/24513.
Testo completoPaltrinieri, Federico. "Modeling temporal networks with dynamic stochastic block models". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18805/.
Testo completoChung, Kun-Jen. "Some topics in risk-sensitive stochastic dynamic models". Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/28644.
Testo completoLoddo, Antonello. "Bayesian analysis of multivariate stochastic volatility and dynamic models". Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4359.
Testo completoThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (April 26, 2007) Vita. Includes bibliographical references.
Foliente, Greg C. "Stochastic dynamic response of wood structural systems". Diss., This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-05042006-164535/.
Testo completoAhn, Kwangwon. "Dynamic stochastic general equilibrium models with money, default and collateral". Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:78317412-e13d-4495-9665-340e777ab7b2.
Testo completoCherepnev, Alexey [Verfasser]. "Stochastic foundations of dynamic trade and labor market models / Alexey Cherepnev". Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2015. http://d-nb.info/1225685508/34.
Testo completoLibri sul tema "Dynamic stochastic models"
Galindo Gil, Hamilton, Alexis Montecinos Bravo e Marco Antonio Ortiz Sosa. Dynamic Stochastic General Equilibrium Models. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-58105-2.
Testo completoGong, Gang. Stochastic dynamic macroeconomics: Theory, numerics, and empirical evidence. New York: Oxford University Press, 2005.
Cerca il testo completoChatterjee, Partha. Convergence in a stochastic dynamic Heckscher-Ohlin model. Ottawa: Bank of Canada, 2006.
Cerca il testo completoPfann, Gerard A. Dynamic modelling of stochastic demand for manufacturing employment. Berlin: Springer-Verlag, 1990.
Cerca il testo completoGong, Gang. Stochastic dynamic macroeconomics: Theory and empirical evidence. New York, NY: Oxford University Press, 2004.
Cerca il testo completoC, Colander David, a cura di. Post Walrasian macroeconomics: Beyond the dynamic stochastic general equilibrium model. Cambridge: Cambridge University Press, 2006.
Cerca il testo completoMerbis, Maarten Dirk. Optimal control for econometric models: An application of stochastic dynamic games. Amsterdam: Free University Press, 1986.
Cerca il testo completoRansbotham, Sam. Sequential grid computing: Models and computational experiments. Bangalore: Indian Institute of Management Bangalore, 2009.
Cerca il testo completoNijkamp, Peter. Spatial interaction and input-output models: A dynamic stochastic multi-objective framework. Amsterdam: Vrije Universiteit, Faculteit der Economische Wetenschappen en Econometrie, 1987.
Cerca il testo completoauthor, Muler Nora, a cura di. Stochastic optimization in insurance: A dynamic programming approach. New York, NY: Springer, 2014.
Cerca il testo completoCapitoli di libri sul tema "Dynamic stochastic models"
Boguslavskiy, Josif A. "Estimating the Parameters of Stochastic Models". In Dynamic Systems Models, 125–68. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-04036-3_7.
Testo completoZhang, Zhe George. "Dynamic Optimization in Stochastic Models". In Fundamentals of Stochastic Models, 449–514. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003150060-10.
Testo completoGómez M., Guillermo L. "Stochastic control theory". In Dynamic Probabilistic Models and Social Structure, 401–19. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2524-6_9.
Testo completoBenaroya, Haym. "Random Eigenvalues and Structural Dynamic Models". In Stochastic Structural Dynamics 1, 11–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84531-4_2.
Testo completoChen, Huey-Kuo. "Stochastic/Dynamic User-Optimal Route Choice Model". In Dynamic Travel Choice Models, 229–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59980-4_12.
Testo completoRan, Bin, e David Boyce. "Instantaneous Stochastic Dynamic Route Choice Models". In Modeling Dynamic Transportation Networks, 211–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80230-0_10.
Testo completoRan, Bin, e David Boyce. "Ideal Stochastic Dynamic Route Choice Models". In Modeling Dynamic Transportation Networks, 181–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-80230-0_9.
Testo completoRavishanker, Nalini, Balaji Raman e Refik Soyer. "Modeling Stochastic Volatility". In Dynamic Time Series Models using R-INLA, 197–204. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003134039-10.
Testo completoNijkamp, Peter, e Aura Reggiani. "Dynamic and Stochastic Spatial Interaction Models". In Interaction, Evolution and Chaos in Space, 89–117. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77509-3_5.
Testo completoTapiero, Charles S. "Dynamic Optimization". In Applied Stochastic Models and Control for Finance and Insurance, 237–74. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5823-1_6.
Testo completoAtti di convegni sul tema "Dynamic stochastic models"
Zhao, Lang, Xueying Wang, Yizheng Li, Cheng Chen, Yawen Qian, Peng Du, Hongtao Xie, Chen Zhang e Zhiyu Wang. "Stochastic Dynamic Economic Dispatch Models of Ultra High Voltage AC-DC Hybrid Grids Based on Approximate Dynamic Programming". In 2024 4th International Conference on Energy, Power and Electrical Engineering (EPEE), 887–91. IEEE, 2024. https://doi.org/10.1109/epee63731.2024.10875448.
Testo completoRobinson, Jace, e Derek Doran. "Seasonality in dynamic stochastic block models". In WI '17: International Conference on Web Intelligence 2017. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3106426.3109424.
Testo completoRey, Francesc, e Josep Sala-Alvarez. "Stochastic dynamic models in PHY abstraction". In 2013 Asilomar Conference on Signals, Systems and Computers. IEEE, 2013. http://dx.doi.org/10.1109/acssc.2013.6810577.
Testo completoGhorbanian, Parham, Subramanian Ramakrishnan e Hashem Ashrafiuon. "EEG Stochastic Nonlinear Oscillator Models for Alzheimer’s Disease". In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9676.
Testo completoChemistruck, Heather, e John B. Ferris. "Compact Models of Terrain Surfaces". In ASME 2010 Dynamic Systems and Control Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/dscc2010-4037.
Testo completoAlexandre, Dolgui,. "Stochastic Dynamic Pricing Models of Monopoly Systems". In Information Control Problems in Manufacturing, a cura di Bakhtadze, Natalia, chair Dolgui, Alexandre e Bakhtadze, Natalia. Elsevier, 2009. http://dx.doi.org/10.3182/20090603-3-ru-2001.00243.
Testo completoSion, R., e J. Tatemura. "Dynamic stochastic models for workflow response optimization". In IEEE International Conference on Web Services (ICWS'05). IEEE, 2005. http://dx.doi.org/10.1109/icws.2005.50.
Testo completoKashib, T., e S. Amanetu. "Dynamic Data Integration in Stochastic Reservoir Models". In Canadian International Petroleum Conference. Petroleum Society of Canada, 2003. http://dx.doi.org/10.2118/2003-091.
Testo completoEliasi, Parisa A., e Sundeep Rangan. "Stochastic dynamic channel models for millimeter cellular systems". In 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2015. http://dx.doi.org/10.1109/camsap.2015.7383773.
Testo completoKneser, R., e V. Steinbiss. "On the dynamic adaptation of stochastic language models". In Proceedings of ICASSP '93. IEEE, 1993. http://dx.doi.org/10.1109/icassp.1993.319375.
Testo completoRapporti di organizzazioni sul tema "Dynamic stochastic models"
Fernandez-Villaverde, Jesus, Pablo Guerrón-Quintana e Juan Rubio-Ramírez. Estimating Dynamic Equilibrium Models with Stochastic Volatility. Cambridge, MA: National Bureau of Economic Research, settembre 2012. http://dx.doi.org/10.3386/w18399.
Testo completoPitarka, A. Testing Dynamic Earthquake Rupture Models Generated With Stochastic Stress Drop. Office of Scientific and Technical Information (OSTI), novembre 2018. http://dx.doi.org/10.2172/1490953.
Testo completoJudd, Kenneth, Lilia Maliar e Serguei Maliar. How to Solve Dynamic Stochastic Models Computing Expectations Just Once. Cambridge, MA: National Bureau of Economic Research, settembre 2011. http://dx.doi.org/10.3386/w17418.
Testo completoJudd, Kenneth, Lilia Maliar e Serguei Maliar. Numerically Stable Stochastic Simulation Approaches for Solving Dynamic Economic Models. Cambridge, MA: National Bureau of Economic Research, agosto 2009. http://dx.doi.org/10.3386/w15296.
Testo completoGhil, Michael, Mickael D. Chekroun, Dmitri Kondrashov, Michael K. Tippett, Andrew Robertson, Suzana J. Camargo, Mark Cane et al. Extended-Range Prediction with Low-Dimensional, Stochastic-Dynamic Models: A Data-driven Approach. Fort Belvoir, VA: Defense Technical Information Center, settembre 2012. http://dx.doi.org/10.21236/ada572180.
Testo completoGelain, Paolo, e Pierlauro Lopez. A DSGE Model Including Trend Information and Regime Switching at the ZLB. Federal Reserve Bank of Cleveland, dicembre 2023. http://dx.doi.org/10.26509/frbc-wp-202335.
Testo completoChen, Xin, Yanfeng Ouyang, Ebrahim Arian, Haolin Yang e Xingyu Ba. Modeling and Testing Autonomous and Shared Multimodal Mobility Services for Low-Density Rural Areas. Illinois Center for Transportation, agosto 2022. http://dx.doi.org/10.36501/0197-9191/22-013.
Testo completoMalin, Benjamin, Dirk Krueger e Felix Kubler. Computing Stochastic Dynamic Economic Models with a Large Number of State Variables: A Description and Application of a Smolyak-Collocation Method. Cambridge, MA: National Bureau of Economic Research, ottobre 2007. http://dx.doi.org/10.3386/t0345.
Testo completoMalin, Benjamin, Dirk Krueger e Felix Kubler. Computing Stochastic Dynamic Economic Models with a Large Number of State Variables: A Description and Application of a Smolyak-Collocation Method. Cambridge, MA: National Bureau of Economic Research, ottobre 2007. http://dx.doi.org/10.3386/w13517.
Testo completoFernández-Villaverde, Jesús, Galo Nuño e Jesse Perla. Taming the curse of dimensionality: quantitative economics with deep learning. Madrid: Banco de España, novembre 2024. http://dx.doi.org/10.53479/38233.
Testo completo