Libri sul tema "Dynamic machine learning"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 libri per l'attività di ricerca sul tema "Dynamic machine learning".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi i libri di molte aree scientifiche e compila una bibliografia corretta.
Gultekin, San. Dynamic Machine Learning with Least Square Objectives. [New York, N.Y.?]: [publisher not identified], 2019.
Cerca il testo completoBennaceur, Amel, Reiner Hähnle e Karl Meinke, a cura di. Machine Learning for Dynamic Software Analysis: Potentials and Limits. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96562-8.
Testo completoIEEE, International Symposium on Approximate Dynamic Programming and Reinforcement Learning (1st 2007 Honolulu Hawaii). 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning: Honolulu, HI, 1-5 April 2007. Piscataway, NJ: IEEE, 2007.
Cerca il testo completoHinders, Mark K. Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49395-0.
Testo completoIEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning (1st 2007 Honolulu, Hawaii). 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning: Honolulu, HI, 1-5 April 2007. Piscataway, NJ: IEEE, 2007.
Cerca il testo completoIEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning (1st 2007 Honolulu, Hawaii). 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning: Honolulu, HI, 1-5 April 2007. Piscataway, NJ: IEEE, 2007.
Cerca il testo completoAchmad, Widodo, a cura di. Introduction of intelligent machine fault diagnosis and prognosis. New York: Nova Science Publishers, 2009.
Cerca il testo completoRussell, David W. The BOXES Methodology: Black Box Dynamic Control. London: Springer London, 2012.
Cerca il testo completoHayes-Roth, Barbara. An architecture for adaptive intelligent systems. Stanford, Calif: Stanford University, Dept. of Computer Science, 1993.
Cerca il testo completoDuriez, Thomas, Steven L. Brunton e Bernd R. Noack. Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-40624-4.
Testo completoChiroma, Haruna, Shafi’i M. Abdulhamid, Philippe Fournier-Viger e Nuno M. Garcia, a cura di. Machine Learning and Data Mining for Emerging Trend in Cyber Dynamics. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66288-2.
Testo completoLeigh, J. R. Control Theory. 2a ed. Stevenage: IET, 2004.
Cerca il testo completoLi, Fanzhang, Li Zhang e Zhao Zhang. Dynamic Fuzzy Machine Learning. de Gruyter GmbH, Walter, 2017.
Cerca il testo completoLi, Fanzhang, Li Zhang e Zhao Zhang. Dynamic Fuzzy Machine Learning. de Gruyter GmbH, Walter, 2017.
Cerca il testo completoLi, Fanzhang, Li Zhang e Zhao Zhang. Dynamic Fuzzy Machine Learning. de Gruyter GmbH, Walter, 2017.
Cerca il testo completoMuneesawang, Paisarn, Ling Guan, Matthew Kyan e Kambiz Jarrah. Unsupervised Learning: A Dynamic Approach. Wiley & Sons, Incorporated, John, 2014.
Cerca il testo completoMuneesawang, Paisarn, Ling Guan, Matthew Kyan e Kambiz Jarrah. Unsupervised Learning: A Dynamic Approach. Wiley & Sons, Incorporated, John, 2014.
Cerca il testo completoJ, Walsh Thomas, Jonathan P. How, Alborz Geramifard, Stefanie Tellex e Girish Chowdhary. Tutorial on Linear Function Approximators for Dynamic Programming and Reinforcement Learning. Now Publishers, 2013.
Cerca il testo completoMuneesawang, Paisarn, Ling Guan, Matthew Kyan e Kambiz Jarrah. Unervised Learning Via Self-Organization: A Dynamic Approach. Wiley & Sons, Incorporated, John, 2014.
Cerca il testo completoLearning from Data Streams in Dynamic Environments. Springer, 2015.
Cerca il testo completoMachine Learning for Dynamic Software Analysis : Potentials and Limits: International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, ... Papers. Springer, 2018.
Cerca il testo completoZeng, Tao, Tao Huang e Chuan Lu, a cura di. Machine Learning Advanced Dynamic Omics Data Analysis for Precision Medicine. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-554-2.
Testo completoPowell, Warren B., Andrew G. Barto, Don Wunsch e Jennie Si. Handbook of Learning and Approximate Dynamic Programming. Wiley & Sons, Incorporated, John, 2012.
Cerca il testo completoHinders, Mark K. Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint. Springer International Publishing AG, 2021.
Cerca il testo completoHinders, Mark K. Intelligent Feature Selection for Machine Learning Using the Dynamic Wavelet Fingerprint. Springer International Publishing AG, 2020.
Cerca il testo completoLewis, Frank L., e Derong Liu. Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Wiley & Sons, Incorporated, John, 2013.
Cerca il testo completoLewis, Frank L., e Derong Liu. Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Wiley & Sons, Incorporated, John, 2013.
Cerca il testo completoLewis, Frank L., e Derong Liu. Reinforcement Learning and Approximate Dynamic Programming for Feedback Control. Wiley & Sons, Incorporated, John, 2013.
Cerca il testo completoHeo, Wookjae. Demand for Life Insurance: Dynamic Ecological Systemic Theory Using Machine Learning Techniques. Springer International Publishing AG, 2020.
Cerca il testo completoHeo, Wookjae. Demand for Life Insurance: Dynamic Ecological Systemic Theory Using Machine Learning Techniques. Springer International Publishing AG, 2019.
Cerca il testo completoR Machine Learning by Example: Understand the Fundamentals of Machine Learning with R and Build Your Own Dynamic Algorithms to Tackle Complicated Real-World Problems Successfully. de Gruyter GmbH, Walter, 2016.
Cerca il testo completoRussell, David W. The BOXES Methodology: Black Box Dynamic Control. Springer, 2014.
Cerca il testo completoThe BOXES Methodology: Black Box Dynamic Control. Springer, 2012.
Cerca il testo completoPickreign, Cynthia J. Riggle: A program for the dynamic conceptual time series analysis of hypervariate data and its application to ecotoxicology. 1995.
Cerca il testo completoAmunategui, Manuel. Python Web Work - Online Presence Powerhouse: Grow Audiences, Use Html5 Templates, Serve Dynamic Content, Build Machine Learning Web Apps, Conquer the World. Independently Published, 2020.
Cerca il testo completoSalin, Sandra, e Cathy Hampton, a cura di. Innovative language teaching and learning at university: facilitating transition from and to higher education. Research-publishing.net, 2022. http://dx.doi.org/10.14705/rpnet.2022.56.9782490057986.
Testo completoNoack, Bernd R., Steven L. Brunton e Thomas Duriez. Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. Springer, 2018.
Cerca il testo completoNoack, Bernd R., Steven L. Brunton e Thomas Duriez. Machine Learning Control - Taming Nonlinear Dynamics and Turbulence. Springer London, Limited, 2016.
Cerca il testo completoNoack, Bernd R., Steven L. Brunton e Thomas Duriez. Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. Springer, 2016.
Cerca il testo completoDecherchi, Sergio, Andrea Cavalli, Pratyush Tiwary e Francesca Grisoni, a cura di. Molecular Dynamics and Machine Learning in Drug Discovery. Frontiers Media SA, 2021. http://dx.doi.org/10.3389/978-2-88966-863-2.
Testo completoIordache, Octavian. Self-Evolvable Systems: Machine Learning in Social Media. Springer Berlin / Heidelberg, 2014.
Cerca il testo completoIordache, Octavian. Self-Evolvable Systems: Machine Learning in Social Media. Springer, 2012.
Cerca il testo completoHanson, Stephen José, Michael J. Kearns, Thomas Petsche e Ronald L. Rivest, a cura di. Computational Learning Theory and Natural Learning Systems, Volume 2. The MIT Press, 1994. http://dx.doi.org/10.7551/mitpress/2029.001.0001.
Testo completoBansal, Vinnie, e Aurelien Clere. Machine Learning with Dynamics 365 and Power Platform: The Ultimate Guide to Learning and Applying Machine Learning and Predictive Analytics. Wiley & Sons, Limited, John, 2022.
Cerca il testo completoUltimate Machine Learning Data Science: Statistical Methods for Building Trading Strategies to Machine Learning, Dynamical Systems, and Control for Beginners. Independently Published, 2022.
Cerca il testo completoKutz, J. Nathan, e Steven L. Brunton. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.
Cerca il testo completoKutz, J. Nathan, e Steven L. Brunton. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2022.
Cerca il testo completoKutz, J. Nathan, e Steven L. Brunton. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.
Cerca il testo completoData-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2022.
Cerca il testo completoMitra, Bivas, Fakhteh Ghanbarnejad, Rishiraj Saha Roy, Fariba Karimi e Jean-Charles Delvenne. Dynamics On and Of Complex Networks III: Machine Learning and Statistical Physics Approaches. Springer, 2019.
Cerca il testo completo