Letteratura scientifica selezionata sul tema "Dynamic coacervates"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Dynamic coacervates".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Dynamic coacervates"
Furlani, Franco, Pietro Parisse e Pasquale Sacco. "On the Formation and Stability of Chitosan/Hyaluronan-Based Complex Coacervates". Molecules 25, n. 5 (27 febbraio 2020): 1071. http://dx.doi.org/10.3390/molecules25051071.
Testo completoZheng, Jiabao, Qing Gao, Ge Ge, Jihong Wu, Chuan-he Tang, Mouming Zhao e Weizheng Sun. "Dynamic equilibrium of β-conglycinin/lysozyme heteroprotein complex coacervates". Food Hydrocolloids 124 (marzo 2022): 107339. http://dx.doi.org/10.1016/j.foodhyd.2021.107339.
Testo completoVecchies, Federica, Pasquale Sacco, Eleonora Marsich, Giuseppe Cinelli, Francesco Lopez e Ivan Donati. "Binary Solutions of Hyaluronan and Lactose-Modified Chitosan: The Influence of Experimental Variables in Assembling Complex Coacervates". Polymers 12, n. 4 (13 aprile 2020): 897. http://dx.doi.org/10.3390/polym12040897.
Testo completoAponte-Rivera, Christian, e Michael Rubinstein. "Dynamic Coupling in Unentangled Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes". Macromolecules 54, n. 4 (29 gennaio 2021): 1783–800. http://dx.doi.org/10.1021/acs.macromol.0c01393.
Testo completoMohanty, B., V. K. Aswal, P. S. Goyal e H. B. Bohidar. "Small-angle neutron and dynamic light scattering study of gelatin coacervates". Pramana 63, n. 2 (agosto 2004): 271–76. http://dx.doi.org/10.1007/bf02704984.
Testo completoLin, Ya’nan, Hairong Jing, Zhijun Liu, Jiaxin Chen e Dehai Liang. "Dynamic Behavior of Complex Coacervates with Internal Lipid Vesicles under Nonequilibrium Conditions". Langmuir 36, n. 7 (31 gennaio 2020): 1709–17. http://dx.doi.org/10.1021/acs.langmuir.9b03561.
Testo completoWang, Lechuan, Mengzhuo Liu, Panpan Guo, Huajiang Zhang, Longwei Jiang, Ning Xia, Li Zheng, Qian Cui e Shihui Hua. "Understanding the structure, interfacial properties, and digestion fate of high internal phase Pickering emulsions stabilized by food-grade coacervates: Tracing the dynamic transition from coacervates to complexes". Food Chemistry 414 (luglio 2023): 135718. http://dx.doi.org/10.1016/j.foodchem.2023.135718.
Testo completoFurlani, Franco, Ivan Donati, Eleonora Marsich e Pasquale Sacco. "Characterization of Chitosan/Hyaluronan Complex Coacervates Assembled by Varying Polymers Weight Ratio and Chitosan Physical-Chemical Composition". Colloids and Interfaces 4, n. 1 (2 marzo 2020): 12. http://dx.doi.org/10.3390/colloids4010012.
Testo completoBohidar, H., P. L. Dubin, P. R. Majhi, C. Tribet e W. Jaeger. "Effects of Protein−Polyelectrolyte Affinity and Polyelectrolyte Molecular Weight on Dynamic Properties of Bovine Serum Albumin−Poly(diallyldimethylammonium chloride) Coacervates". Biomacromolecules 6, n. 3 (maggio 2005): 1573–85. http://dx.doi.org/10.1021/bm049174p.
Testo completoDanielsen, Scott P. O., James McCarty, Joan-Emma Shea, Kris T. Delaney e Glenn H. Fredrickson. "Molecular design of self-coacervation phenomena in block polyampholytes". Proceedings of the National Academy of Sciences 116, n. 17 (4 aprile 2019): 8224–32. http://dx.doi.org/10.1073/pnas.1900435116.
Testo completoTesi sul tema "Dynamic coacervates"
Lin, Zi. "Dynamic behavior of light-responsive coacervates in microfluidic droplets". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0191.
Testo completoLiving cells are dynamic compartmentalized systems that operate under non-equilibrium conditions. Emulating such dynamic compartmentalization in artificial systems is gaining attention in soft matter and bottom-up synthetic biology. Liquid-liquid phase separation (LLPS) is particularly key to produce dynamic compartments in biology. This phenomenon underlies the formation of biomolecular condensates in cells and has been hypothesized to play a role in the emergence of protocells at the origins of Life. In vitro, coacervate microdroplets assembled from oppositely charged polyions in water are used to emulate these bio-inspired LLPS processes. Coacervation has been extensively studied at thermodynamic equilibrium, but experimental investigations of dynamic coacervates remain scarce. Given its spatiotemporal resolution, light is particularly interesting to trigger dynamic behaviors in coacervate droplets. The recent design of light-responsive coacervates based on azobenzene photoswitches has opened avenues for dynamically controlling the dissolution and formation of coacervates with light. The dynamics of these processes are yet poorly understood. The main objective of this thesis is to investigate the dynamics of light-actuated DNA/azobenzene coacervate decay, growth and deformations using droplet-based microfluidics. After characterizing the azobenzene photoisomerisation kinetics, we produce photoswitchable coacervates within water-in-oil droplets using microfluidics. We study the relationship between coacervate size, azobenzene concentration and isomerization to build the phase diagram of DNA/azobenzene coacervation. We then investigate the kinetics of coacervate dissolution and reformation under UV and visible light, respectively, at varying coacervate sizes and light intensities to decipher the mechanism of the two processes. Ultimately, we demonstrate complex non-equilibrium coacervate deformations under optimal co-illumination conditions
Capitoli di libri sul tema "Dynamic coacervates"
Reber, Arthur S., František Baluška e William B. Miller. "The Structural and Bioelectrical Basis of Cells". In The Sentient Cell, 67–76. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780198873211.003.0005.
Testo completo