Tesi sul tema "Dynaic prediction"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Dynaic prediction".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Chabeau, Lucas. "Développement et validation d’un outil multivarié de prédiction dynamique d’un échec de greffe rénale". Electronic Thesis or Diss., Nantes Université, 2024. http://www.theses.fr/2024NANU1033.
Testo completoFor many chronic diseases, dynamic prediction of a clinical event of interest can be useful in personalised medicine. In this context, prognoses can be updated throughout the patient's follow-up, as new information becomes available. This CIFRE doctoral thesis, in collaboration with Sêmeia, involves developing and validating a dynamic prediction tool for kidney graft failure. The proposed tool predicts kidney graft failure, in competition with death with a functional graft, over a five-year time horizon. The prediction is based on information available at patient inclusion and three biological markers collected during follow-up (serum creatinine, proteinuria and type II donor-specific antibodies). allowing to update the prognosis. This tool has been validated for prediction times of between 1 and 6 years post-transplant. This doctoral thesis was the subject of three original projects. The first involved developing an inference procedure to estimate a joint model for longitudinal and survival data compatible with the prediction tool. Secondly, we examined the heterogeneity in the definition of prediction horizon in the dynamic prediction literature. Finally, we present the construction and validation of a dynamic prediction model for renal transplant failure. The model showed good discrimination and calibration
Greco, Antonino. "The role of task relevance in the modulation of brain dynamics during sensory predictions". Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/307050.
Testo completoGreco, Antonino. "The role of task relevance in the modulation of brain dynamics during sensory predictions". Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/307050.
Testo completoCurrier, Patrick Norman. "A Method for Modeling and Prediction of Ground Vehicle Dynamics and Stability in Autonomous Systems". Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/27632.
Testo completoPh. D.
Chen, Yutao. "Algorithms and Applications for Nonlinear Model Predictive Control with Long Prediction Horizon". Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3421957.
Testo completoImplementazioni rapide di NMPC sono importanti quando si affronta il controllo in tempo reale di sistemi che presentano caratteristiche come dinamica veloce, ampie dimensioni e orizzonte di predizione lungo, poiché in tali situazioni il carico di calcolo dell'MNPC può limitare la larghezza di banda di controllo ottenibile. A tale scopo, questa tesi riguarda sia gli algoritmi che le applicazioni. In primo luogo, sono stati sviluppati algoritmi veloci NMPC per il controllo di sistemi dinamici a tempo continuo che utilizzano un orizzonte di previsione lungo. Un ponte tra MPC lineare e non lineare viene costruito utilizzando linearizzazioni parziali o aggiornamento della sensibilità. Al fine di aggiornare la sensibilità solo quando necessario, è stata introdotta una misura simile alla curva di non linearità (CMoN) per i sistemi dinamici e applicata agli algoritmi NMPC esistenti. Basato su CMoN, sono state sviluppate logiche di aggiornamento intuitive e avanzate per diverse prestazioni numeriche e di controllo. Pertanto, il CMoN, insieme alla logica di aggiornamento, formula uno schema di aggiornamento della sensibilità parziale per NMPC veloce, denominato CMoN-RTI. Gli esempi di simulazione sono utilizzati per dimostrare l'efficacia e l'efficienza di CMoN-RTI. Inoltre, un'analisi rigorosa sull'ottimalità e sulla convergenza locale di CMoN-RTI viene fornita ed illustrata utilizzando esempi numerici. Algoritmi di condensazione parziale sono stati sviluppati quando si utilizza lo schema di aggiornamento della sensibilità parziale proposto. La complessità computazionale è stata ridotta poiché parte delle informazioni di condensazione sono sfruttate da precedenti istanti di campionamento. Una logica di aggiornamento della sensibilità insieme alla condensazione parziale viene proposta con una complessità lineare nella lunghezza della previsione, che porta a una velocità di un fattore dieci. Sono anche proposti algoritmi di fattorizzazione parziale della matrice per sfruttare l'aggiornamento della sensibilità parziale. Applicando metodi di suddivisione a problemi a più stadi, è necessario aggiornare solo parte del sistema KKT risultante, che è computazionalmente dominante nell'ottimizzazione online. Un miglioramento significativo è stato dimostrato dando operazioni in virgola mobile (flop). In secondo luogo, sono state realizzate implementazioni efficienti di NMPC sviluppando un pacchetto basato su Matlab chiamato MATMPC. MATMPC ha due modalità operative: quella si basa completamente su Matlab e l'altra utilizza l'API del linguaggio MATLAB C. I vantaggi di MATMPC sono che gli algoritmi sono facili da sviluppare e eseguire il debug grazie a Matlab e le librerie e le toolbox di Matlab possono essere utilizzate direttamente. Quando si lavora nella seconda modalità, l'efficienza computazionale di MATMPC è paragonabile a quella del software che utilizza la generazione di codice ottimizzata. Le realizzazioni in tempo reale sono ottenute per un simulatore di guida dinamica di nove gradi di libertà e per il movimento multisensoriale con sedile attivo.
Garside, Simon. "Dynamic prediction of road traffic networks". Thesis, Lancaster University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.387431.
Testo completoChoudhury, Nazim Ahmed. "Mining Time-aware Actor-level Evolution Similarity for Link Prediction in Dynamic Network". Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/18640.
Testo completoPiccinini, Federico. "Dynamic load balancing based on latency prediction". Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-143333.
Testo completoAlkindi, Ahmed Bin Masoud Bin Ali. "Performance optimisation through modelling and dynamic prediction". Thesis, University of Warwick, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399475.
Testo completoSomoye, Adesina Eniari. "A computer prediction of robot dynamic performance". Thesis, University of Surrey, 1985. http://epubs.surrey.ac.uk/848049/.
Testo completoEbert, Anthony C. "Dynamic queueing networks: Simulation, estimation and prediction". Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/180771/1/Anthony_Ebert_Thesis.pdf.
Testo completoGámez, López Antonio Juan. "Application of nonlinear dimensionality reduction to climate data for prediction". Phd thesis, Universität Potsdam, 2006. http://opus.kobv.de/ubp/volltexte/2006/1095/.
Testo completoDas Ziel dieser Arbeit ist es das Verhalten der Temperatur des Meers im tropischen Pazifischen Ozean vorherzusagen. In diesem Gebiet der Welt finden zwei wichtige Phänomene gleichzeitig statt: der jährliche Zyklus und El Niño. Der jährliche Zyklus kann als Oszillation physikalischer Variablen (z.B. Temperatur, Windgeschwindigkeit, Höhe des Meeresspiegels), welche eine Periode von einem Jahr zeigen, definiert werden. Das bedeutet, dass das Verhalten des Meers und der Atmosphäre alle zwölf Monate ähnlich sind (alle Sommer sind ähnlicher jedes Jahr als Sommer und Winter des selben Jahres). El Niño ist eine irreguläre Oszillation weil sie abwechselnd hohe und tiefe Werte erreicht, aber nicht zu einer festen Zeit, wie der jährliche Zyklus. Stattdessen, kann el Niño in einem Jahr hohe Werte erreichen und dann vier, fünf oder gar sieben Jahre benötigen, um wieder aufzutreten. Es ist dabei zu beachten, dass zwei Phänomene, die im selben Raum stattfinden, sich gegenseitig beeinflussen. Dennoch weiß man sehr wenig darüber, wie genau el Niño den jährlichen Zyklus beeinflusst, und umgekehrt. Das Ziel dieser Arbeit ist es, erstens, sich auf die Temperatur des Meers zu fokussieren, um das gesamte System zu analysieren; zweitens, alle Temperaturzeitreihen im tropischen Pazifischen Ozean auf die geringst mögliche Anzahl zu reduzieren, um das System einerseits zu vereinfachen, ohne aber andererseits wesentliche Information zu verlieren. Dieses Vorgehen ähnelt der Analyse einer langen schwingenden Feder, die sich leicht um die Ruhelage bewegt. Obwohl die Feder lang ist, können wir näherungsweise die ganze Feder zeichnen wenn wir die höchsten Punkte zur einen bestimmten Zeitpunkt kennen. Daher, brauchen wir nur einige Punkte der Feder um ihren Zustand zu charakterisieren. Das Hauptproblem in unserem Fall ist die Mindestanzahl von Punkten zu finden, die ausreicht, um beide Phänomene zu beschreiben. Man hat gefunden, dass diese Anzahl drei ist. Nach diesem Teil, war das Ziel vorherzusagen, wie die Temperaturen sich in der Zeit entwickeln werden, wenn man die aktuellen und vergangenen Temperaturen kennt. Man hat beobachtet, dass eine genaue Vorhersage bis zu sechs oder weniger Monate gemacht werden kann, und dass die Temperatur für ein Jahr nicht vorhersagbar ist. Ein wichtiges Resultat ist, dass die Vorhersagen auf kurzen Zeitskalen genauso gut sind, wie die Vorhersagen, welche andere Autoren mit deutlich komplizierteren Methoden erhalten haben. Deswegen ist meine Aussage, dass das gesamte System von jährlichem Zyklus und El Niño mittels einfacherer Methoden als der heute angewandten vorhergesagt werden kann.
Chung, Hyun-Joon Arora Jasbir S. Abdel-Malek Karim. "Optimization-based dynamic prediction of 3D human running". [Iowa City, Iowa] : University of Iowa, 2009. http://ir.uiowa.edu/etd/348.
Testo completoEgan, Colin. "Dynamic branch prediction in high performance superscalar processors". Thesis, University of Hertfordshire, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340035.
Testo completoBroberg, Felix. "Prediction Assisted Fully Dynamic All-Pairs Effective Resistance". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281341.
Testo completoVi undersöker den approximativa och fullkomligt dynamiska effektiva resistensen för samtliga noder i en förutsägelseassisterad miljö. Vi skapar en förutsägelsemodell för att förutspå vilka nodpar som är del av framtida kanttillägg, kantborttagningar och förfrågningar om den effektiva resistensen. Modellen är generell nog at vara kompatibel med forskning inom länkförutsägelse inom grafer och kan användas av andra förutsägelseassisterade algoritmer. Vårt största bidrag är i formen av en datastruktur som använder sig av den skapade förutsägelsemodellen för att bibehålla den effektiva resistensen mellan samtliga noder. Körtiden matchar den bästa algoritmen för offline-varianten av problemet om förutsägelserna är bra, medan den matchar den bästa datastrukturen för online-varianten om förutsägelserna är dåliga. Ett mindre bidrag är att vi skapar den hittills bästa algoritmen för offline-varianten av problemet.
Chung, Hyun-Joon. "Optimization-based dynamic prediction of 3D human running". Diss., University of Iowa, 2009. https://ir.uiowa.edu/etd/348.
Testo completoPittaras, Athanasios. "Adaptive signal prediction with application to ship motions". Thesis, University College London (University of London), 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.288852.
Testo completoSilva, Andre Espozel Pinheiro da. "Testing dynamic agency predictions to corporate finance". reponame:Repositório Institucional do FGV, 2017. http://hdl.handle.net/10438/18243.
Testo completoApproved for entry into archive by GILSON ROCHA MIRANDA (gilson.miranda@fgv.br) on 2017-05-04T12:58:29Z (GMT) No. of bitstreams: 1 Dissertação - Andre Espozel - FGV-EPGE.pdf: 856389 bytes, checksum: 16cd3a3bbe1de2cc9ab98b718b21acb8 (MD5)
Made available in DSpace on 2017-05-12T13:05:06Z (GMT). No. of bitstreams: 1 Dissertação - Andre Espozel - FGV-EPGE.pdf: 856389 bytes, checksum: 16cd3a3bbe1de2cc9ab98b718b21acb8 (MD5) Previous issue date: 2017-03-22
This papers tests theoretical predictions concerning to agent compensation, debt structure and investment in the models of dynamic agency in DeMarzo and Fishman (2007), DeMarzo and Sannikov (2006) and DeMarzo, Fishman, He and Wang (2012). The results related to agent compensation are consistent with the patterns predicted in the models, indicating that the firm-years that the models would have as more likely to pay dividends are indeed the ones more likely to pay; also, among firms that pay dividends, more profits generate higher dividend payments and higher executive compensation, as predicted in the models. The prediction that firms that go well and reach a payment threshold present marginal q equal to average q, and thus after controlling for average q cash flows would not explain investment is also supported by the tests in here. On the other hand, predictions related to the role of the credit line and to the debt structure are not compatible with the results in here. The credit line doesn’t seem to be the provider of financial slack that protects the firm from low cash flows and also doesn’t seem to have the dynamics of being paid when profits are high and being more used when profits are low.
Bratt, Mattias. "Teleoperation with significant dynamics". Licentiate thesis, Stockholm : Skolan för datavetenskap och kommunikation, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-11389.
Testo completoRandle, Andrew Martin. "Dynamic radio channel effects from L-band foliage scatter". Thesis, University of York, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341630.
Testo completoGillis, John M. Martin W. Gary. "An investigation of student conjectures in static and dynamic geometry environments". Auburn, Ala., 2005. http://repo.lib.auburn.edu/EtdRoot/2005/SPRING/Curriculum_and_Teaching/Dissertation/GILLIS_JOHN_2.pdf.
Testo completoQi, Xiaojiang. "Adaptive prediction for systems subject to abrupt dynamic changes /". [S.l.] : [s.n.], 1989. http://library.epfl.ch/theses/?nr=801.
Testo completoAleen, Farhana Afroz. "Dynamic execution prediction and pipeline balancing of streaming applications". Thesis, Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37192.
Testo completoRogers, Frederick. "Prediction of dynamic bending stresses of ships at sea". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0001/MQ42438.pdf.
Testo completoSebastian, James W. "Parametric prediction of the transverse dynamic stability of ships". Monterey, California. Naval Postgraduate School, 1997. http://hdl.handle.net/10945/8800.
Testo completoTurner, James David. "A dynamic prediction and monitoring framework for distributed applications". Thesis, University of Warwick, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396960.
Testo completoSchonfeld, Daniel (Daniel Ryan). "Dynamic prediction of terminal-area severe convective weather penetration". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98561.
Testo completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages [110]-112).
Despite groundbreaking technology and revised operating procedures designed to improve the safety of air travel, numerous aviation accidents still occur every year. According to a recent report by the FAA's Aviation Weather Research Program, over 23% of these accidents are weather-related, typically taking place during the takeoff and landing phases. When pilots fly through severe convective weather, regardless of whether or not an accident occurs, they cause damage to the aircraft, increasing maintenance cost for airlines. These concerns, coupled with the growing demand for air transportation, put an enormous amount of pressure on the existing air traffic control system. Moreover, the degree to which weather impacts airspace capacity, defined as the number of aircraft that can simultaneously y within the terminal area, is not well understood. Understanding how weather impacts terminal area air traffic flows will be important for quantifying the effect that uncertainty in weather forecasting has on flows, and developing an optimal strategy to mitigate this effect. In this thesis, we formulate semi-dynamic models and employ Multinomial Logistic Regression, Classification and Regression Trees (CART), and Random Forests to accurately predict the severity of convective weather penetration by flights in several U.S. airport terminal areas. Our models perform consistently well when re-trained on each individual airport rather than using common models across airports. Random Forests achieve the lowest prediction error with accuracies as high as 99%, false negative rates as low as 1%, and false positive rates as low as 3%. CART is the least sensitive to differences across airports, exhibiting very steady performance. We also identify weather-based features, particularly those describing the presence of fast-moving, severe convective weather within the projected trajectory of the flight, as the best predictors of future penetration.
by Daniel Schonfeld.
S.M.
Yusop, M. Y. Mohd. "Energy saving for pneumatic actuation using dynamic model prediction". Thesis, Cardiff University, 2006. http://orca.cf.ac.uk/56066/.
Testo completoLi, Rui M. Eng Massachusetts Institute of Technology. "G-Network for outcome prediction under dynamic intervention regimes". Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/129838.
Testo completoCataloged from student-submitted PDF of thesis.
Includes bibliographical references (pages 56-57).
Counterfactual prediction is useful in settings where one would like to know what would have happened had an alternative regime been followed, but one only knows the outcomes under the observational regime. Typically, the regimes are dynamic and time-varying. In these scenarios, G-computation can be used for counterfactual prediction. This work explores a novel recurrent neural network approach to G-computation, dubbed G-Net. Many implementations of G-Net were explored and compared to the baseline, linear regression. Two independent datasets were used to evaluate the performance of G-Net: one from a physiological simulator, CVSim, and another from the real-world MIMIC database. Results from the CVSim experiments suggest that G-Net outperforms the traditional linear regression approach to G-computation. The best G-Net model found from the CVSim experiments was then evaluated using the MIMIC dataset. The outcomes under a few different counterfactual strategies on the MIMIC cohort were explored and evaluated for clinical plausibility.
by Rui Li.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Saigiridharan, Lakshidaa. "Dynamic prediction of repair costs in heavy-duty trucks". Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166133.
Testo completoHong, Yili. "Reliability prediction based on complicated data and dynamic data". [Ames, Iowa : Iowa State University], 2009.
Cerca il testo completoThomas, Jason Christopher. "Prediction of Fluid Viscosity Through Transient Molecular Dynamic Simulations". Diss., CLICK HERE for online access, 2009. http://contentdm.lib.byu.edu/ETD/image/etd3312.pdf.
Testo completoLindberg, Jonas, e Källman Isak Wolfert. "Vehicle Collision Risk Prediction Using a Dynamic Bayesian Network". Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273629.
Testo completoDetta arbete behandlar problemet att förutsäga kollisionsrisken för fordon som kör i komplexa trafikscenarier för några sekunder i framtiden. Metoden är baserad på tidigare forskning där dynamiska Bayesianska nätverk används för att representera systemets tillstånd. Vanliga riskprognosmetoder kategoriseras ofta i tre olika grupper beroende på deras abstraktionsnivå. De mest komplexa av dessa är interaktionsmedvetna modeller som tar hänsyn till förarnas interaktioner. Dessa modeller lider ofta av hög beräkningskomplexitet, vilket är en svår begränsning när det kommer till praktisk användning. Modellen som studeras i detta arbete tar hänsyn till interaktioner mellan förare genom att beakta förarnas avsikter och trafikreglerna i scenen. Tillståndet i trafikscenen som används i modellen innehåller fordonets fysiska tillstånd, förarnas avsikter och förarnas förväntade beteende enligt trafikreglerna. För att möjliggöra riskbedömning i realtid görs en approximativ inferens av tillståndet givet den brusiga sensordatan med hjälp av sekventiell vägd simulering. Två olika mått på risk studeras. Det första är baserat på förarnas avsikter, närmare bestämt att ta reda på om de inte överensstämmer med den förväntade manövern, vilket då skulle kunna leda till en farlig situation. Det andra riskmåttet är baserat på ett prediktionssteg som använder sig av time to collision (TTC) och time to critical collision probability (TTCCP). Den implementerade modellen kan tillämpas i komplexa trafikscenarier med många fordon. I detta arbete fokuserar vi på scerarier i korsningar och rondeller. Modellen testas på simulerad och verklig data från dessa scenarier. I dessa kvalitativa tester kunde modellen korrekt identifiera kollisioner några få sekunder innan de inträffade. Den kunde också undvika falsklarm genom att lista ut vilka fordon som kommer att lämna företräde.
Aldokhayel, Abdulaziz. "A Kalman Filter-based Dynamic Model for Bus Travel Time Prediction". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38060.
Testo completoSepp, Löfgren Nicholas. "Accelerating bulk material property prediction using machine learning potentials for molecular dynamics : predicting physical properties of bulk Aluminium and Silicon". Thesis, Linköpings universitet, Teoretisk Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-179894.
Testo completoFairley, Thomas Euan. "Predicting the dynamic performance of seats". Thesis, University of Southampton, 1986. https://eprints.soton.ac.uk/52370/.
Testo completoChin, See Loong. "Incomplete gene structure prediction with almost 100% specificity". Thesis, Texas A&M University, 2003. http://hdl.handle.net/1969.1/258.
Testo completoTino, Peter, Christian Schittenkopf, Georg Dorffner e Engelbert J. Dockner. "A symbolic dynamics approach to volatility prediction". SFB Adaptive Information Systems and Modelling in Economics and Management Science, WU Vienna University of Economics and Business, 1998. http://epub.wu.ac.at/1142/1/document.pdf.
Testo completoSeries: Working Papers SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
Barber, IV John Letherman. "Application of optimal prediction to molecular dynamics". Berkeley, Calif. : Oak Ridge, Tenn. : Lawrence Berkeley National Laboratory ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2004. http://www.osti.gov/servlets/purl/838987-xpCsPP/native/.
Testo completoPublished through the Information Bridge: DOE Scientific and Technical Information. "LBNL--56842" Barber IV, John Letherman. USDOE Director. Office of Science. Advanced Scientific Computing Research (US) 12/01/2004. Report is also available in paper and microfiche from NTIS.
Alkhatib, Ahmad. "Prediction and control of uncertain system dynamics". Diss., The University of Arizona, 2000. http://hdl.handle.net/10150/289175.
Testo completoRivadeneira, Juan Carlos. "Predictions versus measurements of turbocharger nonlinear dynamic response". Texas A&M University, 2005. http://hdl.handle.net/1969.1/3723.
Testo completoLyon, Scott Marvin. "The Pseudo-Rigid-Body Model for Dynamic Predictions of Macro and Micro Compliant Mechanisms". BYU ScholarsArchive, 2003. https://scholarsarchive.byu.edu/etd/82.
Testo completoChierichetti, Maria. "Combined analytical and experimental approaches to dynamic component stress prediction". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44850.
Testo completoBataineh, Mohammad Hindi. "New neural network for real-time human dynamic motion prediction". Thesis, The University of Iowa, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3711174.
Testo completoArtificial neural networks (ANNs) have been used successfully in various practical problems. Though extensive improvements on different types of ANNs have been made to improve their performance, each ANN design still experiences its own limitations. The existing digital human models are mature enough to provide accurate and useful results for different tasks and scenarios under various conditions. There is, however, a critical need for these models to run in real time, especially those with large-scale problems like motion prediction which can be computationally demanding. For even small changes to the task conditions, the motion simulation needs to run for a relatively long time (minutes to tens of minutes). Thus, there can be a limited number of training cases due to the computational time and cost associated with collecting training data. In addition, the motion problem is relatively large with respect to the number of outputs, where there are hundreds of outputs (between 500-700 outputs) to predict for a single problem. Therefore, the aforementioned necessities in motion problems lead to the use of tools like the ANN in this work.
This work introduces new algorithms for the design of the radial-basis network (RBN) for problems with minimal available training data. The new RBN design incorporates new training stages with approaches to facilitate proper setting of necessary network parameters. The use of training algorithms with minimal heuristics allows the new RBN design to produce results with quality that none of the competing methods have achieved. The new RBN design, called Opt_RBN, is tested on experimental and practical problems, and the results outperform those produced from standard regression and ANN models. In general, the Opt_RBN shows stable and robust performance for a given set of training cases.
When the Opt_RBN is applied on the large-scale motion prediction application, the network experiences a CPU memory issue when performing the optimization step in the training process. Therefore, new algorithms are introduced to modify some steps of the new Opt_RBN training process to address the memory issue. The modified steps should only be used for large-scale applications similar to the motion problem. The new RBN design proposes an ANN that is capable of improved learning without needing more training data. Although the new design is driven by its use with motion prediction problems, the consequent ANN design can be used with a broad range of large-scale problems in various engineering and industrial fields that experience delay issues when running computational tools that require a massive number of procedures and a great deal of CPU memory.
The results of evaluating the modified Opt_RBN design on two motion problems are promising, with relatively small errors obtained when predicting approximately 500-700 outputs. In addition, new methods for constraint implementation within the new RBN design are introduced. Moreover, the new RBN design and its associated parameters are used as a tool for simulated task analysis. This work initiates the idea that output weights (W) can be used to determine the most critical basis functions that cause the greatest reduction in the network test error. Then, the critical basis functions can specify the most significant training cases that are responsible for the proper performance achieved by the network. The inputs with the most change in value can be extracted from the basis function centers (U) in order to determine the dominant inputs. The outputs with the most change in value and their corresponding key body degrees-of-freedom for a motion task can also be specified using the training cases that are used to create the network's basis functions.
Bernhardsson, Viktor, e Rasmus Ringdahl. "Real time highway traffic prediction based on dynamic demand modeling". Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112094.
Testo completoShen, Luou. "Freeway Travel Time Estimation and Prediction Using Dynamic Neural Networks". FIU Digital Commons, 2008. http://digitalcommons.fiu.edu/etd/17.
Testo completoKerfs, Jeremy N. "Models for Pedestrian Trajectory Prediction and Navigation in Dynamic Environments". DigitalCommons@CalPoly, 2017. https://digitalcommons.calpoly.edu/theses/1716.
Testo completoTong, Xianqiao. "Real-time Prediction of Dynamic Systems Based on Computer Modeling". Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/47361.
Testo completoPh. D.
Zayani, Mohamed-Haykel. "Link prediction in dynamic and human-centered mobile wireless networks". Phd thesis, Institut National des Télécommunications, 2012. http://tel.archives-ouvertes.fr/tel-00787564.
Testo completoZayani, Mohamed-Haykel. "Link prediction in dynamic and human-centered mobile wireless networks". Electronic Thesis or Diss., Evry, Institut national des télécommunications, 2012. http://www.theses.fr/2012TELE0031.
Testo completoDuring the last years, we have observed a progressive and continuous expansion of human-centered mobile wireless networks. The advent of these networks has encouraged the researchers to think about new solutions in order to ensure efficient evaluation and design of communication protocols. In fact, these networks are faced to several constraints as the lack of infrastructure, the dynamic topology, the limited resources and the deficient quality of service and security. We have been interested in the dynamicity of the network and in particular in human mobility. The human mobility has been widely studied in order to extract its intrinsic properties and to harness them to propose more accurate approaches. Among the prominent properties depicted in the literature, we have been specially attracted by the impact of the social interactions on the human mobility and consequently on the structure of the network. To grasp structural information of such networks, many metrics and techniques have been borrowed from the Social Network Analysis (SNA). The SNA can be seen as another network measurement task which extracts structural information of the network and provides useful feedback for communication protocols. In this context, the SNA has been extensively used to perform link prediction in social networks relying on their structural properties. Motivated by the importance of social ties in human-centered mobile wireless networks and by the possibilities that are brought by SNA to perform link prediction, we are interested by designing the first link prediction framework adapted for mobile wireless networks as Mobile Ad-hoc Networks (MANETs) and Delay/Disruption Tolerant Networks (DTN). Our proposal tracks the evolution of the network through a third-order tensor over T periods and computes the sociometric Katz measure for each pair of nodes to quantify the strength of the social ties between the network entities. Such quantification gives insights about the links that are expected to occur in the period T+1 and the new links that are created in the future without being observed during the tracking time. To attest the efficiency of our framework, we apply our link prediction technique on three real traces and we compare its performance to the ones of other well-known link prediction approaches. The results prove that our method reaches the highest level of accuracy and outperforms the other techniques. One of the major contributions behind our proposal highlights that the link prediction in such networks can be made in a distributed way. In other words, the nodes can predict their future links relying on the local information (one-hop and two-hop neighbors) instead of a full knowledge about the topology of the network. Furthermore, we are keen to improve the link prediction performance of our tensor-based framework. To quantify the social closeness between the users, we take into consideration two aspects of the relationships: the recentness of the interactions and their frequency. From this perspective, we wonder if we can consider a third criterion to improve the link prediction precision. Asserting the heuristic that stipulates that persistent links are highly predictable, we take into account the stability of the relationships (link and proximity stabilities). To measure it, we opt for the entropy estimation of a time series proposed in the Lempel-Ziv data compression algorithm. As we think that our framework measurements and the stability estimations complement each other, we combine them in order to provide new link prediction metrics. The simulation results emphasize the pertinence of our intuition. Providing a tensor-based link prediction framework and proposing relative enhancements tied to stability considerations represent the main contributions of this thesis. Along the thesis, our concern was also focused on mechanisms and metrics that contribute towards improving communication protocols in these mobile networks […]