Articoli di riviste sul tema "Distributed optimization and learning"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Distributed optimization and learning".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.
Kamalesh, Kamalesh, e Dr Gobi Natesan. "Machine Learning-Driven Analysis of Distributed Computing Systems: Exploring Optimization and Efficiency". International Journal of Research Publication and Reviews 5, n. 3 (9 marzo 2024): 3979–83. http://dx.doi.org/10.55248/gengpi.5.0324.0786.
Testo completoMertikopoulos, Panayotis, E. Veronica Belmega, Romain Negrel e Luca Sanguinetti. "Distributed Stochastic Optimization via Matrix Exponential Learning". IEEE Transactions on Signal Processing 65, n. 9 (1 maggio 2017): 2277–90. http://dx.doi.org/10.1109/tsp.2017.2656847.
Testo completoGratton, Cristiano, Naveen K. D. Venkategowda, Reza Arablouei e Stefan Werner. "Privacy-Preserved Distributed Learning With Zeroth-Order Optimization". IEEE Transactions on Information Forensics and Security 17 (2022): 265–79. http://dx.doi.org/10.1109/tifs.2021.3139267.
Testo completoBlot, Michael, David Picard, Nicolas Thome e Matthieu Cord. "Distributed optimization for deep learning with gossip exchange". Neurocomputing 330 (febbraio 2019): 287–96. http://dx.doi.org/10.1016/j.neucom.2018.11.002.
Testo completoYoung, M. Todd, Jacob D. Hinkle, Ramakrishnan Kannan e Arvind Ramanathan. "Distributed Bayesian optimization of deep reinforcement learning algorithms". Journal of Parallel and Distributed Computing 139 (maggio 2020): 43–52. http://dx.doi.org/10.1016/j.jpdc.2019.07.008.
Testo completoNedic, Angelia. "Distributed Gradient Methods for Convex Machine Learning Problems in Networks: Distributed Optimization". IEEE Signal Processing Magazine 37, n. 3 (maggio 2020): 92–101. http://dx.doi.org/10.1109/msp.2020.2975210.
Testo completoLin, I.-Cheng. "Learning and Optimization over Robust Networked Systems". ACM SIGMETRICS Performance Evaluation Review 52, n. 3 (9 gennaio 2025): 23–26. https://doi.org/10.1145/3712170.3712179.
Testo completoGao, Hongchang. "Distributed Stochastic Nested Optimization for Emerging Machine Learning Models: Algorithm and Theory". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 13 (26 giugno 2023): 15437. http://dx.doi.org/10.1609/aaai.v37i13.26804.
Testo completoChoi, Dojin, Jiwon Wee, Sangho Song, Hyeonbyeong Lee, Jongtae Lim, Kyoungsoo Bok e Jaesoo Yoo. "k-NN Query Optimization for High-Dimensional Index Using Machine Learning". Electronics 12, n. 11 (24 maggio 2023): 2375. http://dx.doi.org/10.3390/electronics12112375.
Testo completoYang, Peng, e Ping Li. "Distributed Primal-Dual Optimization for Online Multi-Task Learning". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 04 (3 aprile 2020): 6631–38. http://dx.doi.org/10.1609/aaai.v34i04.6139.
Testo completoShokoohi, Maryam, Mohsen Afsharchi e Hamed Shah-Hoseini. "Dynamic distributed constraint optimization using multi-agent reinforcement learning". Soft Computing 26, n. 8 (16 marzo 2022): 3601–29. http://dx.doi.org/10.1007/s00500-022-06820-7.
Testo completoLee, Jaehwan, Hyeonseong Choi, Hyeonwoo Jeong, Baekhyeon Noh e Ji Sun Shin. "Communication Optimization Schemes for Accelerating Distributed Deep Learning Systems". Applied Sciences 10, n. 24 (10 dicembre 2020): 8846. http://dx.doi.org/10.3390/app10248846.
Testo completoPugh, Jim, e Alcherio Martinoli. "Distributed scalable multi-robot learning using particle swarm optimization". Swarm Intelligence 3, n. 3 (27 maggio 2009): 203–22. http://dx.doi.org/10.1007/s11721-009-0030-z.
Testo completoKazhmaganbetova, Zarina, Shnar Imangaliyev e Altynbek Sharipbay. "Machine Learning for the Communication Optimization in Distributed Systems". International Journal of Engineering & Technology 7, n. 4.1 (12 settembre 2018): 47. http://dx.doi.org/10.14419/ijet.v7i4.1.19491.
Testo completoMedyakov, D., G. Molodtsov, A. Beznosikov e A. Gasnikov. "Optimal Data Splitting in Distributed Optimization for Machine Learning". Doklady Mathematics 108, S2 (dicembre 2023): S465—S475. http://dx.doi.org/10.1134/s1064562423701600.
Testo completoYang, Dezhi, Xintong He, Jun Wang, Guoxian Yu, Carlotta Domeniconi e Jinglin Zhang. "Federated Causality Learning with Explainable Adaptive Optimization". Proceedings of the AAAI Conference on Artificial Intelligence 38, n. 15 (24 marzo 2024): 16308–15. http://dx.doi.org/10.1609/aaai.v38i15.29566.
Testo completoMar’i, Farhanna, e Ahmad Afif Supianto. "A conceptual approach of optimization in federated learning". Indonesian Journal of Electrical Engineering and Computer Science 37, n. 1 (1 gennaio 2025): 288. http://dx.doi.org/10.11591/ijeecs.v37.i1.pp288-299.
Testo completoShi, Junjie, Jiang Bian, Jakob Richter, Kuan-Hsun Chen, Jörg Rahnenführer, Haoyi Xiong e Jian-Jia Chen. "MODES: model-based optimization on distributed embedded systems". Machine Learning 110, n. 6 (giugno 2021): 1527–47. http://dx.doi.org/10.1007/s10994-021-06014-6.
Testo completoZhang, Chongjie, e Victor Lesser. "Coordinated Multi-Agent Reinforcement Learning in Networked Distributed POMDPs". Proceedings of the AAAI Conference on Artificial Intelligence 25, n. 1 (4 agosto 2011): 764–70. http://dx.doi.org/10.1609/aaai.v25i1.7886.
Testo completoVeerappa, Praveena Mydolalu, e Ajeet Annarao Chikkamannur. "Prime Learning – Ant Colony Optimization Technique for Query Optimization in Distributed Database System". International Journal of Engineering Trends and Technology 70, n. 8 (31 agosto 2022): 158–65. http://dx.doi.org/10.14445/22315381/ijett-v70i8p216.
Testo completoZhang, Xin, e Ahmed Eldawy. "Spatial Query Optimization With Learning". Proceedings of the VLDB Endowment 17, n. 12 (agosto 2024): 4245–48. http://dx.doi.org/10.14778/3685800.3685846.
Testo completoXian, Wenhan, Feihu Huang e Heng Huang. "Communication-Efficient Frank-Wolfe Algorithm for Nonconvex Decentralized Distributed Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, n. 12 (18 maggio 2021): 10405–13. http://dx.doi.org/10.1609/aaai.v35i12.17246.
Testo completoAlistarh, Dan. "Distributed Computing Column 85 Elastic Consistency". ACM SIGACT News 53, n. 2 (10 giugno 2022): 63. http://dx.doi.org/10.1145/3544979.3544990.
Testo completoQin, Yude, Ji Ke, Biao Wang e Gennady Fedorovich Filaretov. "Energy optimization for regional buildings based on distributed reinforcement learning". Sustainable Cities and Society 78 (marzo 2022): 103625. http://dx.doi.org/10.1016/j.scs.2021.103625.
Testo completoYu, Javier, Joseph A. Vincent e Mac Schwager. "DiNNO: Distributed Neural Network Optimization for Multi-Robot Collaborative Learning". IEEE Robotics and Automation Letters 7, n. 2 (aprile 2022): 1896–903. http://dx.doi.org/10.1109/lra.2022.3142402.
Testo completoChen, Jianshu, e Ali H. Sayed. "Diffusion Adaptation Strategies for Distributed Optimization and Learning Over Networks". IEEE Transactions on Signal Processing 60, n. 8 (agosto 2012): 4289–305. http://dx.doi.org/10.1109/tsp.2012.2198470.
Testo completoLee, Hoon, Sang Hyun Lee e Tony Q. S. Quek. "Deep Learning for Distributed Optimization: Applications to Wireless Resource Management". IEEE Journal on Selected Areas in Communications 37, n. 10 (ottobre 2019): 2251–66. http://dx.doi.org/10.1109/jsac.2019.2933890.
Testo completoWen, Jing. "Distributed reinforcement learning-based optimization of resource scheduling for telematics". Computers and Electrical Engineering 118 (settembre 2024): 109464. http://dx.doi.org/10.1016/j.compeleceng.2024.109464.
Testo completoZhang, Zhaojuan, Wanliang Wang e Gaofeng Pan. "A Distributed Quantum-Behaved Particle Swarm Optimization Using Opposition-Based Learning on Spark for Large-Scale Optimization Problem". Mathematics 8, n. 11 (23 ottobre 2020): 1860. http://dx.doi.org/10.3390/math8111860.
Testo completoGunuganti, Anvesh. "Federated Learning". Journal of Artificial Intelligence & Cloud Computing 1, n. 2 (30 giugno 2022): 1–6. http://dx.doi.org/10.47363/jaicc/2022(1)360.
Testo completoXu, Wencai. "Efficient Distributed Image Recognition Algorithm of Deep Learning Framework TensorFlow". Journal of Physics: Conference Series 2066, n. 1 (1 novembre 2021): 012070. http://dx.doi.org/10.1088/1742-6596/2066/1/012070.
Testo completoFattahi, Salar, Nikolai Matni e Somayeh Sojoudi. "Efficient Learning of Distributed Linear-Quadratic Control Policies". SIAM Journal on Control and Optimization 58, n. 5 (gennaio 2020): 2927–51. http://dx.doi.org/10.1137/19m1291108.
Testo completoWang, Yibo, Yuanyu Wan, Shimao Zhang e Lijun Zhang. "Distributed Projection-Free Online Learning for Smooth and Convex Losses". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 8 (26 giugno 2023): 10226–34. http://dx.doi.org/10.1609/aaai.v37i8.26218.
Testo completoWang, Shikai, Haotian Zheng, Xin Wen e Shang Fu. "DISTRIBUTED HIGH-PERFORMANCE COMPUTING METHODS FOR ACCELERATING DEEP LEARNING TRAINING". Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 3, n. 3 (25 settembre 2024): 108–26. http://dx.doi.org/10.60087/jklst.v3.n4.p22.
Testo completoWang, Shikai, Haotian Zheng, Xin Wen e Shang Fu. "DISTRIBUTED HIGH-PERFORMANCE COMPUTING METHODS FOR ACCELERATING DEEP LEARNING TRAINING". Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online) 3, n. 3 (25 settembre 2024): 108–26. http://dx.doi.org/10.60087/jklst.v3.n3.p108-126.
Testo completoDeng, Yanchen, Shufeng Kong e Bo An. "Pretrained Cost Model for Distributed Constraint Optimization Problems". Proceedings of the AAAI Conference on Artificial Intelligence 36, n. 9 (28 giugno 2022): 9331–40. http://dx.doi.org/10.1609/aaai.v36i9.21164.
Testo completoTaheri, Seyed Iman, Mohammadreza Davoodi e Mohd Hasan Ali. "A Simulated-Annealing-Quasi-Oppositional-Teaching-Learning-Based Optimization Algorithm for Distributed Generation Allocation". Computation 11, n. 11 (2 novembre 2023): 214. http://dx.doi.org/10.3390/computation11110214.
Testo completoDai, Wei, Wei Wang, Zhongtian Mao, Ruwen Jiang, Fudong Nian e Teng Li. "Distributed Policy Evaluation with Fractional Order Dynamics in Multiagent Reinforcement Learning". Security and Communication Networks 2021 (3 settembre 2021): 1–7. http://dx.doi.org/10.1155/2021/1020466.
Testo completoLi, Xinhang, Yiying Yang, Qinwen Wang, Zheng Yuan, Chen Xu, Lei Li e Lin Zhang. "A distributed multi-vehicle pursuit scheme: generative multi-adversarial reinforcement learning". Intelligence & Robotics 3, n. 3 (13 settembre 2023): 436–52. http://dx.doi.org/10.20517/ir.2023.25.
Testo completoAgrawal, Shaashwat, Sagnik Sarkar, Mamoun Alazab, Praveen Kumar Reddy Maddikunta, Thippa Reddy Gadekallu e Quoc-Viet Pham. "Genetic CFL: Hyperparameter Optimization in Clustered Federated Learning". Computational Intelligence and Neuroscience 2021 (18 novembre 2021): 1–10. http://dx.doi.org/10.1155/2021/7156420.
Testo completoMantri, Arjun. "Advanced ML (Machine Learning) Techniques for Optimizing ETL Workflows with Apache Spark and Snowflake". Journal of Artificial Intelligence & Cloud Computing 2, n. 3 (30 settembre 2023): 1–6. http://dx.doi.org/10.47363/jaicc/2023(2)339.
Testo completoJAMIAN, Jasrul Jamani, Hazlie MOKHLIS, Mohd Wazir MUSTAFA, Mohd Noor ABDULLAH e Muhammad Ariff BAHARUDIN. "Comparative learning global particle swarm optimization for optimal distributed generations' output". TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES 22 (2014): 1323–37. http://dx.doi.org/10.3906/elk-1212-173.
Testo completoZhang, Jilin, Hangdi Tu, Yongjian Ren, Jian Wan, Li Zhou, Mingwei Li, Jue Wang, Lifeng Yu, Chang Zhao e Lei Zhang. "A Parameter Communication Optimization Strategy for Distributed Machine Learning in Sensors". Sensors 17, n. 10 (21 settembre 2017): 2172. http://dx.doi.org/10.3390/s17102172.
Testo completoIkebou, Shigeya, Fei Qian e Hironori Hirata. "A Parallel Distributed Learning Automaton Computing Model for Function Optimization Problems". IEEJ Transactions on Electronics, Information and Systems 121, n. 2 (2001): 476–77. http://dx.doi.org/10.1541/ieejeiss1987.121.2_476.
Testo completoMai, Tianle, Haipeng Yao, Ni Zhang, Wenji He, Dong Guo e Mohsen Guizani. "Transfer Reinforcement Learning Aided Distributed Network Slicing Optimization in Industrial IoT". IEEE Transactions on Industrial Informatics 18, n. 6 (giugno 2022): 4308–16. http://dx.doi.org/10.1109/tii.2021.3132136.
Testo completoHe, Haibo, e He Jiang. "Deep Learning Based Energy Efficiency Optimization for Distributed Cooperative Spectrum Sensing". IEEE Wireless Communications 26, n. 3 (giugno 2019): 32–39. http://dx.doi.org/10.1109/mwc.2019.1800397.
Testo completoRaju, Leo, Sibi Sankar e R. S. Milton. "Distributed Optimization of Solar Micro-grid Using Multi Agent Reinforcement Learning". Procedia Computer Science 46 (2015): 231–39. http://dx.doi.org/10.1016/j.procs.2015.02.016.
Testo completoSimon, Dan, Arpit Shah e Carré Scheidegger. "Distributed learning with biogeography-based optimization: Markov modeling and robot control". Swarm and Evolutionary Computation 10 (giugno 2013): 12–24. http://dx.doi.org/10.1016/j.swevo.2012.12.003.
Testo completoYuan, Kun, Bicheng Ying, Xiaochuan Zhao e Ali H. Sayed. "Exact Diffusion for Distributed Optimization and Learning—Part II: Convergence Analysis". IEEE Transactions on Signal Processing 67, n. 3 (1 febbraio 2019): 724–39. http://dx.doi.org/10.1109/tsp.2018.2875883.
Testo completoYuan, Kun, Bicheng Ying, Xiaochuan Zhao e Ali H. Sayed. "Exact Diffusion for Distributed Optimization and Learning—Part I: Algorithm Development". IEEE Transactions on Signal Processing 67, n. 3 (1 febbraio 2019): 708–23. http://dx.doi.org/10.1109/tsp.2018.2875898.
Testo completo