Letteratura scientifica selezionata sul tema "Distributed optimization and learning"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Distributed optimization and learning".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Distributed optimization and learning"
Kamalesh, Kamalesh, e Dr Gobi Natesan. "Machine Learning-Driven Analysis of Distributed Computing Systems: Exploring Optimization and Efficiency". International Journal of Research Publication and Reviews 5, n. 3 (9 marzo 2024): 3979–83. http://dx.doi.org/10.55248/gengpi.5.0324.0786.
Testo completoMertikopoulos, Panayotis, E. Veronica Belmega, Romain Negrel e Luca Sanguinetti. "Distributed Stochastic Optimization via Matrix Exponential Learning". IEEE Transactions on Signal Processing 65, n. 9 (1 maggio 2017): 2277–90. http://dx.doi.org/10.1109/tsp.2017.2656847.
Testo completoGratton, Cristiano, Naveen K. D. Venkategowda, Reza Arablouei e Stefan Werner. "Privacy-Preserved Distributed Learning With Zeroth-Order Optimization". IEEE Transactions on Information Forensics and Security 17 (2022): 265–79. http://dx.doi.org/10.1109/tifs.2021.3139267.
Testo completoBlot, Michael, David Picard, Nicolas Thome e Matthieu Cord. "Distributed optimization for deep learning with gossip exchange". Neurocomputing 330 (febbraio 2019): 287–96. http://dx.doi.org/10.1016/j.neucom.2018.11.002.
Testo completoYoung, M. Todd, Jacob D. Hinkle, Ramakrishnan Kannan e Arvind Ramanathan. "Distributed Bayesian optimization of deep reinforcement learning algorithms". Journal of Parallel and Distributed Computing 139 (maggio 2020): 43–52. http://dx.doi.org/10.1016/j.jpdc.2019.07.008.
Testo completoNedic, Angelia. "Distributed Gradient Methods for Convex Machine Learning Problems in Networks: Distributed Optimization". IEEE Signal Processing Magazine 37, n. 3 (maggio 2020): 92–101. http://dx.doi.org/10.1109/msp.2020.2975210.
Testo completoLin, I.-Cheng. "Learning and Optimization over Robust Networked Systems". ACM SIGMETRICS Performance Evaluation Review 52, n. 3 (9 gennaio 2025): 23–26. https://doi.org/10.1145/3712170.3712179.
Testo completoGao, Hongchang. "Distributed Stochastic Nested Optimization for Emerging Machine Learning Models: Algorithm and Theory". Proceedings of the AAAI Conference on Artificial Intelligence 37, n. 13 (26 giugno 2023): 15437. http://dx.doi.org/10.1609/aaai.v37i13.26804.
Testo completoChoi, Dojin, Jiwon Wee, Sangho Song, Hyeonbyeong Lee, Jongtae Lim, Kyoungsoo Bok e Jaesoo Yoo. "k-NN Query Optimization for High-Dimensional Index Using Machine Learning". Electronics 12, n. 11 (24 maggio 2023): 2375. http://dx.doi.org/10.3390/electronics12112375.
Testo completoYang, Peng, e Ping Li. "Distributed Primal-Dual Optimization for Online Multi-Task Learning". Proceedings of the AAAI Conference on Artificial Intelligence 34, n. 04 (3 aprile 2020): 6631–38. http://dx.doi.org/10.1609/aaai.v34i04.6139.
Testo completoTesi sul tema "Distributed optimization and learning"
Funkquist, Mikaela, e Minghua Lu. "Distributed Optimization Through Deep Reinforcement Learning". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-293878.
Testo completoFörstärkningsinlärningsmetoder tillåter självlärande enheter att spela video- och brädspel autonomt. Projektet siktar på att studera effektiviteten hos förstärkningsinlärningsmetoderna Q-learning och deep Q-learning i dynamiska problem. Målet är att träna upp robotar så att de kan röra sig genom ett varuhus på bästa sätt utan att kollidera. En virtuell miljö skapades, i vilken algoritmerna testades genom att simulera agenter som rörde sig. Algoritmernas effektivitet utvärderades av hur snabbt agenterna lärde sig att utföra förutbestämda uppgifter. Resultatet visar att Q-learning fungerar bra för enkla problem med få agenter, där system med två aktiva agenter löstes snabbt. Deep Q-learning fungerar bättre för mer komplexa system som innehåller fler agenter, men fall med suboptimala rörelser uppstod. Båda algoritmerna visade god potential inom deras respektive områden, däremot måste förbättringar göras innan de kan användas i verkligheten.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Konečný, Jakub. "Stochastic, distributed and federated optimization for machine learning". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/31478.
Testo completoArmond, Kenneth C. Jr. "Distributed Support Vector Machine Learning". ScholarWorks@UNO, 2008. http://scholarworks.uno.edu/td/711.
Testo completoPatvarczki, Jozsef. "Layout Optimization for Distributed Relational Databases Using Machine Learning". Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-dissertations/291.
Testo completoOuyang, Hua. "Optimal stochastic and distributed algorithms for machine learning". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/49091.
Testo completoEl, Gamal Mostafa. "Distributed Statistical Learning under Communication Constraints". Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/314.
Testo completoDai, Wei. "Learning with Staleness". Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1209.
Testo completoLu, Yumao. "Kernel optimization and distributed learning algorithms for support vector machines". Diss., Restricted to subscribing institutions, 2005. http://uclibs.org/PID/11984.
Testo completoDinh, The Canh. "Distributed Algorithms for Fast and Personalized Federated Learning". Thesis, The University of Sydney, 2023. https://hdl.handle.net/2123/30019.
Testo completoReddi, Sashank Jakkam. "New Optimization Methods for Modern Machine Learning". Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/1116.
Testo completoLibri sul tema "Distributed optimization and learning"
Jiang, Jiawei, Bin Cui e Ce Zhang. Distributed Machine Learning and Gradient Optimization. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-3420-8.
Testo completoWang, Huiwei, Huaqing Li e Bo Zhou. Distributed Optimization, Game and Learning Algorithms. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4528-7.
Testo completoJoshi, Gauri. Optimization Algorithms for Distributed Machine Learning. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-19067-4.
Testo completoTatarenko, Tatiana. Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65479-9.
Testo completoOblinger, Diana G. Distributed learning. Boulder, Colo: CAUSE, 1996.
Cerca il testo completoMajhi, Sudhan, Rocío Pérez de Prado e Chandrappa Dasanapura Nanjundaiah, a cura di. Distributed Computing and Optimization Techniques. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2281-7.
Testo completoGiselsson, Pontus, e Anders Rantzer, a cura di. Large-Scale and Distributed Optimization. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97478-1.
Testo completoLü, Qingguo, Xiaofeng Liao, Huaqing Li, Shaojiang Deng e Shanfu Gao. Distributed Optimization in Networked Systems. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8559-1.
Testo completoAbdulrahman Younis Ali Younis Kalbat. Distributed and Large-Scale Optimization. [New York, N.Y.?]: [publisher not identified], 2016.
Cerca il testo completoOtto, Daniel, Gianna Scharnberg, Michael Kerres e Olaf Zawacki-Richter, a cura di. Distributed Learning Ecosystems. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-38703-7.
Testo completoCapitoli di libri sul tema "Distributed optimization and learning"
Joshi, Gauri, e Shiqiang Wang. "Communication-Efficient Distributed Optimization Algorithms". In Federated Learning, 125–43. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96896-0_6.
Testo completoJiang, Jiawei, Bin Cui e Ce Zhang. "Distributed Gradient Optimization Algorithms". In Distributed Machine Learning and Gradient Optimization, 57–114. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3420-8_3.
Testo completoJiang, Jiawei, Bin Cui e Ce Zhang. "Distributed Machine Learning Systems". In Distributed Machine Learning and Gradient Optimization, 115–66. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3420-8_4.
Testo completoJoshi, Gauri. "Distributed Optimization in Machine Learning". In Synthesis Lectures on Learning, Networks, and Algorithms, 1–12. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-19067-4_1.
Testo completoLin, Zhouchen, Huan Li e Cong Fang. "ADMM for Distributed Optimization". In Alternating Direction Method of Multipliers for Machine Learning, 207–40. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9840-8_6.
Testo completoJiang, Jiawei, Bin Cui e Ce Zhang. "Basics of Distributed Machine Learning". In Distributed Machine Learning and Gradient Optimization, 15–55. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3420-8_2.
Testo completoScheidegger, Carre, Arpit Shah e Dan Simon. "Distributed Learning with Biogeography-Based Optimization". In Lecture Notes in Computer Science, 203–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21827-9_21.
Testo completoGonzález-Mendoza, Miguel, Neil Hernández-Gress e André Titli. "Quadratic Optimization Fine Tuning for the Learning Phase of SVM". In Advanced Distributed Systems, 347–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11533962_31.
Testo completoWang, Huiwei, Huaqing Li e Bo Zhou. "Cooperative Distributed Optimization in Multiagent Networks with Delays". In Distributed Optimization, Game and Learning Algorithms, 1–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4528-7_1.
Testo completoWang, Huiwei, Huaqing Li e Bo Zhou. "Constrained Consensus of Multi-agent Systems with Time-Varying Topology". In Distributed Optimization, Game and Learning Algorithms, 19–37. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4528-7_2.
Testo completoAtti di convegni sul tema "Distributed optimization and learning"
Patil, Aditya, Sanket Lodha, Sonal Deshmukh, Rupali S. Joshi, Vaishali Patil e Sudhir Chitnis. "Battery Optimization Using Machine Learning". In 2024 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS), 1–5. IEEE, 2024. https://doi.org/10.1109/icbds61829.2024.10837428.
Testo completoKhan, Malak Abid Ali, Luo Senlin, Hongbin Ma, Abdul Khalique Shaikh, Ahlam Almusharraf e Imran Khan Mirani. "Optimization of LoRa for Distributed Environments Based on Machine Learning". In 2024 IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), 137–42. IEEE, 2024. https://doi.org/10.1109/apwimob64015.2024.10792952.
Testo completoChao, Liangchen, Bo Zhang, Hengpeng Guo, Fangheng Ji e Junfeng Li. "UAV Swarm Collaborative Transmission Optimization for Machine Learning Tasks". In 2024 IEEE 30th International Conference on Parallel and Distributed Systems (ICPADS), 504–11. IEEE, 2024. http://dx.doi.org/10.1109/icpads63350.2024.00072.
Testo completoShamir, Ohad, e Nathan Srebro. "Distributed stochastic optimization and learning". In 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2014. http://dx.doi.org/10.1109/allerton.2014.7028543.
Testo completoHulse, Daniel, Brandon Gigous, Kagan Tumer, Christopher Hoyle e Irem Y. Tumer. "Towards a Distributed Multiagent Learning-Based Design Optimization Method". In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68042.
Testo completoLi, Naihao, Jiaqi Wang, Xu Liu, Lanfeng Wang e Long Zhang. "Contrastive Learning-based Meta-Learning Sequential Recommendation". In 2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT). IEEE, 2024. http://dx.doi.org/10.1109/icdcot61034.2024.10515699.
Testo completoVaidya, Nitin H. "Security and Privacy for Distributed Optimization & Distributed Machine Learning". In PODC '21: ACM Symposium on Principles of Distributed Computing. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3465084.3467485.
Testo completoLiao, Leonardo, e Yongqiang Wu. "Distributed Polytope ARTMAP: A Vigilance-Free ART Network for Distributed Supervised Learning". In 2009 International Joint Conference on Computational Sciences and Optimization, CSO. IEEE, 2009. http://dx.doi.org/10.1109/cso.2009.63.
Testo completoWang, Shoujin, Fan Wang e Yu Zhang. "Learning Rate Decay Algorithm Based on Mutual Information in Deep Learning". In 2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT). IEEE, 2024. http://dx.doi.org/10.1109/icdcot61034.2024.10515368.
Testo completoAnand, Aditya, Lakshay Rastogi, Ansh Agarwaal e Shashank Bhardwaj. "Refraction-Learning Based Whale Optimization Algorithm with Opposition-Learning and Adaptive Parameter Optimization". In 2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE). IEEE, 2024. http://dx.doi.org/10.1109/icdcece60827.2024.10548420.
Testo completoRapporti di organizzazioni sul tema "Distributed optimization and learning"
Stuckey, Peter, e Toby Walsh. Learning within Optimization. Fort Belvoir, VA: Defense Technical Information Center, aprile 2013. http://dx.doi.org/10.21236/ada575367.
Testo completoNygard, Kendall E. Distributed Optimization in Aircraft Mission Scheduling. Fort Belvoir, VA: Defense Technical Information Center, maggio 1995. http://dx.doi.org/10.21236/ada300064.
Testo completoMeyer, Robert R. Large-Scale Optimization Via Distributed Systems. Fort Belvoir, VA: Defense Technical Information Center, novembre 1989. http://dx.doi.org/10.21236/ada215136.
Testo completoShead, Timothy, Jonathan Berry, Cynthia Phillips e Jared Saia. Information-Theoretically Secure Distributed Machine Learning. Office of Scientific and Technical Information (OSTI), novembre 2019. http://dx.doi.org/10.2172/1763277.
Testo completoGraesser, Arthur C., e Robert A. Wisher. Question Generation as a Learning Multiplier in Distributed Learning Environments. Fort Belvoir, VA: Defense Technical Information Center, ottobre 2001. http://dx.doi.org/10.21236/ada399456.
Testo completoVoon, B. K., e M. A. Austin. Structural Optimization in a Distributed Computing Environment. Fort Belvoir, VA: Defense Technical Information Center, gennaio 1991. http://dx.doi.org/10.21236/ada454846.
Testo completoHays, Robert T. Theoretical Foundation for Advanced Distributed Learning Research. Fort Belvoir, VA: Defense Technical Information Center, maggio 2001. http://dx.doi.org/10.21236/ada385457.
Testo completoChen, J. S. J. Distributed-query optimization in fragmented data-base systems. Office of Scientific and Technical Information (OSTI), agosto 1987. http://dx.doi.org/10.2172/7183881.
Testo completoNocedal, Jorge. Nonlinear Optimization Methods for Large-Scale Learning. Office of Scientific and Technical Information (OSTI), ottobre 2019. http://dx.doi.org/10.2172/1571768.
Testo completoLumsdaine, Andrew. Scalable Second Order Optimization for Machine Learning. Office of Scientific and Technical Information (OSTI), maggio 2022. http://dx.doi.org/10.2172/1984057.
Testo completo