Segui questo link per vedere altri tipi di pubblicazioni sul tema: Diffusion equations.

Articoli di riviste sul tema "Diffusion equations"

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 articoli di riviste per l'attività di ricerca sul tema "Diffusion equations".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi gli articoli di riviste di molte aree scientifiche e compila una bibliografia corretta.

1

Slijepčević, Siniša. "Entropy of scalar reaction-diffusion equations". Mathematica Bohemica 139, n. 4 (2014): 597–605. http://dx.doi.org/10.21136/mb.2014.144137.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Gomez, Francisco, Victor Morales e Marco Taneco. "Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation". Revista Mexicana de Física 65, n. 1 (31 dicembre 2018): 82. http://dx.doi.org/10.31349/revmexfis.65.82.

Testo completo
Abstract (sommario):
In this paper, we obtain analytical solutions for the time-fractional diffusion and time-fractional convection-diffusion equations. These equations are obtained from the standard equations by replacing the time derivative with a fractional derivative of order $\alpha$. Fractional operators of type Liouville-Caputo, Atangana-Baleanu-Caputo, fractional conformable derivative in Liouville-Caputo sense and Atangana-Koca-Caputo were used to model diffusion and convection-diffusion equation. The Laplace and Fourier transforms were applied to obtain the analytical solutions for the fractional order diffusion and convection-diffusion equations. The solutions obtained can be useful to understand the modeling of anomalous diffusive, subdiffusive systems and super-diffusive systems, transport processes, random walk and wave propagation phenomenon.
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Bögelein, Verena, Frank Duzaar, Paolo Marcellini e Stefano Signoriello. "Nonlocal diffusion equations". Journal of Mathematical Analysis and Applications 432, n. 1 (dicembre 2015): 398–428. http://dx.doi.org/10.1016/j.jmaa.2015.06.053.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
4

SOKOLOV, I. M., e A. V. CHECHKIN. "ANOMALOUS DIFFUSION AND GENERALIZED DIFFUSION EQUATIONS". Fluctuation and Noise Letters 05, n. 02 (giugno 2005): L275—L282. http://dx.doi.org/10.1142/s0219477505002653.

Testo completo
Abstract (sommario):
Fractional diffusion equations are widely used to describe anomalous diffusion processes where the characteristic displacement scales as a power of time. The forms of such equations might differ with respect to the position of the corresponding fractional operator in addition to or instead of the whole-number derivative in the Fick's equation. For processes lacking simple scaling the corresponding description may be given by distributed-order equations. In the present paper different forms of distributed-order diffusion equations are considered. The properties of their solutions are discussed for a simple special case.
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Zubair, Muhammad. "Fractional diffusion equations and anomalous diffusion". Contemporary Physics 59, n. 4 (11 settembre 2018): 406–7. http://dx.doi.org/10.1080/00107514.2018.1515252.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Gurevich, Pavel, e Sergey Tikhomirov. "Systems of reaction-diffusion equations with spatially distributed hysteresis". Mathematica Bohemica 139, n. 2 (2014): 239–57. http://dx.doi.org/10.21136/mb.2014.143852.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Fila, Marek, e Ján Filo. "Global behaviour of solutions to some nonlinear diffusion equations". Czechoslovak Mathematical Journal 40, n. 2 (1990): 226–38. http://dx.doi.org/10.21136/cmj.1990.102377.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Abrashina-Zhadaeva, Natali. "A SPLITTING TYPE ALGORITHM FOR NUMERICAL SOLUTION OF PDES OF FRACTIONAL ORDER". Mathematical Modelling and Analysis 12, n. 4 (31 dicembre 2007): 399–408. http://dx.doi.org/10.3846/1392-6292.2007.12.399-408.

Testo completo
Abstract (sommario):
Fractional order diffusion equations are generalizations of classical diffusion equations, treating super‐diffusive flow processes. In this paper, we examine a splitting type numerical methods to solve a class of two‐dimensional initial‐boundary value fractional diffusive equations. Stability, consistency and convergence of the methods are investigated. It is shown that both schemes are unconditionally stable. A numerical example is presented.
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Scheel, Arnd, e Erik S. Van Vleck. "Lattice differential equations embedded into reaction–diffusion systems". Proceedings of the Royal Society of Edinburgh: Section A Mathematics 139, n. 1 (febbraio 2009): 193–207. http://dx.doi.org/10.1017/s0308210507000248.

Testo completo
Abstract (sommario):
We show that lattice dynamical systems naturally arise on infinite-dimensional invariant manifolds of reaction–diffusion equations with spatially periodic diffusive fluxes. The result connects wave-pinning phenomena in lattice differential equations and in reaction–diffusion equations in inhomogeneous media. The proof is based on a careful singular perturbation analysis of the linear part, where the infinite-dimensional manifold corresponds to an infinite-dimensional centre eigenspace.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

KOLTUNOVA, L. N. "ON AVERAGED DIFFUSION EQUATIONS". Chemical Engineering Communications 114, n. 1 (aprile 1992): 1–15. http://dx.doi.org/10.1080/00986449208936013.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Kern, Peter, Svenja Lage e Mark M. Meerschaert. "Semi-fractional diffusion equations". Fractional Calculus and Applied Analysis 22, n. 2 (24 aprile 2019): 326–57. http://dx.doi.org/10.1515/fca-2019-0021.

Testo completo
Abstract (sommario):
Abstract It is well known that certain fractional diffusion equations can be solved by the densities of stable Lévy motions. In this paper we use the classical semigroup approach for Lévy processes to define semi-fractional derivatives, which allows us to generalize this statement to semistable Lévy processes. A Fourier series approach for the periodic part of the corresponding Lévy exponents enables us to represent semi-fractional derivatives by a Grünwald-Letnikov type formula. We use this formula to calculate semi-fractional derivatives and solutions to semi-fractional diffusion equations numerically. In particular, by means of the Grünwald-Letnikov type formula we provide a numerical algorithm to compute semistable densities.
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Wei, G. W. "Generalized reaction–diffusion equations". Chemical Physics Letters 303, n. 5-6 (aprile 1999): 531–36. http://dx.doi.org/10.1016/s0009-2614(99)00270-5.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Freidlin, Mark. "Coupled Reaction-Diffusion Equations". Annals of Probability 19, n. 1 (gennaio 1991): 29–57. http://dx.doi.org/10.1214/aop/1176990535.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Krishnan, E. V. "On Some Diffusion Equations". Journal of the Physical Society of Japan 63, n. 2 (15 febbraio 1994): 460–65. http://dx.doi.org/10.1143/jpsj.63.460.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Calvo, J., A. Marigonda e G. Orlandi. "Anisotropic tempered diffusion equations". Nonlinear Analysis 199 (ottobre 2020): 111937. http://dx.doi.org/10.1016/j.na.2020.111937.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Saxena, R. K., A. M. Mathai e H. J. Haubold. "Fractional Reaction-Diffusion Equations". Astrophysics and Space Science 305, n. 3 (9 novembre 2006): 289–96. http://dx.doi.org/10.1007/s10509-006-9189-6.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Perumal, Muthiah, e Kittur G. Ranga Raju. "Approximate Convection-Diffusion Equations". Journal of Hydrologic Engineering 4, n. 2 (aprile 1999): 160–64. http://dx.doi.org/10.1061/(asce)1084-0699(1999)4:2(160).

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Karamzin, Y. N., T. A. Kudryashova e S. V. Polyakov. "On a class of flux schemes for convection-diffusion equations". Computational Mathematics and Information Technologies 2 (2017): 169–79. http://dx.doi.org/10.23947/2587-8999-2017-2-169-179.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Yarmolenko, M. V. "Analytically Solvable Differential Diffusion Equations Describing the Intermediate Phase Growth". METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 40, n. 9 (5 dicembre 2018): 1201–7. http://dx.doi.org/10.15407/mfint.40.09.1201.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Coville, Jérôme, Changfeng Gui e Mingfeng Zhao. "Propagation acceleration in reaction diffusion equations with anomalous diffusions". Nonlinearity 34, n. 3 (1 marzo 2021): 1544–76. http://dx.doi.org/10.1088/1361-6544/abe17c.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Guo, Jong-Shenq, e Yoshihisa Morita. "Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations". Discrete & Continuous Dynamical Systems - A 12, n. 2 (2005): 193–212. http://dx.doi.org/10.3934/dcds.2005.12.193.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Truman, A., e H. Z. Zhao. "On stochastic diffusion equations and stochastic Burgers’ equations". Journal of Mathematical Physics 37, n. 1 (gennaio 1996): 283–307. http://dx.doi.org/10.1063/1.531391.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Gladkov, A. V., V. V. Dmitrieva e R. A. Sharipov. "Some nonlinear equations reducible to diffusion-type equations". Theoretical and Mathematical Physics 123, n. 1 (aprile 2000): 436–45. http://dx.doi.org/10.1007/bf02551049.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Stephenson, John. "Some non-linear diffusion equations and fractal diffusion". Physica A: Statistical Mechanics and its Applications 222, n. 1-4 (dicembre 1995): 234–47. http://dx.doi.org/10.1016/0378-4371(95)00201-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Nec, Y., e A. A. Nepomnyashchy. "Amplitude equations for a sub-diffusive reaction–diffusion system". Journal of Physics A: Mathematical and Theoretical 41, n. 38 (18 agosto 2008): 385101. http://dx.doi.org/10.1088/1751-8113/41/38/385101.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Carrillo, J. A., M. G. Delgadino e F. S. Patacchini. "Existence of ground states for aggregation-diffusion equations". Analysis and Applications 17, n. 03 (maggio 2019): 393–423. http://dx.doi.org/10.1142/s0219530518500276.

Testo completo
Abstract (sommario):
We analyze free energy functionals for macroscopic models of multi-agent systems interacting via pairwise attractive forces and localized repulsion. The repulsion at the level of the continuous description is modeled by pressure-related terms in the functional making it energetically favorable to spread, while the attraction is modeled through nonlocal forces. We give conditions on general entropies and interaction potentials for which neither ground states nor local minimizers exist. We show that these results are sharp for homogeneous functionals with entropies leading to degenerate diffusions while they are not sharp for fast diffusions. The particular relevant case of linear diffusion is totally clarified giving a sharp condition on the interaction potential under which the corresponding free energy functional has ground states or not.
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Ban, H., S. Venkatesh e K. Saito. "Convection-Diffusion Controlled Laminar Micro Flames". Journal of Heat Transfer 116, n. 4 (1 novembre 1994): 954–59. http://dx.doi.org/10.1115/1.2911471.

Testo completo
Abstract (sommario):
Small laminar diffusion flames (flame height ≃2–3 mm) established by a fuel jet issuing into a quiescent medium are investigated. It was found that for these flames buoyancy effects disappeared as the flame size decreased (Fr≫1), and diffusive transport of the fuel was comparable to the convective transport of the fuel. The effect of buoyancy on these flames was studied by examining the flame shape for horizontally oriented burners. A phenomenological model was developed (based on experimentally determined flame shapes) to compare diffusion and convection transport effects. Finally, the flame shapes were theoretically determined by solving the conservation equations using similarity methods. It was seen that when the axial diffusion (in momentum and species equations) terms are included in the conservation equations, the calculated flame shape is in better agreement (as compared to without the axial diffusion term) with the experimentally measured flame shape.
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Altınbaşak, Sevda Üsküplü. "Highly Oscillatory Diffusion-Type Equations". Journal of Computational Mathematics 31, n. 6 (giugno 2013): 549–72. http://dx.doi.org/10.4208/jcm.1307-m3955.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Philibert, Jean. "Adolf Fick and Diffusion Equations". Defect and Diffusion Forum 249 (gennaio 2006): 1–6. http://dx.doi.org/10.4028/www.scientific.net/ddf.249.1.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Polyanin, A. D., A. I. Zhurov e A. V. Vyazmin. "Time-Delayed Reaction-Diffusion Equations". Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta 21, n. 1 (2015): 071–77. http://dx.doi.org/10.17277/vestnik.2015.01.pp.071-077.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

INOUE, Akihiko. "Path integral for diffusion equations". Hokkaido Mathematical Journal 15, n. 1 (febbraio 1986): 71–99. http://dx.doi.org/10.14492/hokmj/1381518221.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Bakunin, O. G. "Diffusion equations and turbulent transport". Plasma Physics Reports 29, n. 11 (novembre 2003): 955–70. http://dx.doi.org/10.1134/1.1625992.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
33

Bocharov, G. A., V. A. Volpert e A. L. Tasevich. "Reaction–Diffusion Equations in Immunology". Computational Mathematics and Mathematical Physics 58, n. 12 (dicembre 2018): 1967–76. http://dx.doi.org/10.1134/s0965542518120059.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

Paripour, M., E. Babolian e J. Saeidian. "Analytic solutions to diffusion equations". Mathematical and Computer Modelling 51, n. 5-6 (marzo 2010): 649–57. http://dx.doi.org/10.1016/j.mcm.2009.10.043.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

Anikin, V. M., Yu A. Barulina e A. F. Goloubentsev. "Regression equations modelling diffusion processes". Applied Surface Science 215, n. 1-4 (giugno 2003): 185–90. http://dx.doi.org/10.1016/s0169-4332(03)00290-3.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Tasevich, A., G. Bocharov e V. Wolpert. "Reaction-diffusion equations in immunology". Журнал вычислительной математики и математической физики 58, n. 12 (dicembre 2018): 2048–59. http://dx.doi.org/10.31857/s004446690003551-7.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Ninomiya, Hirokazu. "Separatrices of competition-diffusion equations". Journal of Mathematics of Kyoto University 35, n. 3 (1995): 539–67. http://dx.doi.org/10.1215/kjm/1250518709.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
38

Cahn, John W., Shui-Nee Chow e Erik S. Van Vleck. "Spatially Discrete Nonlinear Diffusion Equations". Rocky Mountain Journal of Mathematics 25, n. 1 (marzo 1995): 87–118. http://dx.doi.org/10.1216/rmjm/1181072270.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Schneider, W. R., e W. Wyss. "Fractional diffusion and wave equations". Journal of Mathematical Physics 30, n. 1 (gennaio 1989): 134–44. http://dx.doi.org/10.1063/1.528578.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Shah, Jayant. "Reaction–Diffusion Equations and Learning". Journal of Visual Communication and Image Representation 13, n. 1-2 (marzo 2002): 82–93. http://dx.doi.org/10.1006/jvci.2001.0478.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Constantin, Peter. "Nonlocal nonlinear advection-diffusion equations". Chinese Annals of Mathematics, Series B 38, n. 1 (gennaio 2017): 281–92. http://dx.doi.org/10.1007/s11401-016-1071-4.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Matuszak, Daniel, e Marc D. Donohue. "Inversion of multicomponent diffusion equations". Chemical Engineering Science 60, n. 15 (agosto 2005): 4359–67. http://dx.doi.org/10.1016/j.ces.2005.02.071.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Su, Lijuan, e Pei Cheng. "A High-Accuracy MOC/FD Method for Solving Fractional Advection-Diffusion Equations". Journal of Applied Mathematics 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/648595.

Testo completo
Abstract (sommario):
Fractional-order diffusion equations are viewed as generalizations of classical diffusion equations, treating super-diffusive flow processes. In this paper, in order to solve the fractional advection-diffusion equation, the fractional characteristic finite difference method is presented, which is based on the method of characteristics (MOC) and fractional finite difference (FD) procedures. The stability, consistency, convergence, and error estimate of the method are obtained. An example is also given to illustrate the applicability of theoretical results.
Gli stili APA, Harvard, Vancouver, ISO e altri
44

RODRIGO, MARIANITO R. "BOUNDS ON THE CRITICAL TIMES FOR THE GENERAL FISHER–KPP EQUATION". ANZIAM Journal 63, n. 4 (ottobre 2021): 448–68. http://dx.doi.org/10.1017/s1446181121000365.

Testo completo
Abstract (sommario):
AbstractThe Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) equation is one of the prototypical reaction–diffusion equations and is encountered in many areas, primarily in population dynamics. An important consideration for the phenomena modelled by diffusion equations is the length of the diffusive process. In this paper, three definitions of the critical time are given, and bounds are obtained by a careful construction of the upper and lower solutions. The comparison functions satisfy the nonlinear, but linearizable, partial differential equations of Fisher–KPP type. Results of the numerical simulations are displayed. Extensions to some classes of reaction–diffusion systems and an application to a spatially heterogeneous harvesting model are also presented.
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Nec, Y., A. A. Nepomnyashchy e A. A. Golovin. "Oscillatory instability in super-diffusive reaction – diffusion systems: Fractional amplitude and phase diffusion equations". EPL (Europhysics Letters) 82, n. 5 (27 maggio 2008): 58003. http://dx.doi.org/10.1209/0295-5075/82/58003.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

Goto, Shin-itiro, e Hideitsu Hino. "Diffusion equations from master equations—A discrete geometric approach". Journal of Mathematical Physics 61, n. 11 (1 novembre 2020): 113301. http://dx.doi.org/10.1063/5.0003656.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
47

Othmer, Hans G., e Thomas Hillen. "The Diffusion Limit of Transport Equations II: Chemotaxis Equations". SIAM Journal on Applied Mathematics 62, n. 4 (gennaio 2002): 1222–50. http://dx.doi.org/10.1137/s0036139900382772.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Xie, Longjie, e Li Yang. "Diffusion approximation for multi-scale stochastic reaction-diffusion equations". Journal of Differential Equations 300 (novembre 2021): 155–84. http://dx.doi.org/10.1016/j.jde.2021.07.039.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Philip, J. R. "Some exact solutions of convection-diffusion and diffusion equations". Water Resources Research 30, n. 12 (dicembre 1994): 3545–51. http://dx.doi.org/10.1029/94wr01329.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Le Roux, Marie-Noëlle. "Numerical solution of fast diffusion or slow diffusion equations". Journal of Computational and Applied Mathematics 97, n. 1-2 (settembre 1998): 121–36. http://dx.doi.org/10.1016/s0377-0427(98)00106-x.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia