Letteratura scientifica selezionata sul tema "Diffusion"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Diffusion".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Diffusion"
Khair, Abul, Nilay Kumar Dey, Mohammad Harun-Ur-Rashid, Mohammad Abdul Alim, Newas Mohammad Bahadur, Sultan Mahamud e Syekat Ahmed. "Diffusimetry Renounces Graham’s Law, Achieves Diffusive Convection, Concentration Gradient Induced Diffusion, Heat and Mass Transfer". Defect and Diffusion Forum 407 (marzo 2021): 173–84. http://dx.doi.org/10.4028/www.scientific.net/ddf.407.173.
Testo completoCheung, S. C. H. "Methods to measure apparent diffusion coefficients in compacted bentonite clays and data interpretation". Canadian Journal of Civil Engineering 16, n. 4 (1 agosto 1989): 434–43. http://dx.doi.org/10.1139/l89-073.
Testo completoGadomski, Adam. "(Nano)Granules-Involving Aggregation at a Passage to the Nanoscale as Viewed in Terms of a Diffusive Heisenberg Relation". Entropy 26, n. 1 (17 gennaio 2024): 76. http://dx.doi.org/10.3390/e26010076.
Testo completoBengtsson, Lisa, Sander Tijm, Filip Váňa e Gunilla Svensson. "Impact of Flow-Dependent Horizontal Diffusion on Resolved Convection in AROME". Journal of Applied Meteorology and Climatology 51, n. 1 (gennaio 2012): 54–67. http://dx.doi.org/10.1175/jamc-d-11-032.1.
Testo completoDa Silva, Marly Terezinha Quadri Simões, e Wellington Mazer. "Diffusion coefficient and tortuosity: Brownian Motion". CONTRIBUCIONES A LAS CIENCIAS SOCIALES 16, n. 9 (28 settembre 2023): 18281–302. http://dx.doi.org/10.55905/revconv.16n.9-264.
Testo completoKhoulif, S., E. B. Hannech e N. Lamoudi. "Study of Reactive Diffusion in Cu/Zn Diffusion Couple". Indian Journal Of Science And Technology 15, n. 48 (27 dicembre 2022): 2740–47. http://dx.doi.org/10.17485/ijst/v15i48.13.
Testo completoLens, Piet N. L., Rakel Gastesi, Frank Vergeldt, Adriaan C. van Aelst, Antonio G. Pisabarro e Henk Van As. "Diffusional Properties of Methanogenic Granular Sludge: 1H NMR Characterization". Applied and Environmental Microbiology 69, n. 11 (novembre 2003): 6644–49. http://dx.doi.org/10.1128/aem.69.11.6644-6649.2003.
Testo completoBenga, Gheorghe, Octavian Popescu e Victor I. Pop. "Water exchange through erythrocyte membranes: p-choloromercuribenzene sulfonate inhibition of water diffusion in ghosts studied by a nuclear magnetic resonance technique". Bioscience Reports 5, n. 3 (1 marzo 1985): 223–28. http://dx.doi.org/10.1007/bf01119591.
Testo completoPinholt, Henrik D., Søren S. R. Bohr, Josephine F. Iversen, Wouter Boomsma e Nikos S. Hatzakis. "Single-particle diffusional fingerprinting: A machine-learning framework for quantitative analysis of heterogeneous diffusion". Proceedings of the National Academy of Sciences 118, n. 31 (28 luglio 2021): e2104624118. http://dx.doi.org/10.1073/pnas.2104624118.
Testo completoHutzenthaler, Martin, e Jesse Earl Taylor. "Time reversal of some stationary jump diffusion processes from population genetics". Advances in Applied Probability 42, n. 4 (dicembre 2010): 1147–71. http://dx.doi.org/10.1239/aap/1293113155.
Testo completoTesi sul tema "Diffusion"
Imoto, Yu, e Takashi Odagaki. "Diffusion on diffusing particles". Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-193282.
Testo completoImoto, Yu, e Takashi Odagaki. "Diffusion on diffusing particles". Diffusion fundamentals 6 (2007) 11, S. 1-7, 2007. https://ul.qucosa.de/id/qucosa%3A14185.
Testo completoBernhardt, Thomas. "Reflected diffusions and piecewise diffusion approximations of Levy processes". Thesis, London School of Economics and Political Science (University of London), 2017. http://etheses.lse.ac.uk/3659/.
Testo completoPrehl, Janett Hoffmann Karl-Heinz. "Diffusion on fractals Diffusion auf Fraktalen /". [S.l. : s.n.], 2007.
Cerca il testo completoRane, Swati. "Diffusion tensor imaging at long diffusion time". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29708.
Testo completoCommittee Chair: Hu, Xiaoping; Committee Member: Brummer, Marijn; Committee Member: Duong, Tim; Committee Member: Keilholz, Shella; Committee Member: Schumacher, Eric. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Coulon, Anne-Charline. "Propagation in reaction-diffusion equations with fractional diffusion". Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277576.
Testo completoEsta tesis se centra en el comportamiento en tiempos grandes de las soluciones de la ecuación de Fisher- KPP de reacción-difusión con difusión fraccionaria. Este tipo de ecuación surge, por ejemplo, en la propagación espacial o en la propagación de especies biológicas (ratas, insectos,...). En la dinámica de poblaciones, la cantidad que se estudia representa la densidad de la población. Es conocido que, bajo algunas hipótesis específicas, la solución tiende a un estado estable del problema de evolución, cuando el tiempo tiende a infinito. En otras palabras, la población invade el medio, lo que corresponde a la supervivencia de la especie, y nosotros queremos entender con qué velocidad se lleva a cabo esta invasión. Para responder a esta pregunta, hemos creado un nuevo método para estudiar la velocidad de propagación cuando se consideran difusiones fraccionarias, además hemos aplicado este método en tres problemas diferentes. La Parte I de la tesis está dedicada al análisis de la ubicación asintótica de los conjuntos de nivel de la solución de dos problemas diferentes: modelos de Fisher- KPP en medios periódicos y sistemas cooperativos, ambos consideran difusión fraccionaria. En el primer modelo, se prueba que, bajo ciertas hipótesis sobre el medio periódico, la solución se propaga exponencialmente rápido en el tiempo, además encontramos el exponente exacto que aparece en esta velocidad de propagación exponencial. También llevamos a cabo simulaciones numéricas para investigar la dependencia de la velocidad de propagación con la condición inicial. En el segundo modelo, se prueba que la velocidad de propagación es nuevamente exponencial en el tiempo, con un exponente que depende del índice más pequeño de los Laplacianos fraccionarios y también del término de reacción. La Parte II de la tesis ocurre en un entorno de dos dimensiones, donde se reproduce un tipo ecuación de Fisher- KPP con difusión estándar, excepto en una línea del plano, en el que la difusión fraccionada aparece. El plano será llamado "campo" y la línea "camino", como una referencia a las situaciones biológicas que tenemos en mente. De hecho, desde hace tiempo se sabe que la difusión rápida en los caminos puede causar un efecto en la propagación de epidemias. Probamos que la velocidad de propagación es exponencial en el tiempo en el camino, mientras que depende linealmente del tiempo en el campo. Contrariamente a los precisos exponentes obtenidos en la Parte I, para este modelo, no fuimos capaces de dar una localización exacta de los conjuntos de nivel en la carretera y en el campo. La forma de propagación de los conjuntos de nivel en el campo se investiga a través de simulaciones numéricas
Benson, Debbie Lisa. "Reaction diffusion models with spatially inhomogeneous diffusion coefficients". Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239337.
Testo completoPrehl, Janett. "Diffusion on fractals and space-fractional diffusion equations". Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001068.
Testo completoThe aim of this thesis is the examination of sub- and superdiffusive processes in fractal structures. The focus of the work concentrates on two separate approaches that are chosen and varied according to the corresponding regime. Thus, we obtain new insights about the underlying mechanisms and a more appropriate way of description for both regimes. In the first part subdiffusion is considered, which plays a crucial role for transport processes, as in living tissues. First, we model the fractal state space via finite Sierpinski carpets with absorbing boundary conditions and we solve the master equation to compute the time development of the probability distribution. To characterize the diffusion on regular as well as random carpets we determine the longest decay time of the probability distribution, the mean exit time and the Random walk dimension. Thus, we can verify the influence of random structures on the diffusive dynamics. In the second part of this thesis superdiffusive processes are studied by means of the diffusion equation. Its second order space derivative is extended to fractional order, which represents the fractal properties of the surrounding media. The resulting space-fractional diffusion equations span a linking regime from the irreversible diffusion equation to the reversible (half) wave equation. The corresponding solutions are analyzed by different entropies, as the Shannon, Tsallis or Rényi entropies and their entropy production rates, which are natural measures of irreversibility. We find an entropy production paradox, i. e. an unexpected increase of the entropy production rate by decreasing irreversibility of the processes. Due to an appropriate rescaling of the entropy we are able to resolve the paradox
Kuchel, Philip W., e Guilhem Pages. "NMR diffusion diffraction and diffusion interference from cells". Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-194150.
Testo completoKuchel, Philip W., e Guilhem Pages. "NMR diffusion diffraction and diffusion interference from cells". Diffusion fundamentals 6 (2007) 74, S. 1-16, 2007. https://ul.qucosa.de/id/qucosa%3A14254.
Testo completoLibri sul tema "Diffusion"
Chakraverty, S., e Sukanta Nayak. Neutron Diffusion. Boca Raton : CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/b22222.
Testo completoVogl, Gero. Adventure Diffusion. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04681-1.
Testo completoGhez, Richard. Diffusion Phenomena. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3361-7.
Testo completoTringides, M. C., a cura di. Surface Diffusion. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-0262-7.
Testo completoL, Gaile Gary, e Thrall Grant Ian, a cura di. Spatial diffusion. Newbury Park: Sage Publications, 1988.
Cerca il testo completoSeizō, Itō. Diffusion equations. Providence, R.I: American Mathematical Society, 1992.
Cerca il testo completoStock, James H. Diffusion indexes. Cambridge, MA: National Bureau of Economic Research, 1998.
Cerca il testo completoJovanovic, Boyan. Competitive diffusion. Cambridge, MA: National Bureau of Economic Research, 1993.
Cerca il testo completoNATO Advanced Study Institute on Diffusion in Materials (1989 Aussois, France). Diffusion in materials. Dordrecht: Kluwer Academic Publishers, 1990.
Cerca il testo completoStroock, Daniel W. Multidimensional diffusion processes. 2a ed. Berlin: Springer, 1997.
Cerca il testo completoCapitoli di libri sul tema "Diffusion"
Ahmed, Hesham M., Christopher T. Aquina, Vicente H. Gracias, J. Javier Provencio, Mariano Alberto Pennisi, Giuseppe Bello, Massimo Antonelli et al. "Diffusion". In Encyclopedia of Intensive Care Medicine, 718. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-00418-6_3085.
Testo completoAnnesini, Maria Cristina, Luigi Marrelli, Vincenzo Piemonte e Luca Turchetti. "Diffusion". In Artificial Organ Engineering, 3–22. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-6443-2_1.
Testo completoSalsa, Sandro. "Diffusion". In UNITEXT, 17–114. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15093-2_2.
Testo completoCooper, Jeffery. "Diffusion". In Introduction to Partial Differential Equations with MATLAB, 73–110. Boston, MA: Birkhäuser Boston, 1998. http://dx.doi.org/10.1007/978-1-4612-1754-1_3.
Testo completoDurand-Charre, Madeleine. "Diffusion". In Microstructure of Steels and Cast Irons, 163–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-08729-9_8.
Testo completoSavva, Michalakis. "Diffusion". In Pharmaceutical Calculations, 181–208. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20335-1_8.
Testo completoPorter, D. A., e K. E. Easterling. "Diffusion". In Phase Transformations in Metals and Alloys, 60–109. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-3051-4_2.
Testo completoScherer, Philipp O. J. "Diffusion". In Graduate Texts in Physics, 479–91. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61088-7_21.
Testo completoLiang, Yan. "Diffusion". In Encyclopedia of Earth Sciences Series, 1–13. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_336-1.
Testo completoLiang, Yan. "Diffusion". In Encyclopedia of Earth Sciences Series, 363–75. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_336.
Testo completoAtti di convegni sul tema "Diffusion"
Yang, Yijun, Ruiyuan Gao, Xiaosen Wang, Tsung-Yi Ho, Nan Xu e Qiang xu. "MMA-Diffusion: MultiModal Attack on Diffusion Models". In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7737–46. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.00739.
Testo completoZhang, Biao, e Peter Wonka. "Functional Diffusion". In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 4723–32. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.00452.
Testo completoGuo, Jiayi, Xingqian Xu, Yifan Pu, Zanlin Ni, Chaofei Wang, Manushree Vasu, Shiji Song, Gao Huang e Humphrey Shi. "Smooth Diffusion: Crafting Smooth Latent Spaces in Diffusion Models". In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 7548–58. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.00721.
Testo completoChen, Xiyi, Marko Mihajlovic, Shaofei Wang, Sergey Prokudin e Siyu Tang. "Morphable Diffusion: 3D-Consistent Diffusion for Single-image Avatar Creation". In 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 10359–70. IEEE, 2024. http://dx.doi.org/10.1109/cvpr52733.2024.00986.
Testo completoHuang, Ziyang, Pengfei Cao, Jun Zhao e Kang Liu. "DiffusionSL: Sequence Labeling via Tag Diffusion Process". In Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg, PA, USA: Association for Computational Linguistics, 2023. http://dx.doi.org/10.18653/v1/2023.findings-emnlp.860.
Testo completoLi, Xiuyu, Yijiang Liu, Long Lian, Huanrui Yang, Zhen Dong, Daniel Kang, Shanghang Zhang e Kurt Keutzer. "Q-Diffusion: Quantizing Diffusion Models". In 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2023. http://dx.doi.org/10.1109/iccv51070.2023.01608.
Testo completoChoi, Saemi, Yusuke Matsui e Kiyoharu Aizawa. "Diffusion". In SA'14: SIGGRAPH Asia 2014. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2668975.2668987.
Testo completoChen, Yunmei, e Stacey Chastain. "Anisotropic diffusion driven by diffusion tensors". In International Symposium on Optical Science and Technology, a cura di David C. Wilson, Hemant D. Tagare, Fred L. Bookstein, Francoise J. Preteux e Edward R. Dougherty. SPIE, 2000. http://dx.doi.org/10.1117/12.402435.
Testo completoZabari, Nir, Aharon Azulay, Alexey Gorkor, Tavi Halperin e Ohad Fried. "Diffusing Colors: Image Colorization with Text Guided Diffusion". In SA '23: SIGGRAPH Asia 2023. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3610548.3618180.
Testo completoOdiachi, Judah, Felipe Cruz e Ali Tinni. "Diffusional and Electrical Tortuosity in Unconventional Shale Reservoirs". In SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210164-ms.
Testo completoRapporti di organizzazioni sul tema "Diffusion"
Lin, Jeong-long, e William Taylor. Thermodynamics of Thermal Diffusion: Thermal Diffusion in Liquids and Thermal Diffusion in Gasses. Office of Scientific and Technical Information (OSTI), dicembre 1988. http://dx.doi.org/10.2172/967180.
Testo completoCooper, Michael William Donald, K. A. Gamble, Christopher Matthews e Anders David Ragnar Andersson. Irradiation enhanced diffusion and diffusional creep in U₃Si₂. Office of Scientific and Technical Information (OSTI), giugno 2020. http://dx.doi.org/10.2172/1633555.
Testo completoGlynn, Peter W. Diffusion Approximations. Fort Belvoir, VA: Defense Technical Information Center, luglio 1989. http://dx.doi.org/10.21236/ada212581.
Testo completoStock, James, e Mark Watson. Diffusion Indexes. Cambridge, MA: National Bureau of Economic Research, agosto 1998. http://dx.doi.org/10.3386/w6702.
Testo completoStokey, Nancy. Technology Diffusion. Cambridge, MA: National Bureau of Economic Research, luglio 2020. http://dx.doi.org/10.3386/w27466.
Testo completoJovanovic, Boyan, e Glenn MacDonald. Competitive Diffusion. Cambridge, MA: National Bureau of Economic Research, settembre 1993. http://dx.doi.org/10.3386/w4463.
Testo completoBurgess Jr, Donald R. Self-Diffusion and Binary-Diffusion Coefficients in Gases. Gaithersburg, MD: National Institute of Standards and Technology, 2023. http://dx.doi.org/10.6028/nist.tn.2279.
Testo completoYang, T. Diffusion of Zonal Variables Using Node-Centered Diffusion Solver. Office of Scientific and Technical Information (OSTI), agosto 2007. http://dx.doi.org/10.2172/924607.
Testo completoDayananda, M. A., e R. Venkatasubramanian. Diffusion path representation for two-phase ternary diffusion couples. Office of Scientific and Technical Information (OSTI), gennaio 1986. http://dx.doi.org/10.2172/5851361.
Testo completoTrowbridge, L. Isotopic selectivity of surface diffusion: An activated diffusion model. Office of Scientific and Technical Information (OSTI), novembre 1989. http://dx.doi.org/10.2172/5462238.
Testo completo