Tesi sul tema "Desalination"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Desalination".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Nayar, Kishor Govind. "Improving seawater desalination and seawater desalination brine management". Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121886.
Testo completoCataloged from PDF version of thesis. "Thesis contains very faint/illegible footnote numbering"--Disclainer Notice page.
Includes bibliographical references.
Water scarcity is an increasing problem globally. Seawater desalination is increasingly being relied upon as a means of mitigating the problem of water scarcity. However, seawater desalination has costs associated with it: capital costs, cost of energy to desalinate and environmental costs from the discharge of high salinity brine. Efficient and cost-effective seawater desalination and desalination brine management systems are necessary to make seawater desalination a sustainable scalable process. This work seeks to improve seawater desalination and seawater desalination brine management in several ways. For the first time, the thermophysical properties of seawater have been characterized as a function of pressure across the full desalination operating regimes of temperature, salinity and pressure. Functions that allow accurate thermodynamic least work of desalination and seawater flow exergy analysis have been developed.
The least work of desalination, brine concentration and salt production was investigated and the performance of state-of-the-art brine concentrators and crystallizers was calculated. Hybrid designs of reverse osmosis (RO) and electrodialysis (ED) were proposed to be integrated with a crystallizer to concentrate desalination brine more efficiently. The RO-ED-crystallizer concept was applied to two separate applications: (a) salt production from seawater and (b) zero brine discharge seawater desalination. A parametric analysis to minimize the specific cost of salt production and water production was conducted. Parameters varied were: the ratio of seawater to RO brine in the ED diluate channel, ED current density, ED diluate outlet salinity, electricity, water and salt prices, and RO recovery by adding a high pressure RO (HPRO) stage. Results showed that significant cost reductions could be achieved in RO-ED systems by increasing the ED current density from 300 A/m² to 600 A/m².
Increasing RO brine salinity by using HPRO and operating at 120 bar pressure reduced salt production costs while increasing water production costs. Transport properties of monovalent selective ED (MSED) membranes were also experimentally obtained for sodium chloride, significantly improving the accuracy of modeling MSED brine concentration systems. MSED cell pairs transported only about ~~50% the water but nearly as much salt as a standard ED cell pair, while having twice the average membrane resistance.
Supported by Center for Clean Water and Clean Energy at MIT and KFUPM Project No. R13-CW-10, King Fahd University of Petroleoum and Minerals (KFUPM), Dhahran, Saudi Arabia
by Kishor Govind Nayar.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Mechanical Engineering
Mayere, Abdulkarim. "Solar powered desalination". Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/12331/.
Testo completoRahal, Zeina. "Wind powered desalination". Thesis, Loughborough University, 2001. https://dspace.lboro.ac.uk/2134/7466.
Testo completoCrerar, Alan J. "Wave powered desalination". Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/14741.
Testo completoDigby, Simon. "Tjuntjuntjara groundwater desalination". Thesis, Digby, Simon (2012) Tjuntjuntjara groundwater desalination. Other thesis, Murdoch University, 2012. https://researchrepository.murdoch.edu.au/id/eprint/13106/.
Testo completoAndersson, Niklas, e Pontus Heijdenberg. "Wind Power Desalination System". Thesis, Halmstad University, School of Business and Engineering (SET), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-2769.
Testo completoPsaltas, Michael A. "Hybrid cogeneration desalination process". Thesis, University of Surrey, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.576090.
Testo completoBajpayee, Anurag. "Directional solvent extraction desalination". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78539.
Testo completo"September 2012." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 131-137).
World water supply is struggling to meet demand. Production of fresh water from the oceans could supply this demand almost indefinitely. As global energy consumption continues to increase, water and energy resources are getting closely intertwined, especially with regards to the water consumption and contamination in the unconventional oil and gas industry. Development of effective, affordable desalination and water treatment technologies is thus vital to meeting future demand, maintaining economic development, enabling continued growth of energy resources, and preventing regional and international conflict. We have developed a new low temperature, membrane-free desalination technology using directional solvents capable of extracting pure water from a contaminated solution without themselves dissolving in the recovered water. This method dissolves the water into a directional solvent by increasing its temperature, rejects salts and other contaminants, then recovers pure water by cooling back to ambient temperature, and re-uses the solvent. The directional solvents used here include soybean oil, hexanoic acid, decanoic acid, and octanoic acid with the last two observed to be the most effective. These fatty acids exhibit the required characteristics by having a hydrophilic carboxylic acid end which bonds to water molecules but the hydrophobic chain prevents the dissolution of water soluble salts as well the dissolution of the solvent in water. Directional solvent extraction may be considered a molecular-level desalination approach. Directional Solvent Extraction circumvents the need for membranes, uses simple, inexpensive machinery, and by operating at low temperatures offers the potential for using waste heat. This technique also lends itself well to treatment of feed waters over a wide range of total dissolved solids (TDS) levels and is one of the very few known techniques to extract water from saturated brines. We demonstrate >95% salt rejection for seawater TDS concentrations (35,000 ppm) as well as for oilfield produced water TDS concentrations (>100,000 ppm) and saturated brines (300,000 ppm) through a benchtop batch process, and recovery ratios as high as 85% for feed TDS of 35,000 ppm through a multi-stage batch process. We have also designed, constructed, and demonstrated a semi-continuous process prototype. The energy and economic analysis suggests that this technique could become an effective, affordable method for seawater desalination and for treatment of produced water from unconventional oil and gas extraction.
by Anurag Bajpayee.
Ph.D.
Al-Thani, Faleh N. "Economical desalination processes in Qatar". Thesis, University of Hertfordshire, 2002. http://hdl.handle.net/2299/14043.
Testo completoTow, Emily Winona. "Organic fouling of desalination membranes". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111695.
Testo completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 211-224).
Energy-ecient desalination and water reuse are necessary to ensure universal access to clean water. Reverse osmosis (RO) is the most ecient desalination process for almost any water source, but it is susceptible to membrane fouling, which can reduce product water quality and raise energy consumption. Fouling can be reduced through (energy-intensive) pretreatment, delayed by membrane coatings, and partially reversed by cleaning. However, poor understanding of fouling physics hinders our ability to predict fouling or design for fouling resistance. Better models of fouling are needed to improve the RO process and provide sustainable sources of desalinated or recycled water to water-scarce communities. Through experiments and modeling, this thesis compares several desalination systems, quantifies the effect of pressure on fouling, and elucidates mechanisms of foulant removal. An experimental apparatus was created to simulate operating conditions in full-scale RO, forward osmosis (FO), and membrane distillation (MD) desalination systems and compare the fouling behavior of these processes under identical hydro-dynamic conditions. In the FO configuration, both uid streams could be pressurized to experimentally isolate the effects of pressure from other operating conditions that affect fouling. A window in the membrane module allowed in situ visualization of membrane fouling and cleaning at pressures as high as 69 bar. Experiments were complemented by the development of physics-based models that predict the eect of hydraulic pressure on foulant layer properties and ux decline and also enable the calculation of foulant layer thickness from measured flux. The findings provide new insight into the relative fouling propensity of membrane desalination systems, the factors influencing ux decline, and the mechanisms of foulant removal. Experiments and modeling show that, although flux decline is slower in FO than in RO, the FO membrane accumulates a thicker foulant layer. Furthermore, FO fouling trials at elevated pressure reveal that fouling behavior is not adversely affected by high hydraulic pressure. Despite this, low operating temperature and unfavorable surface chemistry cause RO to be more susceptible to organic fouling than MD and more susceptible to inorganic fouling than FO. However, neither FO nor MD is immune to fouling: FO flux declined as much as RO ux in the presence of alginate fouling, and MD exhibited rapid ux decline as a result of inorganic fouling. Finally, in situ visualization revealed that osmotic backwashing causes the foulant layer to swell, buckle, and detach in large pieces from both FO and RO membranes, regardless of operating pressure. These findings guide desalination process selection, membrane design, and cleaning protocol development to reduce the energy consumption associated with membrane fouling in desalination.
by Emily Winona Tow.
Ph. D.
Tabraham, John Mark. "The desalination of marine ice". Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624384.
Testo completoGutierrez, Hernandez Lucero, e Garcia Wenny Fernanda Ramirez. "Sustainable System for Water Desalination". Thesis, Högskolan i Skövde, Institutionen för ingenjörsvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-15991.
Testo completoAhmad, Mansour M. M. "Assessment of freezing desalination technologies". Thesis, Swansea University, 2012. https://cronfa.swan.ac.uk/Record/cronfa42635.
Testo completoXie, Fangyou. "Pressure Driven Desalination Utilizing Nanomaterials". DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2204.
Testo completoGirme, Gauri Manik. "Algae powered Microbial Desalination Cells". The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397735584.
Testo completoCorral, Andrea F. "Alternative Technologies for Inland Desalination". Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/333122.
Testo completoMkhize, Mfanafuthi Mthandeni. "Multistage solar still desalination system". Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2848.
Testo completoThe present study was centred on the design of a thermal multistage solar still desalination system. The design is a multistage with new configurations such as direct vapour input into each stage using vapour make-up tubes and the integration of a multistage with a basin type solar still. The incorporation of float a valve in the secondary seawater tank to regulate the seawater in the assembly eliminated the need of pumps to the system. The circulation of seawater between the evaporator and the evacuated tube solar collector (ETC) was through the pressure difference and the flow back was controlled through the incorporation of oneway flow valve. The ETC was used as a heat source to supply the thermal energy into the multistage system. The system had no electrical connections and therefore, no forced circulation as no pumps or any electrical components were used. The system consisted of six stages in total, the evaporator supplied the vapour to five of the six stages of the system. The system was tested on the roof of Mechanical Engineering Department and this location was chosen because of less sun’s intensity obstructions. The system was tested for nine (9) days but the distillate collection was not performed for the whole each day. This was due to the controlled access to the roof and the minor repairs that had to occur before the tests were conducted. The duration on which the tests were conducted varied in each day. The data was supposed to be logged from 08h00 am to 18h00 pm but this was not so due to the controlled access to where the tests were conducted. This data logging period was chosen based on the assumptions that the sun’s intensity would be at maximum within this period. The longest period of test was approximately 7 hours and the system managed to produce about 1500 ml and the maximum temperature for the day was 28oC. The system produced a minimum of 225 ml in the space of 3 hours and the temperature of the day was 26oC. The total amount of distillate produced was about 7600 ml and this amount was produced within the period of 49 hours. The 49 hours is equivalent to two days and 1 hour. It is anticipated that the system would have produced more should there be no repairs involved during the tests. The system produced a maximum of 48 ml at night and a minimum of 8ml in some nights. The night tests were not controlled and monitored due to limited access. It was noticed that the system was empty in each morning of the first few days of the tests. This emptiness contributed to the leakage occurred to the evaporator. The leakage of the evaporator was caused by unmonitored heat supplied by the ETC. The evaporator was constructed using unsuitable material and this was another factor which contributed towards the failure of the evaporator.
Sassi, Kamal M. "Optimal scheduling, design, operation and control of reverse osmosis desalination : prediction of RO membrane performance under different design and operating conditions, synthesis of RO networks using MINLP optimization framework involving fouling, boron removal, variable seawater temperature and variable fresh water demand". Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/5671.
Testo completoLara, Ruiz Jorge Horacio Juan. "An advanced vapor-compression desalination system". Texas A&M University, 2005. http://hdl.handle.net/1969.1/3340.
Testo completoRees, Jones David. "The convective desalination of sea ice". Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/246582.
Testo completoChen, Yuanhong. "Electrohydrodynamic (EHD) desalination of sea water". Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=60676.
Testo completoPerera, Dehiwalage Harshani Nimalika. "Thin film composite membranes for desalination". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709429.
Testo completoMistry, Karan H. (Karan Hemant). "Irreversibilities and nonidealities in desalination systems". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81703.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 207-220).
Energy requirements for desalination systems must be reduced to meet increasing global demand for fresh water. This thesis identifies thermodynamic limits for the energetic performance of desalination systems and establishes the importance of irreversibilities and solution composition to the actual performance obtained. Least work of separation for a desalination system is derived and generalized to apply to all chemical separation processes driven by some combination of work, heat, and chemical energy (fuel) input. At infinitesimal recovery, least work reduces to the minimum least work of separation: the true exergetic value of the product and a useful benchmark for evaluating energetic efficiency of separation processes. All separation processes are subject to these energy requirements; several cases relevant to established and emerging desalination technologies are considered. The effect of nonidealities in electrolyte solutions on least work is analyzed through comparing the ideal solution approximation, Debye-Hückel theory, Pitzer's ionic interaction model, and Pitzer-Kim's model for mixed electrolytes. Error introduced by using incorrect property models is quantified. Least work is a strong function of ionic composition; therefore, standard property databases should not be used for solutions of different or unknown composition. Second Law efficiency for chemical separation processes is defined using the minimum least work and characterizes energetic efficiency. A methodology is shown for evaluating Second Law efficiency based on primary energy inputs. Additionally, entropy generation mechanisms common in desalination processes are analyzed to illustrate the effect of irreversibility. Formulations for these mechanisms are applied to six desalination systems and primary sources of loss are identified. An economics-based Second Law efficiency is defined by analogy to the energetic parameter. Because real-world systems are constrained by economic factors, a performance parameter based on both energetics and economics is useful. By converting all thermodynamic quantities to economic quantities, the cost of irreversibilities can be compared to other economic factors including capital and operating expenses. By applying these methodologies and results, one can properly characterize the energetic performance and thermodynamic irreversibilities of chemical separation processes, make better decisions during technology selection and design of new systems, and critically evaluate claimed performance improvements of novel systems.
by Karan H. Mistry.
Ph.D.
Chung, Hyung Won. "Membrane distillation for high salinity desalination". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100061.
Testo completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 57-60).
Membrane distillation systems typically have low energy efficiency. Multistage membrane distillation (MD) systems can have significantly higher efficiencies than their single stage counterparts. However, multistage MD system design has received limited attention. In this work, the performance of a multistage vacuum membrane distillation (MSVMD) which is thermodynamically similar to a multi-stage flash distillation (MSF) is evaluated for desalination, brine concentration, and produced water reclamation applications. A wide range of solution concentrations were accurately modeled by implementing Pitzer's equations for NaCl-solution properties. The viability of MSVMD use for zero liquid discharge (ZLD) applications is investigated, by considering discharge salinities close to NaCl saturation conditions. Energy efficiency (gained output ratio or GOR), second law efficiency, and the specific membrane area were used to quantify the performance of the system. At high salinities, the increased boiling point elevation of the feed stream resulted in lower fluxes, larger heating requirements and lower GOR values. The second law efficiency, however, is higher under these conditions since the least heat for separation increases faster than the system's specific energy consumption with increase in salinity. Under high salinity conditions, the relative significance of irreversible losses is lower. Results indicate that MSVMD systems can be as efficient as a conventional MSF system, while using reasonable membrane areas and for a wide range of feed salinities. Given MD's advantages over MSF such as lower capital requirement and scalability, MSVMD can be an attractive alternative to conventional thermal desalination systems. Recently proposed single stage MD systems have shown high energy efficiency. Permeate gap (PGMD) and conductive gap (CGMD) systems are studied in the context of energy efficiency. A wide range of salinities was considered to investigate potential of these single stage systems for high salinity desalination applications.
by Hyung Won Chung.
S.M.
Al-Zuhairi, Ahmed. "A novel manipulated osmosis desalination process". Thesis, University of Surrey, 2008. http://epubs.surrey.ac.uk/2726/.
Testo completoGude, Veera Gnaneswar. "Desalination using low grade heat sources". access full-text online access from Digital Dissertation Consortium, 2007. http://libweb.cityu.edu.hk/cgi-bin/er/db/ddcdiss.pl?3296129.
Testo completoBatho, Mark P. (Mark Peter) 1968. "Economics of seawater desalination in Cyprus". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/67163.
Testo completoIncludes bibliographical references (p. 48-52).
The Republic of Cyprus is currently suffering from severe drought conditions. This is not uncommon to Cyprus, as they frequently experience three to four year droughts every decade. They are currently in the middle of their fourth year of drought. Some Cypriots believe that the main reason for water shortages is due only to low levels of rainfall (average rainfall in Cyprus is 500 mm per year, and less than 400 mm per year is considered a drought year). It is not disputed that this is part of the problem. However, my belief, along with many Cypriots is that the biggest part of the problem is one of water allocation. Agriculture in Cyprus contributes approximately 5% to the GDP, yet consumes 75% of available water in Cyprus. The remainder of water is left for the sector of the economy that produces the remaining 95% of the GDP, of which municipal, industrial and tourist uses are of greatest importance. One may ask why this is so. According to some Cypriots, it is because Cypriot farmers are thought to be a politically influential group, and that they farm more as a way of life, rather than to earn a living directly. Others discount this "way of life" theory. What is important, however is that farming is using a lot of water and is contributing very little to the GDP of Cyprus. For example, Citrus crops grown within the Southern Conveyor System (a large network of water conveyance pipes stretching for over 100 km in the southern part of the island) (see Figure 3, page 16) uses approximately 21% of all available water available in Cyprus, and without Government subsidies would not show profitability. Although there may be some aesthetic value in citrus groves one must ask if it is economically and environmentally justified to continue farming citrus. To do so means building seawater desalination plants that contribute 5.0 to 6.0 kg of CO 2, a greenhouse gas, to the atmosphere per m3 of water produced by desalination, along with the cost of the water nearing one US dollar per m3 . Desalination is a painful solution to Cyprus' water shortage that could be otherwise be addressed with a proper water allocation scheme.
by Mark P. Batho.
M.Eng.
CAMPIONE, Antonino. "Electrodialysis modelling for low energy desalination". Doctoral thesis, Università degli Studi di Palermo, 2020. http://hdl.handle.net/10447/395212.
Testo completoHoffman, Anton Michael. "Design guidelines for a reverse osmosis desalination plant / Anton Michael Hoffman". Thesis, North-West University, 2008. http://hdl.handle.net/10394/4211.
Testo completoThesis (M.Ing. (Nuclear Engineering)--North-West University, Potchefstroom Campus, 2009.
Hughes, Amanda Jane. "Solar powered membrane distillation for seawater desalination". Thesis, Heriot-Watt University, 2015. http://hdl.handle.net/10399/2922.
Testo completoIgobo, Opubo. "Low-temperature isothermal Rankine cycle for desalination". Thesis, Aston University, 2016. http://publications.aston.ac.uk/28569/.
Testo completoSempere, Catherine. "Nanofluidic insight into energy harvesting and desalination". Thesis, Lyon 1, 2015. http://www.theses.fr/2015LYO10200/document.
Testo completoThe first part of this thesis is an introduction to the different energy conversion and desalination methods that will be invoked in this work. In a second part, we show that the ionic conductance of a nanopore array is sub-additive with the number of pores. Individal contributions of each pore to the global conductance tend to a null value, if the network is big enough. We note that this phenomenon only involves length ratios, and that working at a nanometric scale does not have any influence. Then, in a third part, we measure the permeability of a pore array at a macroscopic scale. There too, the effect of the array does not depend on the scale of the system. Permeability evolves inversely to conductance: permeability is enhanced by the presence of neighboring pores, but in a smaller proportion than the ionic conductance falls under the same cause. The fourth part uses the results of the two preceding ones, to determine a scaling law for the electric power produced by streaming current and diffusio-osmosis, two methods of osmotic energy conversion. We show that entrance effects have a negative impact on such conversion, more efforts are needed to understand them better and circumvent them. The fifth and last part of this thesis is a numerical work on a new desalination device. It relies on osmosis through a gas phase which is trapped within a hydrophobic nanotube. Its main interest is to use nanotubes bigger than the pores of currently used materials, thus less prone to fouling. We use molecular dynamics methods to study the permeability and selectivity of this device
Li, Chennan. "Innovative Desalination Systems Using Low-grade Heat". Scholar Commons, 2012. http://scholarcommons.usf.edu/etd/4126.
Testo completoRoy, Yagnaseni. "Modeling nanofiltration for large scale desalination applications". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100096.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 91-94).
The Donnan Steric Pore Model with dielectric exclusion (DSPM-DE) is implemented over flatsheet and spiral-wound leaves to develop a comprehensive model for nanofiltration modules. This model allows the user to gain insight into the physics of the nanofiltration process by allowing one to adjust and investigate effects of membrane charge, pore radius, and other membrane characteristics. The study shows how operating conditions such as feed flow rate and pressure affect the recovery ratio and solute rejection across the membrane. A comparison is made between the results for the flat-sheet and spiral-wound configurations. The comparison showed that for the spiral-wound leaf, the maximum values of transmembrane pressure, flux and velocity occur at the feed entrance (near the permeate exit), and the lowest value of these quantities are at the diametrically opposite corner. This is in contrast to the flat-sheet leaf, where all the quantities vary only in the feed flow direction. However it is found that the extent of variation of these quantities along the permeate flow direction in the spiral-wound membrane is negligibly small in most cases. Also, for identical geometries and operating conditions, the flatsheet and spiral-wound configurations give similar results. Thus the computationally expensive and complex spiral-wound model can be replaced by the flat-sheet model for a variety of purposes. In addition, the model was utilized to predict the performance of a seawater nanofiltration system which has been validated with the data obtained from a large-scale seawater desalination plant, thereby establishing a reliable model for desalination using nanofiltration.
by Yagnaseni Roy.
S.M.
Cohen-Tanugi, David. "Nanoporous graphene as a water desalination membrane". Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98743.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 147-162).
Desalination is one of the most promising approaches to supply new fresh water in the face of growing water issues. However, commercial reverse osmosis (RO) techniques still suffer from important drawbacks. In order for desalination to live up to the water challenges of this century, a step-change is needed in RO membrane technology. Thanks to significant advances in the field of computational materials science in the past decade, it is becoming possible to develop a new generation of RO membranes. In this thesis, we explore how computational approaches can be employed to understand, predict and ultimately design a future generation of RO membranes based on graphene. We show that graphene, an atom-thick layer of carbon with exceptional physical and mechanical properties, could allow for water passage while rejecting salt ions if it possessed nanometer-sized pores. Using computer simulations from the atomic scale to the engineering scale, we begin by investigating the relationship between the atomic structure of nanoporous graphene and its membrane properties in RO applications. We then investigate the thermodynamics, chemistry and mechanics of graphene and the water and salt surrounding it. Finally, we establish the system-level implications of graphene's promising membrane properties for desalination plants. Overall, this thesis reveals that graphene can act as an RO membrane with two orders of magnitude higher water permeability than commercial polymer membranes as long as the nanopores have diameters around 0.6nm, that graphene is strong enough to withstand RO pressures as long as it is supported by a substrate material with adequate porosity, and that a nanoporous graphene membrane could ultimately reduce either the energy footprint or the capital requirements of RO desalination. Ultimately, this thesis highlights a path for the development of next-generation membranes for clean water production in the 21st century.
by David Cohen-Tanugi.
Ph. D.
Dave, Shreya H. "Assessing graphene oxide for water desalination applications". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107077.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 121-133).
Water desalination plays a critical role in augmenting the fresh water supplies for water scarce regions. However, despite considerable improvements in system efficiencies, it still remains six to ten times more expensive than treating freshwater for drinking. As a result, the construction and operation of a desalination plant places considerable economic burden on the regions that require such an investment. As more and more regions experience water stress due to climate change, increased industrial consumption, and population growth, materials engineering will play a role in improving the economics. The membranes used in today's reverse osmosis plants are made from polymers that are fragile, limited in the flux, and typically operate at 70% of their rated performance due to biofouling. Following the exciting proposition of using graphene as a size-exclusion based desalination membrane, there has been a great deal of revived interest in the development of new membrane materials that overcome these challenges. Graphene oxide, made from the chemical exfoliation of graphite, has served as a promising candidate for membrane applications because it is cheaper than graphene to produce and yet demonstrates similar benefits of resilience and increased permeability. In this work, we take a critical look at three aspects of graphene oxide as it applies to the development of water desalination membranes. First, we present an atomic study of the structure of graphene oxide (GO) that is produced in bulk quantities. In contrast to previous work, which has examined particularly defect free GO, we find that GO develops a nanocrystalline structure in support of a Dynamic Structural Model in its hexagonal carbon lattice. Second, we detail the development of a new cross-linker that enables the fabrication of stable GO films with sub-nanometer interlayer spacing and demonstrated nanofiltration performance. The process of cross-linking and membrane fabrication is entirely solution based and therefore promising for scale up. Finally, we evaluate the techno-economic feasibility of a GO as a water desalination material with a comparison between estimated production cost and savings in terms of the levelized cost of water. We quantitatively assess GO membranes as a scalable technology and identify other separation areas that could be served by robust membrane materials. With these three diverse analyses, I aim to provide a research-based perspective as to the material system, technological hurdles, and the economic potential of graphene oxide membranes.
by Shreya H. Dave.
Ph. D.
Dahdah, Tawfiq. "Superstructure optimization of hybrid thermal desalination configurations". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85452.
Testo completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 95-105).
As the global demand for freshwater continues to increase, a larger number of resources are dedicated to seawater desalination technologies. In areas with high temperature and salinity water, thermal desalination technologies are often employed. In other areas, reverse osmosis technologies are more popular. While both these technologies have witnessed improvements in recent years, economic and performance issues still pose significant barriers to their universal implementation, which has left many countries, including ones bordering oceans and seas, suffering from dire water scarcity issues. This thesis proposes a methodology which enables the identification of improved thermal-based desalination structures. It is based on the notion of superstructure, which allows for the representation of numerous feed, brine and vapor routing schemes. A superstructure is developed. By adjusting the flow routings, the superstructure is capable of representing the common thermal desalination structures, as well as an extremely large number of alternate structures, some of which might exhibit advantageous behavior. The superstructure is built around a repeating unit which is a generalization of an effect in a multi-effect distillation system (MED) and a stage in a multi-stage flash system (MSF). Allowing for just 12 repeating units, more than 1040 different structures can be represented. The superstructure is thus proposed as an ideal tool for the structural optimization of thermal desalination systems, whereby the optimal selection of components making up the final system, the optimal routing of the vapors as well as the optimal operating conditions are all variables simultaneously determined during the optimization problem. The proposed methodology is applicable to both stand-alone desalination plants and dual purpose (water and power) plants wherein the heat source to the desalination plant is fixed. It can be extended to also consider hybrid thermal-mechanical desalination structures, as well as dual purpose plants where the interface of power cycle and desalination is also optimized for. A multi-objective structural optimization of stand-alone thermal desalination structures is performed in Chapter 2, whereby the performance ratio of the structures is maximized while the specific area requirements are minimized. It is found that for any particular distillate production requirement, alternate structures with non-conventional flow patterns require lower heat transfer areas compared to commonly implemented configurations. Examples of these non-conventional configurations are identified, which include a forward feed - forward feed MED structure, involving the integration of two forward feed MED plants. Chapter 3 highlights how the superstructure can be adapted to optimize integrated thermal desalination and thermal compression systems. Specifically, the conducted study investigates whether there is any merit to the thermal compression of vapor streams produced in intermediate MED effects as opposed to the common practice of compressing vapors produced in the last effect. The study concludes that intermediate vapor compression results in significant reductions in area requirements, as well as significant increases in maximum distillate production capacities. Moreover, the study confirms that the optimal location of vapor extraction is heavily dependent on the exact distillate production requirement in question. Two novel configuration forms are informed by the optimization. The first is an integrated MED-TVC + MED + MSF system, while the second is an integrated MED-TVC + MSF system.
by Tawfiq Dahdah.
S.M.
Park, Gavin Lawrence. "Wind-powered membrane desalination of brackish water". Thesis, Heriot-Watt University, 2012. http://hdl.handle.net/10399/2532.
Testo completoMazlan, Nur Muna. "Forward osmosis for desalination and water recovery". Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/45550.
Testo completoPing, Qingyun. "Advancing Microbial Desalination Cell towards Practical Applications". Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/73373.
Testo completoPh. D.
Benson, Michelle Suzanne. "Solar Membrane Pervaporation for Brine Water Desalination". Thesis, The University of Arizona, 2011. http://hdl.handle.net/10150/144232.
Testo completoWakter, Simon. "Technological Feasibility of Water Desalination using SMRs". Thesis, KTH, Fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239617.
Testo completoKennedy, Clinton P. "Water Desalination: Arizona, California, Nevada and Mexico". DigitalCommons@USU, 2012. https://digitalcommons.usu.edu/etd/1223.
Testo completoGOMES, RODRIGO KLIM. "THERMAL DESALINATION AS AN OPTION FOR WATER SUPPLY: A STUDY OF THERMAL DESALINATION TECHNOLOGY AND PRELIMINARY ECONOMIC FEASIBILITY ANALYSIS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19356@1.
Testo completoA dessalinização térmica é uma técnica utilizada em diversas partes do mundo para produção de água. Países como Estados Unidos, Israel, Espanha e Grécia utilizam esse tipo de sistema em grande escala, garantindo um abastecimento constante para alguns pontos de seu território e contribuindo para o aperfeiçoamento dos sistemas de produção. No Brasil, apesar da vasta bacia hidrográfica e da existência de grandes reservatórios subterrâneos, a dessalinização térmica poderia ser vista como alternativa de produção para apoiar o desenvolvimento agrícola e industrial em algumas regiões, criando também melhores condições sociais para a população beneficiada, especialmente no nordeste brasileiro. Nessa dissertação propomos um método para avaliação preliminar de diversos cenários para implantação de tais sistemas. A avaliação aborda inicialmente a definição do dessalinizador, realizada através das formulações disponíveis em trabalhos acadêmicos que têm como base a Primeira Lei da Termodinâmca. Tais formulações foram adaptadas para o caso em estudo. Em seguida são avaliados os principais parâmetros para viabilidade do projeto, tais como Valor Presente Líquido (VPL) e Índice de Lucratividade (IL), de forma a demonstrar se o projeto seria ou não viável. Para consolidação da metodologia utilizada foi criado um programa que permite a avaliação de diversos cenários de maneira independente, sendo de fácil acesso e de grande flexibilidade para o usuário interessado neste tema.
Thermal desalination is a technology used in many places for water production. Some countries use desalination to produce big volume of water, like USA, Israel, Spain and Greece, aiming for the steady supply of water to some specific regions, contributing to the improvement of production systems. In Brazil, inspite of the huge volume of water available through the rivers, thermal desalination should be considered as an alternative for water production supporting the development of country for food production and for industry, specially in the northeastern region. In this work, a method of evaluation for different water supply needs was conceived, in order to perform the preliminary evaluation of this kind of system. It begins with the definition of the thermal desalinator which will compose the production system. This first step was based on First Law of Thermodynamics formulations available in technical articles used as reference. After technical analysis, the main parameters used for the study of feasibility are defined, for example, the Net Present Value. The methodology extracted from reference articles was simplified and converted into an algorithm, developted for an easy evaluation of different situations.
Bin, Marshad Saud Mohammed H. "Economic evaluation of seawater desalination : a case study analysis of cost of water production from seawater desalination in Saudi Arabia". Thesis, Heriot-Watt University, 2014. http://hdl.handle.net/10399/2996.
Testo completoMartinez, Hiroki. "Design of a desalination plant : aspects to consider". Thesis, University of Gävle, Faculty of Engineering and Sustainable Development, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-6995.
Testo completoOne of the main problems our actual society faces is the shortage of water. Despite the great effort made by authorities and researchers, multiple countries with poor economic resources are experiencing serious difficulties derivative of water scarcity. Desalination provides a feasible solution for inland and coastal areas. Through literature and reviewed articles analysis the reader will meet the actual issues regarding designing a desalination plant, and more over with reverse osmosis (RO) processes, which are the main arguments of this work. One of the big deals is the environmental concern when handling the concentrate disposal. Another important point about desalination processes is the increasingly interest in coupling the units with renewable energy sources (RES). The results point out that regardless of the efforts made until today, additional achievement is required in fields such as membrane’s structure materials for RO method, concentrate disposal systems, governmental water policies review and update, and greater distinction researches between brackish water and seawater RO desalination processes. Taking into consideration the previous outcomes it is finally concluded that some particular steps must be accomplished when beginning a desalination plant design.
Kullab, Alaa. "Desalination using Membrane Distillation : Experimental and Numerical Study". Doctoral thesis, KTH, Kraft- och värmeteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-44405.
Testo completoQC 20111021
Harrison, Catherine J. "Bench-scale testing of seawater desalination using nanofiltration /". abstract and full text PDF (free order & download UNR users only), 2005. http://0-wwwlib.umi.com.innopac.library.unr.edu/dissertations/fullcit/1433104.
Testo completo"August, 2005." Includes bibliographical references (leaves 80-84). Library also has microfilm. Ann Arbor, Mich. : ProQuest Information and Learning Company, [2005]. 1 microfilm reel ; 35 mm. Online version available on the World Wide Web.
Chamier, Jessica. "Composite carbon membranes for the desalination of water". Thesis, Link to the online version, 2007. http://hdl.handle.net/10019/353.
Testo completoMiller, Jacob A. S. M. Massachusetts Institute of Technology. "Numerical balancing in a humidification dehumidification desalination system". Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/68692.
Testo completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 115-118).
This thesis details research on the thermal and concentration balancing of a humidification dehumidification desalination system. The system operates similarly to the natural rain cycle. Seawater is heated, sprayed into an airstream to increase the air's humidity, then pure water is condensed out of the same stream in a separate unit. These systems are typically inefficient due to entropy generation caused by mismatch between the temperature and humidity profiles in both the humidifier and dehumidifier components. Numerical models are developed for several different systems, and it is shown that for a given system with fixed inputs, entropy generation is minimized by way of balancing; i.e., the extraction and reinjection of the water or air streams within the humidifier and dehumidifier to equalize the capacity rates of the streams. Several modifications to existing baseline cycles are made to reach cases of minimum entropy generation. In these cases, the performance of the system is dramatically improved and the amount of energy needed to drive the system is reduced. For both on and off-design models, the addition of multiple extractions markedly improves the performance as compared to a baseline case with no extractions.
by Jacob A. Miller.
S.M.