Tesi sul tema "Density estimation"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Density estimation".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Wang, Xiaoxia. "Manifold aligned density estimation". Thesis, University of Birmingham, 2010. http://etheses.bham.ac.uk//id/eprint/847/.
Testo completoRademeyer, Estian. "Bayesian kernel density estimation". Diss., University of Pretoria, 2017. http://hdl.handle.net/2263/64692.
Testo completoDissertation (MSc)--University of Pretoria, 2017.
The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF.
Statistics
MSc
Unrestricted
Stride, Christopher B. "Semi-parametric density estimation". Thesis, University of Warwick, 1995. http://wrap.warwick.ac.uk/109619/.
Testo completoRossiter, Jane E. "Epidemiological applications of density estimation". Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.291543.
Testo completoSung, Iyue. "Importance sampling kernel density estimation /". The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486398528559777.
Testo completoKile, Håkon. "Bandwidth Selection in Kernel Density Estimation". Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-10015.
Testo completoIn kernel density estimation, the most crucial step is to select a proper bandwidth (smoothing parameter). There are two conceptually different approaches to this problem: a subjective and an objective approach. In this report, we only consider the objective approach, which is based upon minimizing an error, defined by an error criterion. The most common objective bandwidth selection method is to minimize some squared error expression, but this method is not without its critics. This approach is said to not perform satisfactory in the tail(s) of the density, and to put too much weight on observations close to the mode(s) of the density. An approach which minimizes an absolute error expression, is thought to be without these drawbacks. We will provide a new explicit formula for the mean integrated absolute error. The optimal mean integrated absolute error bandwidth will be compared to the optimal mean integrated squared error bandwidth. We will argue that these two bandwidths are essentially equal. In addition, we study data-driven bandwidth selection, and we will propose a new data-driven bandwidth selector. Our new bandwidth selector has promising behavior with respect to the visual error criterion, especially in the cases of limited sample sizes.
Achilleos, Achilleas. "Deconvolution kernal density and regression estimation". Thesis, University of Bristol, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.544421.
Testo completoBuchman, Susan. "High-Dimensional Adaptive Basis Density Estimation". Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/169.
Testo completoLu, Shan. "Essays on volatility forecasting and density estimation". Thesis, University of Aberdeen, 2019. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=240161.
Testo completoChan, Kwokleung. "Bayesian learning in classification and density estimation /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 2002. http://wwwlib.umi.com/cr/ucsd/fullcit?p3061619.
Testo completoSuaray, Kagba N. "On kernel density estimation for censored data /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2004. http://wwwlib.umi.com/cr/ucsd/fullcit?p3144346.
Testo completoMao, Ruixue. "Road Traffic Density Estimation in Vehicular Network". Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/9467.
Testo completoChee, Chew–Seng. "A mixture-based framework for nonparametric density estimation". Thesis, University of Auckland, 2011. http://hdl.handle.net/2292/10148.
Testo completoKharoufeh, Jeffrey P. "Density estimation for functions of correlated random variables". Ohio : Ohio University, 1997. http://www.ohiolink.edu/etd/view.cgi?ohiou1177097417.
Testo completoNasios, Nikolaos. "Bayesian learning for parametric and kernel density estimation". Thesis, University of York, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428460.
Testo completoFinch, Andrew M. "Density estimation for pattern recognition using neural networks". Thesis, University of York, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261061.
Testo completoLee, Suhwon. "Nonparametric bayesian density estimation with intrinsic autoregressive priors /". free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p3115565.
Testo completoLi, Yuhao. "Multiclass Density Estimation Analysis in N-Dimensional Space featuring Delaunay Tessellation Field Estimation". Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-301958.
Testo completoLeahy, Logan Patrick. "Estimating output torque via amplitude estimation and neural drive : a high-density sEMG study". Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127134.
Testo completoCataloged from the official PDF of thesis.
Includes bibliographical references (pages 115-121).
The scope and relevance of wearable robotics spans across a number of research fields with a variety of applications. One such application is the augmentation of healthy individuals for improved performance. A challenge within this field is improving user-interface control. An established approach for improving user-interface control is neural control interfaces derived from surface electromyography (sEMG). This thesis presents an exploration of output joint torque estimation using high density surface electromyography (HDsEMG). The specific aims of this thesis were to implement a well-established amplitude estimation method for standard multi-electrode sEMG collection with an HDsEMG grid, and to take an existing blind source separation algorithm for HDsEMG decomposition and modify it in order to decompose a nonisometric contraction.
In order to meet our study objectives, a novel dataset of simultaneous HDsEMG collected from the tibialis anterior muscle and torque output measures during controlled ankle movements was acquired. This data collection was conducted at The Army Research Laboratory. Data was collected for six subjects across three test conditions. The three test conditions were an isometric ramp-and-hold contraction, a force-varying isometric sinusoidal contraction, and a dynamic isotonic contraction. The amplitude estimation method used has been well-established but has not yet been explored for HDsEMG grids. In the exploration, three factors were varied: the number of channels on the grid used, the spatial area covered by the grid, and the signal whitening condition (no whitening, conventional whitening, and adaptive whitening).
The findings were that (1) Reducing the number of channels used while covering a constant spatial area did not diminish the output torque estimate, (2) Reducing the spatial area covered for a constant number of channels did not diminish the output torque estimate, and (3) For higher levels of contraction, adaptive whitening performed worse than conventional whitening and no whitening. The results suggest adaptive whitening is not a suitable method for HDsEMG. These findings are encouraging for developing an improved signal for myoelectric control: smaller, less expensive grids that use computationally less taxing methods could be utilized to achieve comparable, if not better, results. A blind source separation method based on iterative deconvolution of HDsEMG using independent component analysis was implemented to identify individual motor unit spike trains. Two methods were then used to generate the neural drive profile: rate coding and kernel smoothing.
A looped decomposition method was implemented for estimating output torque during the isotonic contraction. Even in the most controlled setting for a primarily single joint muscle, the modification of the algorithm did not represent the full population of the active motor units; thus, torque estimation was poor. There are still significant limitations in moving towards predicting output torque during dynamic contractions using this neural drive method. Although the decomposition of a non-isometric contraction was not successful, a contribution of this thesis work was identifying that the decomposition algorithm implemented may be biased towards larger motor units. This independently substantiated the same observation reported in a study published during the course of this thesis.
by Logan Patrick Leahy.
S.M.
S.M. Massachusetts Institute of Technology, Department of Mechanical Engineering
Minsker, Stanislav. "Non-asymptotic bounds for prediction problems and density estimation". Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44808.
Testo completoCule, Madeleine. "Maximum likelihood estimation of a multivariate log-concave density". Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/237061.
Testo completoMulye, Apoorva. "Power Spectrum Density Estimation Methods for Michelson Interferometer Wavemeters". Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/35500.
Testo completoSardo, Lucia. "Model selection in probability density estimation using Gaussian mixtures". Thesis, University of Surrey, 1997. http://epubs.surrey.ac.uk/842833/.
Testo completoAmghar, Mohamed. "Multiscale local polynomial transforms in smoothing and density estimation". Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/262040.
Testo completoDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Inacio, Marco Henrique de Almeida. "Comparing two populations using Bayesian Fourier series density estimation". Universidade Federal de São Carlos, 2017. https://repositorio.ufscar.br/handle/ufscar/8920.
Testo completoApproved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-07T17:53:27Z (GMT) No. of bitstreams: 1 DissMHAI.pdf: 1513128 bytes, checksum: 1bb98ae57371ab00d2c86311b02054cb (MD5)
Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-08-07T17:53:36Z (GMT) No. of bitstreams: 1 DissMHAI.pdf: 1513128 bytes, checksum: 1bb98ae57371ab00d2c86311b02054cb (MD5)
Made available in DSpace on 2017-08-07T17:57:44Z (GMT). No. of bitstreams: 1 DissMHAI.pdf: 1513128 bytes, checksum: 1bb98ae57371ab00d2c86311b02054cb (MD5) Previous issue date: 2017-04-12
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Given two samples from two populations, one could ask how similar the populations are, that is, how close their probability distributions are. For absolutely continuous distributions, one way to measure the proximity of such populations is to use a measure of distance (metric) between the probability density functions (which are unknown given that only samples are observed). In this work, we work with the integrated squared distance as metric. To measure the uncertainty of the squared integrated distance, we first model the uncertainty of each of the probability density functions using a nonparametric Bayesian method. The method consists of estimating the probability density function f (or its logarithm) using Fourier series {f0;f1; :::;fI}. Assigning a prior distribution to f is then equivalent to assigning a prior distribution to the coefficients of this series. We used the prior suggested by Scricciolo (2006) (sieve prior), which not only places a prior on such coefficients, but also on I itself, so that in reality we work with a Bayesian mixture of finite dimensional models. To obtain posterior samples of such mixture, we marginalize out the discrete model index parameter I and use a statistical software called Stan. We conclude that the Bayesian Fourier series method has good performance when compared to kernel density estimation, although both methods often have problems in the estimation of the probability density function near the boundaries. Lastly, we showed how the methodology of Fourier series can be used to access the uncertainty regarding the similarity of two samples. In particular, we applied this method to dataset of patients with Alzheimer.
Dadas duas amostras de duas populações, pode-se questionar o quão parecidas as duas populações são, ou seja, o quão próximas estão suas distribuições de probabilidade. Para distribuições absolutamente contínuas, uma maneira de mensurar a proximidade dessas populações é utilizando uma medida de distância (métrica) entre as funções densidade de probabilidade (as quais são desconhecidas, em virtude de observarmos apenas as amostras). Nesta dissertação, utilizamos a distância quadrática integrada como métrica. Para mensurar a incerteza da distância quadrática integrada, primeiramente modelamos a incerteza sobre cada uma das funções densidade de probabilidade através de uma método bayesiano não paramétrico. O método consiste em estimar a função de densidade de probabilidade f (ou seu logaritmo) usando séries de Fourier {f0;f1; :::;fI}. Atribuir uma distribuição a priori para f é então equivalente a atribuir uma distribuição a priori aos coeficientes dessa serie. Utilizamos a priori sugerida em Scricciolo (2006) (priori de sieve), a qual não coloca uma priori somente nesses coeficientes, mas também no próprio I, de modo que, na realidade, trabalhamos com uma mistura bayesiana de modelos de dimensão finita. Para obter amostras a posteriori dessas misturas, marginalizamos o parâmetro (discreto) de indexação de modelos, I, e usamos um software estatístico chamado Stan. Concluímos que o método bayesiano de séries de Fourier tem boa performance quando comparado ao de estimativa de densidade kernel, apesar de ambos os métodos frequentemente apresentarem problemas na estimação da função de densidade de probabilidade perto das fronteiras. Por fim, mostramos como a metodologia de series de Fourier pode ser utilizada para mensurar a incerteza a cerca da similaridade de duas amostras. Em particular, aplicamos este método a um conjunto de dados de pacientes com doença de Alzheimer.
Wright, George Alfred Jr. "Nonparameter density estimation and its application in communication theory". Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/14979.
Testo completoChan, Karen Pui-Shan. "Kernel density estimation, Bayesian inference and random effects model". Thesis, University of Edinburgh, 1990. http://hdl.handle.net/1842/13350.
Testo completoJoshi, Niranjan Bhaskar. "Non-parametric probability density function estimation for medical images". Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:ebc6af07-770b-4fee-9dc9-5ebbe452a0c1.
Testo completoInácio, Marco Henrique de Almeida. "Comparing two populations using Bayesian Fourier series density estimation". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/104/104131/tde-12092017-083813/.
Testo completoDadas duas amostras de duas populações, pode-se questionar o quão parecidas as duas populações são, ou seja, o quão próximas estão suas distribuições de probabilidade. Para distribuições absolutamente contínuas, uma maneira de mensurar a proximidade dessas populações é utilizando uma medida de distância (métrica) entre as funções densidade de probabilidade (as quais são desconhecidas, em virtude de observarmos apenas as amostras). Nesta dissertação, utilizamos a distância quadrática integrada como métrica. Para mensurar a incerteza da distância quadrática integrada, primeiramente modelamos a incerteza sobre cada uma das funções densidade de probabilidade através de uma método bayesiano não paramétrico. O método consiste em estimar a função de densidade de probabilidade f (ou seu logaritmo) usando séries de Fourier {f0;f1; :::;fI}. Atribuir uma distribuição a priori para f é então equivalente a atribuir uma distribuição a priori aos coeficientes dessa serie. Utilizamos a priori sugerida em Scricciolo (2006) (priori de sieve), a qual não coloca uma priori somente nesses coeficientes, mas também no próprio I, de modo que, na realidade, trabalhamos com uma mistura bayesiana de modelos de dimensão finita. Para obter amostras a posteriori dessas misturas, marginalizamos o parâmetro (discreto) de indexação de modelos, I, e usamos um software estatístico chamado Stan. Concluímos que o método bayesiano de séries de Fourier tem boa performance quando comparado ao de estimativa de densidade kernel, apesar de ambos os métodos frequentemente apresentarem problemas na estimação da função de densidade de probabilidade perto das fronteiras. Por fim, mostramos como a metodologia de series de Fourier pode ser utilizada para mensurar a incerteza a cerca da similaridade de duas amostras. Em particular, aplicamos este método a um conjunto de dados de pacientes com doença de Alzheimer.
Ellis, Amanda Morgan. "An assessment of density estimation methods for forest ungulates". Thesis, Rhodes University, 2004. http://hdl.handle.net/10962/d1007830.
Testo completoThomas, Derek C. "Theory and Estimation of Acoustic Intensity and Energy Density". Diss., CLICK HERE for online access, 2008. http://contentdm.lib.byu.edu/ETD/image/etd2560.pdf.
Testo completoJawhar, Nizar Sami. "Adaptive Density Estimation Based on the Mode Existence Test". DigitalCommons@USU, 1996. https://digitalcommons.usu.edu/etd/7129.
Testo completoBaba, Harra M'hammed. "Estimation de densités spectrales d'ordre élevé". Rouen, 1996. http://www.theses.fr/1996ROUES023.
Testo completoUria, Benigno. "Connectionist multivariate density-estimation and its application to speech synthesis". Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/15868.
Testo completoPawluczyk, Olga. "Volumetric estimation of breast density for breast cancer risk prediction". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58694.pdf.
Testo completoKelly, Robert 1969. "Estimation of iceberg density in the Grand Banks of Newfoundland". Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=23746.
Testo completoSeveral kernel estimators are examined: (1) a uniform square kernel, (2) a uniform circular kernel, (3) a Normal kernel, and (4) an adaptive kernel. Uniform kernels have the advantage of computational efficiency, however, they do not account for spatial variations in the densities and produce over-smoothing in regions of peak iceberg densities and under-smoothing in regions of low iceberg densities. The adaptive kernel is computationally more demanding, but appears to fulfill all the desired requirements for preserving significant features and eliminating erratic estimates.
Hazelton, Martin Luke. "Method of density estimation with application to Monte Carlo methods". Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334850.
Testo completoBugrien, Jamal B. "Robust approaches to clustering based on density estimation and projection". Thesis, University of Leeds, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418939.
Testo completoBraga, Ígor Assis. "Stochastic density ratio estimation and its application to feature selection". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-07042015-142545/.
Testo completoA estimação da razão entre duas densidades de probabilidade é uma importante ferramenta no aprendizado de máquina supervisionado. Neste trabalho, novos métodos de estimação da razão de densidades são propostos baseados na solução de uma equação integral multidimensional. Os métodos resultantes usam o conceito de matriz-V , o qual não aparece em métodos anteriores de estimação da razão de densidades. Experimentos demonstram o bom potencial da nova abordagem com relação a métodos anteriores. A estimação da Informação Mútua - IM - é um componente importante em seleção de atributos e depende essencialmente da estimação da razão de densidades. Usando o método de estimação da razão de densidades proposto neste trabalho, um novo estimador - VMI - é proposto e comparado experimentalmente a estimadores de IM anteriores. Experimentos conduzidos na estimação de IM mostram que VMI atinge melhor desempenho na estimação do que métodos anteriores. Experimentos que aplicam estimação de IM em seleção de atributos para classificação evidenciam que uma melhor estimação de IM leva as melhorias na seleção de atributos. A tarefa de seleção de parâmetros impacta fortemente o classificador baseado em kernel Support Vector Machines - SVM. Contudo, esse passo é frequentemente deixado de lado em avaliações experimentais, pois costuma consumir tempo computacional e requerer familiaridade com as engrenagens de SVM. Neste trabalho, procedimentos de seleção de parâmetros para SVM são propostos de tal forma a serem econômicos em gasto de tempo computacional. Além disso, o uso de um kernel não linear - o chamado kernel min - é proposto de tal forma que possa ser aplicado a casos de baixa e alta dimensionalidade e sem adicionar um outro parâmetro a ser selecionado. A combinação dos procedimentos de seleção de parâmetros propostos com o kernel min produz uma maneira conveniente de se extrair economicamente um classificador SVM com boa performance. O método de regressão Regularized Least Squares - RLS - é um outro método baseado em kernel que depende de uma seleção de parâmetros adequada. Quando dados de treinamento são escassos, uma seleção de parâmetros tradicional em RLS frequentemente leva a uma estimação ruim da função de regressão. Para aliviar esse problema, é explorado neste trabalho um kernel menos suscetível a superajuste - o kernel INK-splines aditivo. Após, são explorados métodos de seleção de parâmetros alternativos à validação cruzada e que obtiveram bom desempenho em outros métodos de regressão. Experimentos conduzidos em conjuntos de dados reais mostram que o kernel INK-splines aditivo tem desempenho superior ao kernel RBF e ao kernel INK-splines multiplicativo previamente proposto. Os experimentos também mostram que os procedimentos alternativos de seleção de parâmetros considerados não melhoram consistentemente o desempenho. Ainda assim, o método Finite Prediction Error com o kernel INK-splines aditivo possui desempenho comparável à validação cruzada.
Alquier, Pierre. "Transductive and inductive adaptative inference for regression and density estimation". Paris 6, 2006. http://www.theses.fr/2006PA066436.
Testo completoMcDonagh, Steven George. "Building models from multiple point sets with kernel density estimation". Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10568.
Testo completoZhu, Hui. "Scatterer number density estimation for tissue characterization in ultrasound imaging /". Online version of thesis, 1990. http://hdl.handle.net/1850/10882.
Testo completoWong, Kam-wah. "Efficient computation of global illumination based on adaptive density estimation /". Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B25151083.
Testo completoWang, Yi. "Latent tree models for multivariate density estimation : algorithms and applications /". View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CSED%202009%20WANGY.
Testo completoEsterhuizen, Gerhard. "Generalised density function estimation using moments and the characteristic function". Thesis, Link to the online version, 2003. http://hdl.handle.net/10019.1/1001.
Testo completoSain, Stephan R. "Adaptive kernel density estimation". Thesis, 1994. http://hdl.handle.net/1911/16743.
Testo completoGebert, Mark Allen. "Nonparametric density contour estimation". Thesis, 1998. http://hdl.handle.net/1911/19261.
Testo completo莊宗霖. "An Approach on Function Estimation and Density Estimation". Thesis, 2003. http://ndltd.ncl.edu.tw/handle/92765889113139635622.
Testo completo國立中正大學
數理統計研究所
91
A recent approach using argument on expectation of random variables for estimation of unknown functional values based on some known values of the function at various points is investigated by way of empirical simulation. The approach can be applied to do estimation on probability density functions based on random samples from the assumed distribution. Theoretical formulations are presented to express the estimators in each case. Such estimators are more extensive than the traditional kernel type estimators for estimating unknown functions and probability density functions. This empirical simulation produce insight regarding the role of selected bandwidth, size of random sample and type of the subject distributions.
Yao, Bo-Yuan, e 姚博元. "Density Estimation by Spline Smoothing". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/03542027112847534183.
Testo completoLin, Mu. "Nonparametric density estimation via regularization". 2009. http://hdl.handle.net/10048/709.
Testo completoTitle from pdf file main screen (viewed on Dec. 11, 2009). "A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Statistics, Department of Mathematical and Statistical Sciences, University of Alberta." Includes bibliographical references.