Tesi sul tema "Deformations (Mechanics) – Mathematical models"

Segui questo link per vedere altri tipi di pubblicazioni sul tema: Deformations (Mechanics) – Mathematical models.

Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili

Scegli il tipo di fonte:

Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Deformations (Mechanics) – Mathematical models".

Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.

Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.

Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.

1

Beckham, Jon Regan. "Analysis of mathematical models of electrostatically deformed elastic bodies". Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 169 p, 2008. http://proquest.umi.com/pqdweb?did=1475178561&sid=27&Fmt=2&clientId=8331&RQT=309&VName=PQD.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
2

Miller, Matthew P. "Improved constitutive laws for finite strain inelastic deformation". Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/16098.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
3

Gaballa, Mohamed Abdelrhman Ahmed. "Nonlinear multiphasic mechanics of soft tissue using finite element methods". Diss., The University of Arizona, 1989. http://hdl.handle.net/10150/184837.

Testo completo
Abstract (sommario):
The purpose of the research was to develop a quantitative method which could be used to obtain a clearer understanding of the time-dependent fluid filteration and load-deformation behavior of soft, porous, fluid filled materials (e.g. biological tissues, soil). The focus of the study was on the development of a finite strain theory for multiphasic media and associated computer models capable of predicting the mechanical stresses and the fluid transport processes in porous structures (e.g. across the large blood vessels walls). The finite element (FE) formulation of the nonlinear governing equations of motion was the method of solution for a poroelastic (PE) media. This theory and the FE formulations included the anisotropic, nonlinear material; geometric nonlinearity; compressibility and incompressibility conditions; static and dynamic analysis; and the effect of chemical potential difference across the boundaries (known as swelling effect in biological tissues). The theory takes into account the presence and motion of free water within the biological tissue as the structure undergoes finite straining. Since it is well known that biological tissues are capable of undergoing large deformations, the linear theories are unsatisfactory in describing the mechanical response of these tissues. However, some linear analyses are done in this work to help understand the more involved nonlinear behavior. The PE view allows a quantitative prediction of the mechanical response and specifically the pore pressure fluid flow which may be related to the transport of the macromolecules and other solutes in the biological tissues. A special mechanical analysis was performed on a representative arterial walls in order to investigate the effects of nonlinearity on the fluid flow across the walls. Based on a finite strain poroelastic theory developed in this work; axisymmetric, plane strain FE models were developed to study the quasi-static behavior of large arteries. The accuracy of the FE models was verified by comparison with analytical solutions wherever is possible. These numerical models were used to evaluate variables and parameters, that are difficult or may be impossible to measure experimentally. For instance, pore pressure distribution within the tissue, relative fluid flow; deformation of the wall; and stress distribution across the wall were obtained using the poroelastic FE models. The effect of hypertension on the mechanical response of the arterial wall was studied using the nonlinear finite element models. This study demonstrated that the finite element models are powerful tools for the study of the mechanics of complicated structures such as biological tissue. It is also shown that the nonlinear multiphasic theory, developed in this thesis, is valid for describing the mechanical response of biological tissue structures under mechanical loadings.
Gli stili APA, Harvard, Vancouver, ISO e altri
4

Razavi, H. Ali. "Identification and control of grinding processes for intermetalic [sic] compunds [sic]". Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/18917.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
5

Amany, Aya Nicole Marie. "Characterization of shear and bending stiffness for optimizing shape and material of lightweight beams". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112553.

Testo completo
Abstract (sommario):
Optimized slender and short-thick beams are used in building, aircraft and machine structures to increase performance at a lower material cost. A previous work proposes an optimum shape, material and size selection model to design lightweight slender beams under pure bending. In short-thick beams, the transverse shear effects are no longer negligible and impact the choice of the optimum shape. This work extends such an optimum selection model to consider both slender and short-thick beams, by formulating the total beam stiffness design requirement as a combination of shear and bending stiffness. Selection charts are developed to show the impact of design variables, such as shape, size, material and slenderness, on the total beam stiffness. The model of total beam stiffness is validated against computational results from finite element analyses of beam models. A case study demonstrates the use of the selection charts to compare the performance of beams at the conceptual design stage.
Gli stili APA, Harvard, Vancouver, ISO e altri
6

Pant, Sudeep Raj. "Mathematical and physical modelling of crack growth near free boundaries in compression". University of Western Australia. School of Civil and Resource Engineering, 2005. http://theses.library.uwa.edu.au/adt-WU2005.0139.

Testo completo
Abstract (sommario):
[Truncated abstract] The fracture of brittle materials in uniaxial compression is a complex process with the development of cracks generated from initial defects. The fracture mechanism and pattern of crack growth can be altered considerably by the presence of a free surface. In proximity of a free surface, initially stable cracks that require an increase in the load to maintain the crack growth can become unstable such that the crack growth maintains itself without requiring further increase in the load. This leads to a sudden relief of accumulated energy and, in some cases, to catastrophic failures. In the cases of rock and rock mass fracturing, this mechanism manifests itself as skin rockbursts and borehole breakouts or as various non-catastrophic forms of failure, e.g. spalling. Hence, the study of crack-boundary interaction is important in further understanding of such failures especially for the purpose of applications to resource engineering. Two major factors control the effect of the free boundary: the distance from the crack and the boundary shape. Both these factors as well as the effect of the initial defect and the material structure are investigated in this thesis. Three types of boundary shapes - rectilinear, convex and concave - are considered. Two types of initial defects - a circular pore and inclined shear cracks are investigated in homogeneous casting resin, microheterogeneous cement mixes and specially fabricated granulate material. The preexisting defects are artificially introduced in the physical model by the method of inclusion and are found to successfully replicate the feature of pre-existing defects in terms of load-deformation response to the applied external load. It is observed that the possibility of crack growth and the onset of unstable crack growth are affected by the type of initial defect, inclination of the initial crack, the boundary shape and the location of the initial defect with respect to the boundary. The initial defects are located at either the centre or edge of the sample. The stresses required for the wing crack initiation and the onset of unstable crack growth is highest for the initial cracks inclined at 35° to the compression axis, lowest at 45° and subsequently increases towards 60° for all the boundary shapes and crack locations. In the case of convex boundary, the stress of wing crack initiation and the stress of unstable crack growth are lower than for the case of rectilinear and concave boundary for all the crack inclinations and crack locations. The crack growth from a pre-existing crack in a sample with concave boundary is stable, requiring stress increase for each increment of crack growth. The stress of unstable crack growth for the crack situated at the edge of the boundary is lower than the crack located at the centre of the sample for all the crack inclinations and boundary shapes.
Gli stili APA, Harvard, Vancouver, ISO e altri
7

Zheng, Xiao-Qin Materials Science &amp Engineering Faculty of Science UNSW. "Packing of particles during softening and melting process". Awarded by:University of New South Wales. School of Materials Science & Engineering, 2007. http://handle.unsw.edu.au/1959.4/31517.

Testo completo
Abstract (sommario):
Softening deformation of iron ore in the form of sinter, pellet, and lump ore in the cohesive zone of an ironmaking blast furnace is an important phenomenon that has a significant effect on gas permeability and consequently blast furnace production efficiency. The macroscopic softening deformation behavior of the bed and the microscopic deformation behavior of the individual particles in the packed bed are investigated in this study using wax balls to simulate the fused layer behavior of the cohesive zone. The effects of softening temperature, load pressure, and bed composition (mono - single melting particles, including pure or blend particles vs binary ??? two different melting point particles) on softening deformation are examined. The principal findings of this study are: 1. At low softening temperatures, an increase in load pressure increases the deformation rate almost linearly. 2. At higher softening temperatures, an increase in load pressure dramatically increases the deformation rate, and after a certain time there is no more significant change in deformation rate. 3. The bed deformation rate of a mono bed is much greater than that of a binary one. 4. In a binary system, the softening deformation rate increases almost proportionally with the increase in the amount of lower melting point wax balls. 5. In a mono system with blend particles, the content of the lower melting point material has a more significant effect on overall bed deformation than the higher melting point one. 6. The macro softening deformation of the bed behaves the theory of creep deformation. 7. A mathematical model for predicting bed porosity change due to softening deformation based on creep deformation theory has been developed. 8. Increase in load pressure also reduces the peak contact face number of the distribution curves, and this is more prominent with higher porosity values. 9. The contribution of contact face number to bed porosity reduction is more pronounced in a mono system than in a binary system. 10. The porosity reduction in a binary bed is more due to the contact face area increase, presumably of the lower melting point particles. 11. The mono system has a single peak contact face number distribution pattern while the binary system exhibits a bimodal distribution pattern once the higher melting point material starts to deform. 12. In a binary system, an increase in deformation condition severity tends to reduce the contact face number of the higher melting point material without having to increase the contact face number of the lower melting point material accordingly to achieve a given porosity.
Gli stili APA, Harvard, Vancouver, ISO e altri
8

Golden, Christopher Lee. "Analysis of form errors in rings of non-uniform cross section due to workholding and machining loads". Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22703.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
9

Vohra, Sanjay. "A mechanics framework for modeling fiber deformation on draw rollers and freespans". Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-05172006-141347/.

Testo completo
Abstract (sommario):
Thesis (Ph. D.)--Polymer, Textile & Fiber Engineering, Georgia Institute of Technology, 2007.
Karl I. Jacob, Committee Chair ; Youjiang Wang, Committee Member ; Mary Lynn Realff, Committee Member ; Arun Gokhale, Committee Member ; Rami Haj-Ali, Committee Member.
Gli stili APA, Harvard, Vancouver, ISO e altri
10

Reddy, Yeruva S. "Numerical simulation of damage and progressive failures in composite laminates using the layerwise plate theory". Diss., Virginia Tech, 1992. http://hdl.handle.net/10919/38534.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
11

Castro, Jaime. "Influence of random formation on paper mechanics : experiments and theory". Diss., Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/7016.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
12

Wu, Jingshu. "Direct simulation of flexible particle suspensions using lattice-boltzmann equation with external boundary force". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33858.

Testo completo
Abstract (sommario):
Determination of the relation between the bulk or rheological properties of a particle suspension and its microscopic structure is an old and important problem in physical science. In general, the rheology of particle suspension is quite complex, and the problem becomes even more complicated if the suspending particle is deformable. Despite these difficulties, a large number of theoretical and experimental investigations have been devoted to the analysis and prediction of the rheological behavior of particle suspensions. However, among these studies there are very few investigations that focus on the role of particle deformability. A novel method for full coupling of the fluid-solid phases with sub-grid accuracy for the solid phase is developed. In this method, the flow is computed on a fixed regular 'lattice' using the lattice Boltzmann method (LBM), where each solid particle, or fiber, is mapped onto a Lagrangian frame moving continuously through the domain. The motion and orientation of the particle are obtained from Newtonian dynamics equations. The deformable particle is modeled by the lattice-spring model (LSM).The fiber deformation is calculated by an efficient flexible fiber model. The no-slip boundary condition at the fluid-solid interface is based on the external boundary force (EBF) method. This method is validated by comparing with known experimental and theoretical results. The fiber simulation results show that the rheological properties of flexible fiber suspension are highly dependent on the microstructural characteristics of the suspension. It is shown that fiber stiffness (bending ratio BR) has strong impact on the suspension rheology in the range BR < 3. The relative viscosity of the fiber suspension under shear increases significantly as BR decreases. Direct numerical simulation of flexible fiber suspension allows computation of the primary normal stress difference as a function of BR. These results show that the primary normal stress difference has a minimum value at BR ∼ 1. The primary normal stress differences for slightly deformable fibers reaches a minimum and increases significantly as BR decreases below 1. The results are explained based on the Batchelor's relation for non-Brownian suspensions. The influence of fiber stiffness on the fiber orientation distribution and orbit constant is the major contributor to the variation in rheological properties. A least-squares curve-fitting relation for the relative viscosity is obtained for flexible fiber suspension. This relation can be used to predict the relative viscosity of flexible fiber suspension based on the result of rigid fiber suspension. The unique capability of the LBM-EBF method for sub-grid resolution and multiscale analysis of particle suspension is applied to the challenging problem of platelet motion in blood flow. By computing the stress distribution over the platelet, the "blood damage index" is computed and compared with experiments in channels with various geometries [43]. In platelet simulation, the effect of 3D channel geometry on the platelet activation and aggregation is modeled by using LBM-EBF method. Comparison of our simulations with Fallon's experiments [43] shows a similar pattern, and shows that Dumont's BDI model [40] is more appropriate for blood damage investigation. It has been shown that channels with sharp transition geometry will have larger recirculation areas with high BDI values. By investigating the effect of hinge area geometry on BDI value, we intend to use this multiscale computational method to optimize the design of Bileaflet mechanical heart valves. Both fiber simulations and platelet simulations have shown that the novel LBM-EBF method is more efficient and stable compare to the conventional numerical methods. The new EBF method is a two-Cway coupling method with sub-grid accuracy which makes the platelet simulations possible. The LBM-EBF is the only method to date, to the best of author's knowledge, that can simulate suspensions with large number of deformable particles under complex flow conditions. It is hoped that future researchers may benefit from this new method and the algorithms developed here.
Gli stili APA, Harvard, Vancouver, ISO e altri
13

Khan, Irfan. "Direct numerical simulation and analysis of saturated deformable porous media". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34664.

Testo completo
Abstract (sommario):
Existing numerical techniques for modeling saturated deformable porous media are based on homogenization techniques and thus are incapable of performing micro-mechanical investigations, such as the effect of micro-structure on the deformational characteristics of the media. In this research work, a numerical scheme is developed based on the parallelized hybrid lattice-Boltzmann finite-element method, that is capable of performing micro-mechanical investigations through direct numerical simulations. The method has been used to simulate compression of model saturated porous media made of spheres and cylinders in regular arrangements. Through these simulations it is found that in the limit of small Reynolds number, Capillary number and strain, the deformational behaviour of a real porous media can be recovered through model porous media when the parameters porosity, permeability and bulk compressive modulus are matched between the two media. This finding motivated research in using model porous geometries to represent more complex real porous geometries in order to perform investigations of deformation on the latter. An attempt has been made to apply this technique to the complex geometries of ªfeltº, (a fibrous mat used in paper industries). These investigations lead to new understanding on the effect of fiber diameter on the bulk properties of a fibrous media and subsequently on the deformational behaviour of the media. Further the method has been used to investigate the constitutive relationships in deformable porous media. Particularly the relationship between permeability and porosity during the deformation of the media is investigated. Results show the need of geometry specific investigations.
Gli stili APA, Harvard, Vancouver, ISO e altri
14

Kallel, Achraf. "Une modélisation du contact par l'approche mortier : application à la mise en forme". Thesis, Compiègne, 2014. http://www.theses.fr/2014COMP2173/document.

Testo completo
Abstract (sommario):
Cette thèse est située dans le cadre du projet FUI OASIS ayant comme objectif la modélisation d'un processus d'emboutissage optimisé. Le travail consiste essentiellement au développement des algorithmes de contact plus appropriés à ce type de mise en forme. Dans la littérature et pour plusieurs codes de calcul industriels, l'approche NTS (nœud à segment) demeure la plus utilisée pour la résolution d'un problème de contact. Dans certaine configuration, cette méthode présente des insuffisances et un manque de précision. On la remplaçant par l'approche mortier, on arrive à résoudre une gamme assez large de problèmes de contact. La méthode mortier, utilisée au initialement pour un calcul avec décomposition de domaine, a été le centre d'intérêt de plusieurs travaux de recherche pour la modélisation du contact. Dans ce travail, on va regrouper plusieurs méthodes de gestion du contact en les combinant avec l'approche mortier. L'algorithme de résolution, les éléments d'implémentation ainsi quelques exemples de validation présentant une critique des avantages et les limites de chaque techniques sont détaillés dans ce travail afin d'obtenir un support technique pour tous travail ultérieurs avec la méthode mortier. Le principal avantage de la méthode mortier se manifeste dans l'application des conditions de contact sous forme d'intégrale dans l'interface. Bien que cette méthode permette de réduire la différence des contraintes dans l'interface de contact d'un élément à un autre pour obtenir une meilleure continuité de la pression de contact, elle demeure insuffisante dans certaines applications en particulier pour les problèmes en grande déformation. Le lissage des surfaces de contact, qu'on peut appliquer par différentes techniques, présente une solution classique à ce genre de problème en mécanique de contact. L'originalité de ce travail, c'est la combinaison de l'utilisation des courbes B-Spline cubiques pour la description presque exacte de la surface de contact d'un côté avec une formulation avec l'approche mortier pour l'application des conditions de contact d'un autre côté. Cette combinaison forme un duo gagnant permettant de résoudre un problème de contact en grandes déformation. Les termes permettant l'implémentation des différentes techniques de lissage pour la résolution d'un problème de contact sont détaillés. Une attention particulière est accordée au lissage avec les B-Spline Cubiques.Tous les algorithmes détaillés dans ce travail sont implémentés dans un code maison FiEStA. C'est un code de calcul par éléments finis libre en langage C++. Certains développements concernant la loi de comportement hyper-élastique et l'intégralité du module du contact sont développés dans ce travail de thèse
This thesis is situated in the FUI OASIS project which the objective is the modeling of an optimized stamping process. The work mainly involves the development of the most appropriate contact algorithms such formatting. In the literature and several industrial computing codes, the NTS approach (node to segment) remains the most used for the resolution of a contact problem. In certain configuration, this method has shortcomings and a lack of precision. We replacing it with mortar approach, we manage to solve a broad range of contact problems. The mortar method, used for the initial for calculation using domain decomposition, was the focus of several research projects for the modeling of the contact. In this work, we will consolidate multiple contact formulation methods in combination with mortar approach. The resolution algorithm, the elements of implementation and some examples of validation with a review of the advantages and limitations of each technique are detailed in this work in order to get technical support for subsequent work with the mortar method. The main advantage of the mortar method is in the application of the contact conditions in integral form in the interface. Although this method reduces the difference of the stresses in the contact interface of a component to another to obtain a better continuity of the contact pressure, it is still insufficient in some applications, particularly for large deformation problems. The smoothing of contact surfaces, which can be applied by various techniques, presents a classic solution to this problem in mechanical contact. The originality of this work is the combination of using cubic B-Spline curves for the almost exact description of the contact surface on one side with the use of the mortar approach to the application of the contact conditions on the other hand. This combination forms a winning combination for solving a contact problem in large deformation. The terms allowing the implementation of the different smoothing techniques for solving a problem of contact are detailed. Particular attention is paid to smoothing with Cu bic B-Spline. All algorithms detailed in this work are implemented in a house code 'Fiesta'. This is a free finite elements computer code in C ++. Some developments in the law of hyper-elastic behavior and completeness of the contact module are developed in this thesis
Gli stili APA, Harvard, Vancouver, ISO e altri
15

Chen, Xiao Yu. "Feature matching of deformable models /". View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?MECH%202008%20CHENX.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
16

Strömbro, Jessica. "Micro-mechanical mechanisms for deformation in polymer-material structures". Doctoral thesis, KTH, Hållfasthetslära (Inst.), 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4626.

Testo completo
Abstract (sommario):
In this thesis, the focus has been on micro-mechanical mechanisms in polymer-based materials and structures. The first part of the thesis treats length-scale effects on polymer materials. Experiments have showed that the smaller the specimen, the stronger is the material. The length-scale effect was examined experimentally in two different polymers materials, polystyrene and epoxy. First micro-indentations to various depths were made on polystyrene. The experiments showed that length-scale effects in inelastic deformations exist in polystyrene. It was also possible to show a connection between the experimental findings and the molecular length. The second experimental study was performed on glass-sphere filled epoxy, where the damage development for tensile loading was investigated. It could be showed that the debond stresses increased with decreasing sphere diameter. The debonding grew along the interface and eventually these cracks kinked out into the matrix. It was found that the length to diameter ratio of the matrix cracks increased with increasing diameter. The experimental findings may be explained by a length-scale effect in the yield process which depends on the strain gradients. The second part of the thesis treats mechano-sorptive creep in paper, i.e. the acceleration of creep by moisture content changes. Paper can be seen as a polymer based composite that consists of a network of wood fibres, which in its turn are natural polymer composites. A simplified network model for mechano-sorptive creep has been developed. It is assumed that the anisotropic hygroexpansion of the fibres leads to large stresses at the fibre-fibre bonds when the moisture content changes. The resulting stress state will accelerate creep if the fibre material obeys a constitutive law that is non-linear in stress. Fibre kinks are included in order to capture experimental observations of larger mechano-sorptive creep effects in compression than in tension. Furthermore, moisture dependent material parameters and anisotropy are taken into account. Theoretical predictions based on the developed model are compared to experimental results for anisotropic paper both under tensile and compressive loading at varying moisture content. The important features in the experiments are captured by the model. Different kinds of drying conditions have also been examined.
QC 20100910
Gli stili APA, Harvard, Vancouver, ISO e altri
17

Zamiri, Amir Reza. "Computationally efficient crystal plasticity models for polycrystalline materials". Diss., Connect to online resource - MSU authorized users, 2008.

Cerca il testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
18

Jiang, Tianci. "Impact & penetration studies simplified models and and materials design from AB initio methods /". Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/10443.

Testo completo
Abstract (sommario):
In recent impact and penetration mechanical tests, steel projectiles (AISI4340) were impacted into targets like concrete with striking velocities (1200 m/s to 1500 m/s). Results indicated a material removal from the nose of the projectile, phase changes of the projectile materials, a reduction in the length of the projectile, and a blunting of the nose shape. These observations cannot be explained by current theories and numerical integration code that are used to study impact and penetration mechanics. Thus, the objectives of the thesis research are to (a) formulate and characterize the mechanisms responsible for the material erosion of the impacting projectile and the mass loss from the nose region; and (b) to determine the physical properties of alloy steels that are important to penetration mechanics from ab initio methods. The results can be used to design new projectile materials that can provide the desired penetration characteristics. These objectives are accomplished by investigating two related problems. The first problem is to formulate simplified models that can explain the penetration mechanics. The new models include the varying cross-section nose, changes of yield stress behind the shock wave and high strain rate phase transitions. Nose erosion effects, and time-dependent penetration path can be determined by integrating ODEs. A cavity expansion theory model is used to obtain the target resistance that is responsible slowing and deforming the penetrating projectile. The second problem concerns the determination of the constitutive relations from ab initio methods. The equation of state (EOS) and magnetic moments for alloy steels are investigated by using a special quasirandom structure technique and ab initio methods. Specifically, EOS for an interstitial disordered alloy Fe1-x-yNixCy is developed. First, the EOS of iron and phase transition of iron are studied and validated. Second, Nickel is considered to investigate the substitutional disordered alloy Fe1-x-yNixCy. Third, Carbon is placed at an interstitial position in the substitutional disordered alloy. These investigations will form foundation for future work involving new projectile with steel nose and shank made of multifunctional structural energetic materials.
Gli stili APA, Harvard, Vancouver, ISO e altri
19

Sotolongo, Wilfredo. "On the numerical implementation of cyclic elasto-plastic material models". Thesis, Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/17594.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
20

Lin, Yi Han. "A mathematical theory of elastic orthotropic plates in plane strain and axi-symmetric deformations". Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/27436.

Testo completo
Abstract (sommario):
We present an elastic orthotropic plate theory in plane strain and axisym-metric deformations by first developing their uniform asymptotic expansions of the exact solutions for the basic governing boundary value problems. Then, the establishment of the necessary conditions for decaying states, both explicitly and asymptotically, enables us to determine the outer solution without reference to the inner solution and clarify the precise meaning of the well known St.Venant's principle under the circumstances considered here. The possible existence of corner stress singularities was examined by establishing and solving three transcendental governing equations. By developing a generalized Cauchy type singular integral equation for the plane strain deformation and an integral equation of the second kind for the axi-symmetric deformation and taking the corner stress singularities into consideration, we obtained accurate numerical solutions for all canonical boundary value problems which are needed in the asymptotic necessary conditions for decaying states. Finally, the accuracy of the numerical solutions of canonical boundary value problems and the efficiency of the plate theory were confirmed through the applications of solving two physical problems and comparing with the existing results.
Science, Faculty of
Mathematics, Department of
Graduate
Gli stili APA, Harvard, Vancouver, ISO e altri
21

Warren, Paul A. "Mathematical models of 3-D ocular mechanics and control". Thesis, University of Sheffield, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312221.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
22

Seon, Guillaume. "Finite element-based failure models for carbon/epoxy tape composites". Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28117.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
23

Lee, M. E. M. "Mathematical models of the carding process". Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249543.

Testo completo
Abstract (sommario):
Carding is an essential pre-spinning process whereby masses of dirty tufted fibres are cleaned, disentangled and refined into a smooth coherent web. Research and development in this `low-technology' industry have hitherto depended on empirical evidence. In collaboration with the School of Textile Industries at the University of Leeds, a mathematical theory has been developed that describes the passage of fibres through the carding machine. The fibre dynamics in the carding machine are posed, modelled and simulated by three distinct physical problems: the journey of a single fibre, the extraction of fibres from a tuft or tufts and many interconnecting, entangled fibres. A description of the life of a single fibre is given as it is transported through the carding machine. Many fibres are sparsely distributed across machine surfaces, therefore interactions with other neighbouring fibres, either hydrodynamically or by frictional contact points, can be neglected. The aerodynamic forces overwhelm the fibre's ability to retain its crimp or natural curvature, and so the fibre is treated as an inextensible string. Two machine topologies are studied in detail, thin annular regions with hooked surfaces and the nip region between two rotating drums. The theoretical simulations suggest that fibres do not transfer between carding surfaces in annular machine geometries. In contrast to current carding theories, which are speculative, a novel explanation is developed for fibre transfer between the rotating drums. The mathematical simulations describe two distinct mechanisms: strong transferral forces between the taker-in and cylinder and a weaker mechanism between cylinder and doffer. Most fibres enter the carding machine connected to and entangled with other fibres. Fibres are teased from their neighbours and in the case where their neighbours form a tuft, which is a cohesive and resistive fibre structure, a model has been developed to understand how a tuft is opened and broken down during the carding process. Hook-fibre-tuft competitions are modelled in detail: a single fibre extracted from a tuft by a hook and diverging hook-entrained tufts with many interconnecting fibres. Consequently, for each scenario once fibres have been completely or partially extracted, estimates can be made as to the degree to which a tuft has been opened-up. Finally, a continuum approach is used to simulate many interconnected, entangled fibre-tuft populations, focusing in particular on their deformations. A novel approach describes this medium by density, velocity, directionality, alignment and entanglement. The materials responds to stress as an isotropic or transversely isotropic medium dependent on the degree of alignment. Additionally, the material's response to stress is a function of the degree of entanglement which we describe by using braid theory. Analytical solutions are found for elongational and shearing flows, and these compare very well with experiments for certain parameter regimes.
Gli stili APA, Harvard, Vancouver, ISO e altri
24

Moore, Matthew Richard. "New mathematical models for splash dynamics". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:c94ff7f2-296a-4f13-b04b-e9696eda9047.

Testo completo
Abstract (sommario):
In this thesis, we derive, extend and generalise various aspects of impact theory and splash dynamics. Our methods throughout will involve isolating small parameters in our models, which we can utilise using the language of matched asymptotics. In Chapter 1 we briefly motivate the field of impact theory and outline the structure of the thesis. In Chapter 2, we give a detailed review of classical small-deadrise water entry, Wagner theory, in both two and three dimensions, highlighting the key results that we will use in our extensions of the theory. We study oblique water entry in Chapter 3, in which we use a novel transformation to relate an oblique impact with its normal-impact counterpart. This allows us to derive a wide range of solutions to both two- and three-dimensional oblique impacts, as well as discuss the limitations and breakdown of Wagner theory. We return to vertical water-entry in Chapter 4, but introduce the air layer trapped between the impacting body and the liquid it is entering. We extend the classical theory to include this air layer and in the limit in which the density ratio between the air and liquid is sufficiently small, we derive the first-order correction to the Wagner solution due to the presence of the surrounding air. The model is presented in both two dimensions and axisymmetric geometries. In Chapter 5 we move away from Wagner theory and systematically derive a series of splash jet models in order to find possible mechanisms for phenomena seen in droplet impact and droplet spreading experiments. Our canonical model is a thin jet of liquid shot over a substrate with a thin air layer trapped between the jet and the substrate. We consider a variety of parameter regimes and investigate the stability of the jet in each regime. We then use this model as part of a growing-jet problem, in which we attempt to include effects due to the jet tip. In the final chapter we summarise the main results of the thesis and outline directions for future work.
Gli stili APA, Harvard, Vancouver, ISO e altri
25

Huang, Xin, e 黃昕. "Exploring critical-state behaviour using DEM". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206742.

Testo completo
Abstract (sommario):
The critical state soil mechanics (CSSM) framework originally proposed by Schofield & Wroth (1968) has been shown to capture the mechanical behaviour of soils effectively. The particulate implementation of the discrete element method (DEM) can replicate many of the complex mechanical characteristics associated with sand. This research firstly shows that the CSSM framework is useful to assess whether a DEM simulation gives a response that is representative of a real soil. The research then explores the capacity of DEM to extend understanding of soil behaviour within the CSSM framework. The influence of sample size on the critical-state response observed in DEM simulations that use rigid-wall boundaries was examined. The observed sensitivity was shown to be caused by higher void ratios and lower contact densities adjacent to the boundaries. When the void ratio (e) and mean stress (p’) of the homogeneous interior regions were considered, the influence of sample size on the position of the critical state line (CSL) in e-log(p’) space diminished. A parametric study on the influence of the interparticle friction (μ) on the load-deformation response was carried out. The macro-scale stress-deformation characteristics were nonlinearly related to μ and the particle-scale measures (fabric, contact force distribution, etc.) varied systematically with μ. The limited effect of increases in μ on the overall strength at high μ values (μ>0.5) is attributable to transition from sliding-dominant to rolling-dominant contact behaviour. A μ value higher than 0.5 leads to a CSL in e-log(p’) space that does not capture real soil response. True-triaxial simulations with different intermediate stress ratios (b) were performed. The dependency of strength on b agreed with empirical failure criteria for sands and was related to a change of buckling modes of the strong force chains as b increased. DEM simulations showed that the position of the CSL in e-log(p’) space depends on the intermediate stress ratio b. This sensitivity seems to be related to the dependency of the directional fabric anisotropy on b. The link between the state parameter and both soil strength and dilatancy proposed by Jefferies & Been (2006) was reproduced in DEM simulations. A new rotational resistance model was proposed and it was shown that the new model can qualitatively capture the influence of particle shape on the mechanical behaviour of sand. However, it was shown that the effect of rotational resistance is limited and to quantitatively compare the DEM simulation results with laboratory testing data, e.g., the critical-state loci, it is necessary to use non-spherical particles.
published_or_final_version
Civil Engineering
Doctoral
Doctor of Philosophy
Gli stili APA, Harvard, Vancouver, ISO e altri
26

Morland, Lawrence Christopher. "Mathematical models for a fluid flow arising in turbine blade cooling passages". Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.330029.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
27

Guo, Jiajie. "Effects of joint constraints on deformation of multi-body compliant mechanisms". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45971.

Testo completo
Abstract (sommario):
Motivated by the interests to understand bio-structure deformation and exploit their advantages to create bio-inspired systems for engineering applications, a curvature-based model for analyzing compliant mechanisms capable of large deformation in a three dimensional space has been developed. Unlike methods (such as finite element) that formulate problems based on displacements and/or rotational angles, superposition holds for curvatures in the case of finite rotation but not for rotational angles; thus the curvature-based formulation presents an advantage in presenting nonlinear geometries. Along with a generalized constraint that relaxes traditional boundary constraints (such as fixed, pinned or sliding constraint) on compliant mechanisms, the method of deriving the compliant members in the same global referenced frame is presented. The attractive features of the method, which greatly simplifies the models and improves the computation efficiency of multi-body system deformation where compliant beams play an important role, have been experimentally validated. To demonstrate the applicability of this proposed method to a broad spectrum of applications, three practical examples are given; the first example verifies the generalized constraint by analyzing the multi-axis rotation motion within a natural human knee joint and investigates the human-exoskeleton interactions through dynamic analysis. The second example studies a deformable bio-structure by incorporating the generalized joint constraint into the curvature-based model for automated poultry meat processing. The last example designs a bio-inspired robot with a compliant mechanism to serve as a flexonic mobile node for ferromagnetic structure health monitoring. The analytical models have been employed (with experimental validation) to investigate the effects of different joint constraints on the mechanism deformations. It is expected that the proposed method will find a broad range of applications involving compliant mechanisms.
Gli stili APA, Harvard, Vancouver, ISO e altri
28

Beylin, Andrey V. "Supersymmetric Landau Models". Scholarly Repository, 2011. http://scholarlyrepository.miami.edu/oa_dissertations/624.

Testo completo
Abstract (sommario):
This work is focused on the different supersymmetric extensions of the Landau model. We aim to fully solve each model and describe its energy levels, wavefunctions, Hilbert space and define a norm on it, as well as find symmetry generators and transformations with respect to them. Several possible generalizations were considered before. It was found for Landau model on the so called Superflag manifold as well as planar Superflag and Superplane Landau models that standard norm on the Hilbert space is not positive definite. Later for planar cases it was found that it is possible to fix this by introducing a new norm which will be invariant and positive definite. Surprisingly this procedure brings up "hidden" symmetries for the known super Landau models. In the dissertation we apply the same procedure for Landau model on superpshere and Superflag manifolds. It turns out that superpsherical Landau model is equivalent to the Superflag model with one of the parameters fixed. Because the model on superpshere can be recovered from the Superflag we will do calculations of corrected norm only for the Superflag. After this we develop a different generalization of the Superplane Landau model. Starting with Lagrangian in a superfield form we introduce two arbitrary functions of superfields K(Φ) and V(Φ) into the Lagrangian. We follow with the component form of Lagrangian. The quantization of the model is possible, and we will show that there is a reparametrization which turn equation of motion of the first scheme into the second set. Standard metric is again non-positive definite and we apply already known procedure to correct it. It will not be possible to solve Schrodinger equations in general with undefined K and V, so we consider one specific case which give us Landau model on a sphere with N = 2 supersymmetry, which put it apart from the superspherical Landau model, which have a superpshere for a target space but do not possess supersymmetry.
Gli stili APA, Harvard, Vancouver, ISO e altri
29

Zhao, Qian, e 赵倩. "A thermomechanical approach to constitutive modeling of geomaterials". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47166836.

Testo completo
Abstract (sommario):
Modeling of the mechanical behavior of geomaterials is a fundamental yet very difficult problem in geotechnical engineering. The difficulty lies in that the engineering behavior of geomaterials is strongly nonlinear and anisotropic, depending on confining pressure, void ratio, stress history, and drainage conditions. A traditional approach to the modeling of geomaterials is to formulate empirical equations to fit experimental data. Generally, this approach is not able to provide physical insights into the diverse responses observed in the soil mechanics laboratories. Another conventional approach is to make use of the classical plasticity theory, established mainly for metals, to develop constitutive models for geomaterials. While this approach is capable of shedding light on the mechanisms involved, it has been recognized that such models may violate the basic laws of physics. The objective of this thesis is to apply a new approach to constructing constitutive models for geomaterials, by making use of thermomechanical principles. The essence of the new approach is that the constitutive behavior of geomaterials can be completely determined once two thermomechanical potentials, i.e. the free energy and dissipation rate functions, are specified. The yield function and flow rule in the classical plasticity theory can be established from the two potentials, and the models so derived satisfy the basic laws of physics automatically. In this thesis, the theoretical framework for constructing thermomechanical models is introduced. Several concepts in relation to plastic work, dissipated and stored energy are discussed. Both the isotropic and anisotropic models are formulated and realized in this framework and the generated predictions are compared with the test data of a series of triaxial compression tests on sand. To address the important density- and pressure-dependent behaviors of sand in the framework, a state-dependent thermomechanical model is developed, by introducing the state parameter into the dissipation rate function such that a unique set of model parameters is able to predict the behaviors of sand for a wide variation of densities and pressures. Finally, a thermomechanical model for predicting the complex unloading and reloading behaviors of sand is developed by modifying the hardening laws, and the performance of this model is investigated.
published_or_final_version
Civil Engineering
Master
Master of Philosophy
Gli stili APA, Harvard, Vancouver, ISO e altri
30

Gilpin, Richard. "The numerical solution and analysis of mathematical models for bubbly two-phase flow". Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289348.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
31

He, Shu Yu. "Field study on influence of atmospheric parameters and vegetation on variation of soil suction around tree vicinity". Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3868734.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
32

Modarres, Najafabadi Seyed Ali. "Dynamics modelling and analysis of impact in multibody systems". Thesis, McGill University, 2008. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=115886.

Testo completo
Abstract (sommario):
In this thesis, we discuss a novel approach to the dynamics modelling and analysis of impact in unilaterally constrained multibody systems. This approach is based on an analysis of energy absorption and restitution during impact, using a decomposition technique, which decouples the kinetic energy associated with the spaces of admissible and constrained motions of unilateral contacts. This is done based on the decomposition of the tangent space of the configuration manifold at the pre-impact instant. The decomposition of the kinetic energy can provide a picture of how the energy absorption and dissipation during impact is related to the variation of the generalized velocities and the configuration of multibody systems.
Further, based on the above analysis approach, we introduce a new interpretation of the energetic coefficient of restitution, specially applicable to contact involving multibody systems. This interpretation generalizes the concept of the energetic coefficient of restitution and allows for consideration of simultaneous multiple-point contact scenarios. Moreover, based on the concept of the generalized energetic coefficient of restitution, the contact modes and the post-impact state of planar single-point impact are determined. Further, the problem of simultaneous multiple-point impact is considered, where it is shown that our approach can also be advantageous to characterize the dynamics of interaction in such systems.
The use and applicability of the approach reported are further investigated by conducting an experimental study on a robotic testbed. The open architecture of the testbed allows us to perform various contact experiments, such as single- and multiple-point impact scenarios, with different pre-impact configurations and velocities. The kinematic and dynamic models of the system have been developed and implemented for real-time analysis. It is shown that impact between multibody systems is considerably affected by not only the local dynamics characteristics of the interacting bodies, but also the (global) configuration of the interacting multibody systems. The reported results suggest that the material presented herein offers a useful means to characterize impact in complex systems.
Gli stili APA, Harvard, Vancouver, ISO e altri
33

黃小華 e Siu-wah Wong. "Predicition of fatigue crack propagation using strain energy density method". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1989. http://hub.hku.hk/bib/B31209506.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
34

馮錦生 e Kam-sang Fung. "Fatigue crack propagation with strain energy density approach". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1989. http://hub.hku.hk/bib/B31209713.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
35

陳幸福 e Xingfu Chen. "A ductile damage model based on endochronic theory and its applicationto ductile failure analysis". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31233004.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
36

Ching, Wing-han Michael, e 程永鏗. "Modeling of contaminant dispersion by statistical mechanics". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42664500.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
37

Tang, Baobao. "Development of Mathematical and Computational Models to Design Selectively Reinforced Composite Materials". Thesis, University of Louisiana at Lafayette, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10163313.

Testo completo
Abstract (sommario):

Different positions of a material used for structures experience different stresses, sometimes at both extremes, when undergoing processing, manufacturing, and serving. Taking the three-point bending as an example, the plate experiences higher stress in the middle span area and lower stress in both sides of the plate. In order to ensure the performance and reduce the cost of the composite, placement of different composite material with different mechanical properties, i.e. selective reinforcement, is proposed.

Very few study has been conducted on selective reinforcement. Therefore, basic understanding on the relationship between the selective reinforcing variables and the overall properties of composite material is still unclear and there is still no clear methodology to design composite materials under different types of loads.

This study started from the analysis of composite laminate under three point bending test. From the mechanical analysis and simulation result of homogeneously reinforced composite materials, it is found that the stress is not evenly distributed on the plate based on through-thickness direction and longitudinal direction. Based on these results, a map for the stress distribution under three point bending was developed. Next, the composite plate was selectively designed using two types of configurations. Mathematical and finite element analysis (FEA) models were built based on these designs. Experimental data from tests of hybrid composite materials was used to verify the mathematical and FEA models. Analysis of the mathematical model indicates that the increase in stiffness of the material at the top and bottom surfaces and middle-span area is the most effective way to improve the flexural modulus in three point bending test. At the end of this study, a complete methodology to perform the selective design was developed.

Gli stili APA, Harvard, Vancouver, ISO e altri
38

Hsu, Su-Yuen. "Finite element micromechanics modeling of inelastic deformation of unidirectionally fiber-reinforced composites". Diss., Virginia Tech, 1992. http://hdl.handle.net/10919/39842.

Testo completo
Abstract (sommario):
Part I (Efficient Endochronic Finite Element Analysis: an Example of a Cyclically Loaded Boron/Aluminum Composite): A convenient and efficient algorithmic tangent matrix approach has been developed for 3-D finite element (FE) analysis using the endochronic theory without a yield surface. The underlying algorithm for integrating the endochronic constitutive equation was derived by piecewise linearization of the plastic strain path. The approach was employed to solve a micromechanics boundary value problem of a cyclically loaded unidirectional boron/6061 aluminum composite. All the FE results consistently demonstrate superior numerical stability and efficiency of the proposed method. Extensions of the method to endochronic plasticity with a yield surface and to the plane stress case are also presented. Part II (Simple and Unified Finite Element Formulation for Doubly Periodic Models: Applications to Boron/Aluminum Composites): A simple and unified weak formulation and its convenient FE implementation have been proposed. The weak formulation is valid for any doubly periodic model under uniform 3-D macro-stress, and serves as a common rational foundation of different FE approaches. The algorithmic tangent matrix approach for the endochronic theory has been incorporated into the FE formulation to model isothermal, rate-independent plastic macro-deformation of unidirectional fibrous composites with idealized two-phase micro-structure and backed-out inelastic matrix properties. Methods for determining inelastic material parameters of the matrix have been established. Numerical results for a B/6061 AI composite subjected to on-axis and off-axis monotonic tensile loadings are in good agreement with experimental data. The micromechanics model also shows the potential for quantitative characterization of complicated cyclic behavior. Finally, some effects of model geometry on overall plastic response of the B/6061 AI composite are discussed from the viewpoint of theoretical-experimental correlation.
Ph. D.
Gli stili APA, Harvard, Vancouver, ISO e altri
39

Musa, Zulkarnain 1964. "An accelerated conjugate direction procedure for slope stability analysis". Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276912.

Testo completo
Abstract (sommario):
CSLIP2 (De Natale, 1987) is the only slope stability program that utilizes a "direction set" optimization routine in its search for the minimum safety factor. However, CSLIP2 which employs Powell's Conjugate Direction Method permits only the horizontal and vertical directions (x and y) to be used as the initial direction set. The efficiency of the existing search routine is improved by replacing the x-y coordinate directions with initial directions that are parallel to and perpendicular to the principal axis of the safety factor contours.
Gli stili APA, Harvard, Vancouver, ISO e altri
40

Luo, Sai, e 罗赛. "Fabric evolution of two-dimensional idealized particle assemblage during shear". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49799721.

Testo completo
Abstract (sommario):
Microstructure or fabric definitely affects macroscopic mechanical behavior of granular material. It is also well-observed that fabric evolves with shearing or plastic deformation. In this study, a series of two-dimensional numerical direct shear tests are carried out with the discrete element method, to study the initial fabric effect on global material responses and their micro-macroscopic relations. Idealized particle assemblages are made up of mono-size elongated particles and are prepared by a “deposition” method. Elongated particle is modeled by the built-in clump logic, in which constitutive balls are joined together without further breakage. In the deposition method, there are three controlling parameters, including, deposited direction, inter-particle friction coefficient and particle number, to prepare specimens with similar initial density but different initial packing or fabric. Three types of fabric of particle assemblages are examined quantitatively and are monitored during shearing, including, particle orientations (PO), contact normal forces (NF), and void spaces (VS). These fabric distributions are described by two parameters―anisotropic degree ( ) and orientation angle ( ), with clear physical implications. An additional parameter ( ) describing the average size of voids, is used to quantify void perimeter. It is found that this parameter has a relation with the assemblage’s volumetric response. C With the systematic and meticulous quantification method, the linkage between the macroscopic and microscopic responses of particle assemblages is discussed quantitatively. The results show that the initial packing affects the shear zone thickness, initial stiffness, peak strength, and dilation rate. In the shear zone, particle orientations do not exhibit a unique state at the final stage of direct shearing. At that state, strong normal forces and strong voids are parallel to the major principal stress direction. It seems that the initial packing does not affect their final distributions. At the end of reverse shearing, strong voids and strong normal forces in the shear zone give an essentially unique state, and their preferential directions are related to the changed loading direction. However, apparent stable particle orientations are still affected by the initial fabric.
published_or_final_version
Civil Engineering
Master
Master of Philosophy
Gli stili APA, Harvard, Vancouver, ISO e altri
41

Lacy, Thomas E. Jr. "Distribution effects in damage mechanics". Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/15937.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
42

Zhu, Tulong. "Meshless methods in computational mechanics". Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/11795.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
43

Liu, Chi-hong, e 廖志航. "Base friction modelling of discontinuous rock masses". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2002. http://hub.hku.hk/bib/B42577123.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
44

PRUETT, CHARLES DAVID. "NUMERICAL SIMULATION OF NONLINEAR WAVES IN FREE SHEAR LAYERS (MIXING, COMPUTATIONAL, FLUID DYNAMICS, HYDRODYNAMIC STABILITY, SPATIAL, FLUID FLOW MODEL)". Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183869.

Testo completo
Abstract (sommario):
A numerical model has been developed which simulates the three-dimensional stability and transition of a periodically forced free shear layer in an incompressible fluid. Unlike previous simulations of temporally evolving shear layers, the current simulations examine spatial stability. The spatial model accommodates features of free shear flow, observed in experiments, which in the temporal model are precluded by the assumption of streamwise periodicity; e.g., divergence of the mean flow and wave dispersion. The Navier-Stokes equations in vorticity-velocity form are integrated using a combination of numerical methods tailored to the physical problem. A spectral method is adopted in the spanwise dimension in which the flow variables, assumed to be periodic, are approximated by finite Fourier series. In complex Fourier space, the governing equations are spatially two-dimensional. Standard central finite differences are exploited in the remaining two spatial dimensions. For computational efficiency, time evolution is accomplished by a combination of implicit and explicit methods. Linear diffusion terms are advanced by an Alternating Direction Implicit/Crank-Nicolson scheme whereas the Adams-Bashforth method is applied to convection terms. Nonlinear terms are evaluated at each new time level by the pseudospectral (collocation) method. Solutions to the velocity equations, which are elliptic, are obtained iteratively by approximate factorization. The spatial model requires that inflow-outflow boundary conditions be prescribed. Inflow conditions are derived from a similarity solution for the mean inflow profile onto which periodic forcing is superimposed. Forcing functions are derived from inviscid linear stability theory. A numerical test case is selected which closely parallels a well-known physical experiment. Many of the aspects of forced shear layer behavior observed in the physical experiment are captured by the spatial simulation. These include initial linear growth of the fundamental, vorticity roll-up, fundamental saturation, eventual domination of the subharmonic, vortex pairing, emergence of streamwise vorticity, and temporary stabilization of the secondary instability. Moreover, the spatial simulation predicts the experimentally observed superlinear growth of harmonics at rates 1.5 times that of the fundamental. Superlinear growth rates suggest nonlinear resonances between fundamental and harmonic modes which are not captured by temporal simulations.
Gli stili APA, Harvard, Vancouver, ISO e altri
45

Li, Lian, e 李煉. "Microscopic study and numerical simulation of the failure process of granite". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31242005.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
46

SOMASUNDARAM, SUJITHAN. "CONSTITUTIVE MODELLING FOR ANISOTROPIC HARDENING BEHAVIOR WITH APPLICATIONS TO COHESIONLESS SOILS (INDUCED, KINEMATIC, NON-ASSOCIATIVENESS)". Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/188165.

Testo completo
Abstract (sommario):
A constitutive model based on rate-independent elastoplasticity concepts is developed to simulate the behavior of geologic materials under arbitrary three-dimensional stress paths, stress reversals and cyclic loading. The model accounts for the various factors such as friction, stress path, stress history, induced anisotropy and initial anisotropy that influence the behavior of geologic materials. A hierarchical approach is adapted whereby models of progressively increasing sophistication are developed from a basic isotropic-hardening associative model. The influence of the above factors is captured by modifying the basic model for anisotropic (kinematic) hardening and deviation from normality (nonassociativeness). Both anisotropic hardening and deviation from normality are incorporated by introducing into the formulation a second order tensor whose evolution is governed by the level of induced anisotropy in the material. In the stress-space this formulation may be interpreted as a translating potential surface Q that moves in a fixed field of isotropic yield surfaces. The location of the translating surface in the stress-space, at any stage of the deformation, is given by the 'induced anisotropy' tensor. A measure to represent the level of induced anisotropy in the material is defined. The validity of this representation is investigated based on a series of special stress path tests in the cubical triaxial device on samples of Leighton Buzzard sand. The significant parameters of the models are defined and determined for three sands based on results of conventional laboratory test results. The model is verified with respect to laboratory multiaxial test data under various paths of loading, unloading, reloading and cyclic loading.
Gli stili APA, Harvard, Vancouver, ISO e altri
47

YU, CHUNG-CHYI. "FINITE-ELEMENT ANALYSIS OF TIME-DEPENDENT CONVECTION DIFFUSION EQUATIONS (PETROV-GALERKIN)". Diss., The University of Arizona, 1986. http://hdl.handle.net/10150/183930.

Testo completo
Abstract (sommario):
Petrov-Galerkin finite element methods based on time-space elements are developed for the time-dependent multi-dimensional linear convection-diffusion equation. The methods introduce two parameters in conjunction with perturbed weighting functions. These parameters are determined locally using truncation error analysis techniques. In the one-dimensional case, the new algorithms are thoroughly analyzed for convergence and stability properties. Numerical schemes that are second order in time, third order in space and stable when the Courant number is less than or equal to one are produced. Extensions of the algorithm to nonlinear Navier-Stokes equations are investigated. In this case, it is found more efficient to use a Petrov-Galerkin method based on a one parameter perturbation and a semi-discrete Petrov-Galerkin formulation with a generalized Newmark algorithm in time. The algorithm is applied to the two-dimensional simulation of natural convection in a horizontal circular cylinder when the Boussinesq approximation is valid. New results are obtained for this problem which show the development of three flow regimes as the Rayleigh number increases. Detailed calculations for the fluid flow and heat transfer in the cylinder for the different regimes as the Rayleigh number increases are presented.
Gli stili APA, Harvard, Vancouver, ISO e altri
48

Foster, David H. "Fabry-Perot and Whispering Gallery Modes In Realistic Resonator Models". Thesis, view abstract or download file of text, 2006. http://wwwlib.umi.com/cr/uoregon/fullcit?p3211216.

Testo completo
Abstract (sommario):
Thesis (Ph. D.)--University of Oregon, 2006.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 204-213). Also available for download via the World Wide Web; free to University of Oregon users.
Gli stili APA, Harvard, Vancouver, ISO e altri
49

Ellis, William Joseph. "Application of statistical mechanics to a model neuron /". Title page, contents and abstract only, 1993. http://web4.library.adelaide.edu.au/theses/09PH/09phe479.pdf.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
50

Fischer, Christian E. "Forging process models for use with global optimization of manufacturing prcesses". Ohio : Ohio University, 1999. http://www.ohiolink.edu/etd/view.cgi?ohiou1175269765.

Testo completo
Gli stili APA, Harvard, Vancouver, ISO e altri
Offriamo sconti su tutti i piani premium per gli autori le cui opere sono incluse in raccolte letterarie tematiche. Contattaci per ottenere un codice promozionale unico!

Vai alla bibliografia