Tesi sul tema "Decision tree"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Vedi i top-50 saggi (tesi di laurea o di dottorato) per l'attività di ricerca sul tema "Decision tree".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Vedi le tesi di molte aree scientifiche e compila una bibliografia corretta.
Shi, Haijian. "Best-first Decision Tree Learning". The University of Waikato, 2007. http://hdl.handle.net/10289/2317.
Testo completoVella, Alan. "Hyper-heuristic decision tree induction". Thesis, Heriot-Watt University, 2012. http://hdl.handle.net/10399/2540.
Testo completoBogdan, Vukobratović. "Hardware Acceleration of Nonincremental Algorithms for the Induction of Decision Trees and Decision Tree Ensembles". Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2017. https://www.cris.uns.ac.rs/record.jsf?recordId=102520&source=NDLTD&language=en.
Testo completoУ овоj дисертациjи, представљени су нови алгоритми EFTI и EEFTI заформирање стабала одлуке и њихових ансамбала неинкременталномметодом, као и разне могућности за њихову имплементациjу.Експерименти показуjу да jе предложени EFTI алгоритам у могућностида произведе драстично мања стабла без губитка тачности у односу напостојеће top-down инкременталне алгоритме, а стабла знатно већетачности у односу на постојеће неинкременталне алгоритме. Такође супредложене хардверске архитектуре за акцелерацију ових алгоритама(EFTIP и EEFTIP) и показано је да је уз помоћ ових архитектура могућеостварити знатна убрзања.
U ovoj disertaciji, predstavljeni su novi algoritmi EFTI i EEFTI zaformiranje stabala odluke i njihovih ansambala neinkrementalnommetodom, kao i razne mogućnosti za njihovu implementaciju.Eksperimenti pokazuju da je predloženi EFTI algoritam u mogućnostida proizvede drastično manja stabla bez gubitka tačnosti u odnosu napostojeće top-down inkrementalne algoritme, a stabla znatno većetačnosti u odnosu na postojeće neinkrementalne algoritme. Takođe supredložene hardverske arhitekture za akceleraciju ovih algoritama(EFTIP i EEFTIP) i pokazano je da je uz pomoć ovih arhitektura mogućeostvariti znatna ubrzanja.
Qureshi, Taimur. "Contributions to decision tree based learning". Thesis, Lyon 2, 2010. http://www.theses.fr/2010LYO20051/document.
Testo completoLa recherche avancée dans les méthodes d'acquisition de données ainsi que les méthodes de stockage et les technologies d'apprentissage, s'attaquent défi d'automatiser de manière systématique les techniques d'apprentissage de données en vue d'extraire des connaissances valides et utilisables.La procédure de découverte de connaissances s'effectue selon les étapes suivants: la sélection des données, la préparation de ces données, leurs transformation, le fouille de données et finalement l'interprétation et validation des résultats trouvés. Dans ce travail de thèse, nous avons développé des techniques qui contribuent à la préparation et la transformation des données ainsi qu'a des méthodes de fouille des données pour extraire les connaissances. A travers ces travaux, on a essayé d'améliorer l'exactitude de la prédiction durant tout le processus d'apprentissage. Les travaux de cette thèse se basent sur les arbres de décision. On a alors introduit plusieurs approches de prétraitement et des techniques de transformation; comme le discrétisation, le partitionnement flou et la réduction des dimensions afin d'améliorer les performances des arbres de décision. Cependant, ces techniques peuvent être utilisées dans d'autres méthodes d'apprentissage comme la discrétisation qui peut être utilisées pour la classification bayesienne.Dans le processus de fouille de données, la phase de préparation de données occupe généralement 80 percent du temps. En autre, elle est critique pour la qualité de la modélisation. La discrétisation des attributs continus demeure ainsi un problème très important qui affecte la précision, la complexité, la variance et la compréhension des modèles d'induction. Dans cette thèse, nous avons proposes et développé des techniques qui ce basent sur le ré-échantillonnage. Nous avons également étudié d'autres alternatives comme le partitionnement flou pour une induction floue des arbres de décision. Ainsi la logique floue est incorporée dans le processus d'induction pour augmenter la précision des modèles et réduire la variance, en maintenant l'interprétabilité.Finalement, nous adoptons un schéma d'apprentissage topologique qui vise à effectuer une réduction de dimensions non-linéaire. Nous modifions une technique d'apprentissage à base de variété topologiques `manifolds' pour savoir si on peut augmenter la précision et l'interprétabilité de la classification
Ardeshir, G. "Decision tree simplification for classifier ensembles". Thesis, University of Surrey, 2002. http://epubs.surrey.ac.uk/843022/.
Testo completoAhmad, Amir. "Data Transformation for Decision Tree Ensembles". Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508528.
Testo completoCai, Jingfeng. "Decision Tree Pruning Using Expert Knowledge". University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1158279616.
Testo completoWu, Shuning. "Optimal instance selection for improved decision tree". [Ames, Iowa : Iowa State University], 2007.
Cerca il testo completoSinnamon, Roslyn M. "Binary decision diagrams for fault tree analysis". Thesis, Loughborough University, 1996. https://dspace.lboro.ac.uk/2134/7424.
Testo completoHo, Colin Kok Meng. "Discretization and defragmentation for decision tree learning". Thesis, University of Essex, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299072.
Testo completoKassim, M. E. "Elliptical cost-sensitive decision tree algorithm (ECSDT)". Thesis, University of Salford, 2018. http://usir.salford.ac.uk/47191/.
Testo completoYedida, Venkata Rama Kumar Swamy. "Protein Function Prediction Using Decision Tree Technique". University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1216313412.
Testo completoBadulescu, Laviniu Aurelian. "ATTRIBUTE SELECTION MEASURE IN DECISION TREE GROWING". Universitaria Publishing House, 2007. http://hdl.handle.net/10150/105610.
Testo completoBarros, Rodrigo Coelho. "On the automatic design of decision-tree induction algorithms". Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-21032014-144814/.
Testo completoÁrvores de decisão são amplamente utilizadas como estratégia para extração de conhecimento de dados. Existem muitas estratégias diferentes para indução de árvores de decisão, cada qual com suas vantagens e desvantagens tendo em vista seu bias indutivo. Tais estratégias têm sido continuamente melhoradas por pesquisadores nos últimos 40 anos. Esta tese, em sintonia com recentes descobertas no campo de projeto automático de algoritmos de aprendizado de máquina, propõe a geração automática de algoritmos de indução de árvores de decisão. A abordagem proposta, chamada de HEAD-DT, é baseada no paradigma de algoritmos evolutivos. HEAD-DT evolui componentes de árvores de decisão que foram manualmente codificados e os combina da forma mais adequada ao problema em questão. HEAD-DT funciona conforme dois diferentes frameworks: i) evolução de algoritmos customizados para uma única base de dados (framework específico); e ii) evolução de algoritmos a partir de múltiplas bases (framework geral). O framework específico tem por objetivo gerar um algoritmo por base de dados, de forma que o algoritmo projetado não necessite de poder de generalização que vá além da base alvo. O framework geral tem um objetivo mais ambicioso: gerar um único algoritmo capaz de ser efetivamente executado em várias bases de dados. O framework específico é testado em 20 bases públicas da UCI, e os resultados mostram que os algoritmos específicos gerados por HEAD-DT apresentam desempenho preditivo significativamente melhor do que algoritmos como CART e C4.5. O framework geral é executado em dois cenários diferentes: i) projeto de algoritmo específico a um domínio de aplicação; e ii) projeto de um algoritmo livre-de-domínio, robusto a bases distintas. O primeiro cenário é testado em 35 bases de expressão gênica, e os resultados mostram que o algoritmo gerado por HEAD-DT consistentemente supera CART e C4.5 em diferentes configurações experimentais. O segundo cenário é testado em 67 bases de dados da UCI, e os resultados mostram que o algoritmo gerado por HEAD-DT é competitivo com CART e C4.5. No entanto, é mostrado que HEAD-DT é vulnerável a um caso particular de overfitting quando executado sobre o segundo cenário do framework geral, e indica-se assim possíveis soluções para tal problema. Por fim, é realizado uma análise detalhada para avaliação de diferentes funções de fitness de HEAD-DT, onde 5 medidas de desempenho são combinadas com três esquemas de agregação. As 15 versões são avaliadas em 67 bases da UCI e as melhores versões são utilizadas para geração de algoritmos customizados para bases balanceadas e desbalanceadas. Os resultados mostram que os algoritmos gerados por HEAD-DT apresentam desempenho preditivo significativamente melhor que CART e C4.5, em uma clara indicação que HEAD-DT também é capaz de gerar algoritmos customizados para certo perfil estatístico dos dados de classificação
Tsang, Pui-kwan Smith, e 曾沛坤. "Efficient decision tree building algorithms for uncertain data". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41290719.
Testo completoReay, Karen A. "Efficient fault tree analysis using binary decision diagrams". Thesis, Loughborough University, 2002. https://dspace.lboro.ac.uk/2134/7579.
Testo completoФедоров, Д. П. "Comparison of classifiers based on the decision tree". Thesis, ХНУРЕ, 2021. https://openarchive.nure.ua/handle/document/16430.
Testo completoIgboamalu, Frank Nonso. "Decision tree classifiers for incident call data sets". Master's thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/27076.
Testo completoYenco, Aileen C. "Decision Tree for Ground Improvement in Transportation Applications". University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1384435786.
Testo completoTsang, Pui-kwan Smith. "Efficient decision tree building algorithms for uncertain data". Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41290719.
Testo completoShah, Hamzei G. Hossein. "Decision tree learning for intelligent mobile robot navigation". Thesis, Loughborough University, 1998. https://dspace.lboro.ac.uk/2134/6968.
Testo completoWickramarachchi, Darshana Chitraka. "Oblique decision trees in transformed spaces". Thesis, University of Canterbury. Mathematics and Statistics, 2015. http://hdl.handle.net/10092/11051.
Testo completoZhou, Guoqing. "Co-Location Decision Tree for Enhancing Decision-Making of Pavement Maintenance and Rehabilitation". Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/26059.
Testo completoPh. D.
Chang, Namsik. "Knowledge discovery in databases with joint decision outcomes: A decision-tree induction approach". Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187227.
Testo completoHari, Vijaya. "Empirical Investigation of CART and Decision Tree Extraction from Neural Networks". Ohio University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1235676338.
Testo completoFlöter, André. "Analyzing biological expression data based on decision tree induction". [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=978444728.
Testo completoRangwala, Maimuna H. "Empirical investigation of decision tree extraction from neural networks". Ohio : Ohio University, 2006. http://www.ohiolink.edu/etd/view.cgi?ohiou1151608193.
Testo completoFlöter, André. "Analyzing biological expression data based on decision tree induction". Phd thesis, Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2006/641/.
Testo completoModern biological analysis techniques supply scientists with various forms of data. One category of such data are the so called "expression data". These data indicate the quantities of biochemical compounds present in tissue samples.
Recently, expression data can be generated at a high speed. This leads in turn to amounts of data no longer analysable by classical statistical techniques. Systems biology is the new field that focuses on the modelling of this information.
At present, various methods are used for this purpose. One superordinate class of these methods is machine learning. Methods of this kind had, until recently, predominantly been used for classification and prediction tasks. This neglected a powerful secondary benefit: the ability to induce interpretable models.
Obtaining such models from data has become a key issue within Systems biology. Numerous approaches have been proposed and intensively discussed. This thesis focuses on the examination and exploitation of one basic technique: decision trees.
The concept of comparing sets of decision trees is developed. This method offers the possibility of identifying significant thresholds in continuous or discrete valued attributes through their corresponding set of decision trees. Finding significant thresholds in attributes is a means of identifying states in living organisms. Knowing about states is an invaluable clue to the understanding of dynamic processes in organisms. Applied to metabolite concentration data, the proposed method was able to identify states which were not found with conventional techniques for threshold extraction.
A second approach exploits the structure of sets of decision trees for the discovery of combinatorial dependencies between attributes. Previous work on this issue has focused either on expensive computational methods or the interpretation of single decision trees a very limited exploitation of the data. This has led to incomplete or unstable results. That is why a new method is developed that uses sets of decision trees to overcome these limitations.
Both the introduced methods are available as software tools. They can be applied consecutively or separately. That way they make up a package of analytical tools that usefully supplement existing methods.
By means of these tools, the newly introduced methods were able to confirm existing knowledge and to suggest interesting and new relationships between metabolites.
Neuere biologische Analysetechniken liefern Forschern verschiedenste Arten von Daten. Eine Art dieser Daten sind die so genannten "Expressionsdaten". Sie geben die Konzentrationen biochemischer Inhaltsstoffe in Gewebeproben an.
Neuerdings können Expressionsdaten sehr schnell erzeugt werden. Das führt wiederum zu so großen Datenmengen, dass sie nicht mehr mit klassischen statistischen Verfahren analysiert werden können. "System biology" ist eine neue Disziplin, die sich mit der Modellierung solcher Information befasst.
Zur Zeit werden dazu verschiedenste Methoden benutzt. Eine Superklasse dieser Methoden ist das maschinelle Lernen. Dieses wurde bis vor kurzem ausschließlich zum Klassifizieren und zum Vorhersagen genutzt. Dabei wurde eine wichtige zweite Eigenschaft vernachlässigt, nämlich die Möglichkeit zum Erlernen von interpretierbaren Modellen.
Die Erstellung solcher Modelle hat mittlerweile eine Schlüsselrolle in der "Systems biology" erlangt. Es sind bereits zahlreiche Methoden dazu vorgeschlagen und diskutiert worden. Die vorliegende Arbeit befasst sich mit der Untersuchung und Nutzung einer ganz grundlegenden Technik: den Entscheidungsbäumen.
Zunächst wird ein Konzept zum Vergleich von Baummengen entwickelt, welches das Erkennen bedeutsamer Schwellwerte in reellwertigen Daten anhand ihrer zugehörigen Entscheidungswälder ermöglicht. Das Erkennen solcher Schwellwerte dient dem Verständnis von dynamischen Abläufen in lebenden Organismen. Bei der Anwendung dieser Technik auf metabolische Konzentrationsdaten wurden bereits Zustände erkannt, die nicht mit herkömmlichen Techniken entdeckt werden konnten.
Ein zweiter Ansatz befasst sich mit der Auswertung der Struktur von Entscheidungswäldern zur Entdeckung von kombinatorischen Abhängigkeiten zwischen Attributen. Bisherige Arbeiten hierzu befassten sich vornehmlich mit rechenintensiven Verfahren oder mit einzelnen Entscheidungsbäumen, eine sehr eingeschränkte Ausbeutung der Daten. Das führte dann entweder zu unvollständigen oder instabilen Ergebnissen. Darum wird hier eine Methode entwickelt, die Mengen von Entscheidungsbäumen nutzt, um diese Beschränkungen zu überwinden.
Beide vorgestellten Verfahren gibt es als Werkzeuge für den Computer, die entweder hintereinander oder einzeln verwendet werden können. Auf diese Weise stellen sie eine sinnvolle Ergänzung zu vorhandenen Analyswerkzeugen dar.
Mit Hilfe der bereitgestellten Software war es möglich, bekanntes Wissen zu bestätigen und interessante neue Zusammenhänge im Stoffwechsel von Pflanzen aufzuzeigen.
Gao, Ying. "using decision tree to analyze the turnover of employees". Thesis, Uppsala universitet, Institutionen för informatik och media, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325113.
Testo completoSjunnebo, Joakim. "Application of the Boosted Decision Tree Algorithmto Waveform Discrimination". Thesis, KTH, Fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-129408.
Testo completoSOBRAL, ANA PAULA BARBOSA. "HOURLY LOAD FORECASTING A NEW APPROACH THROUGH DECISION TREE". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2003. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=3710@1.
Testo completoA importância da previsão de carga a curto prazo (até uma semana à frente) em crescido recentemente. Com os processos de privatização e implantação de ompetição no setor elétrico brasileiro, a previsão de tarifas de energia vai se tornar extremamente importante. As previsões das cargas elétricas são fundamentais para alimentar as ferramentas analíticas utilizadas na sinalização das tarifas. Em conseqüência destas mudanças estruturais no setor, a variabilidade e a não-estacionaridade das cargas elétricas tendem a aumentar devido à dinâmica dos preços da energia. Em função das mudanças estruturais do setor elétrico, previsores mais autônomos são necessários para o novo cenário que se aproxima. As ferramentas disponíveis no mercado internacional para previsão de carga elétrica requerem uma quantidade significativa de informações on-line, principalmente no que se refere a dados meteorológicos. Como a realidade brasileira ainda não permite o acesso a essas informações será proposto um previsor de carga para o curto-prazo, considerando restrições na aquisição dos dados de temperatura. Logo, tem-se como proposta um modelo de previsão de carga horária de curto prazo (um dia a frente) empregando dados de carga elétrica e dados meteorológicos (temperatura) através de modelos de árvore de decisão. Decidiu-se pelo modelo de árvore de decisão, pois este modelo além de apresentar uma grande facilidade de interpretação dos resultados, apresenta pouquíssima ênfase em sua utilização na área de previsão de carga elétrica.
The importance of load forecasting for the short term (up to one-week ahead) has been steadily growing in the last years. Load forecasts are the basis for the forecasting of energy prices, and the privatisation, and the introduction of competitiveness in the Brazilian electricity sector, have turned price forecasting into an extremely important task. As a consequence of structural changes in the electricity sector, the variability and the non-stationarity of the electrical loads have tended to increase, because of the dynamics of the energy prices. As a consequence of these structural changes, new forecasting methods are needed to meet the new scenarios. The tools that are available for load forecasting in the international market require a large amount of online information, specially information about weather data. Since this information is not yet readily available in Brazil, this thesis proposes a short-term load forecaster that takes into consideration the restrictions in the acquisition of temperature data. A short-term (one-day ahead) forecaster of hourly loads is proposed that combines load data and weather data (temperature), by means of decision tree models. Decision trees were chosen because those models, despite being easy to interpret, have been very rarely used for load forecasting.
MARQUES, DANIEL DOS SANTOS. "A DECISION TREE LEARNER FOR COST-SENSITIVE BINARY CLASSIFICATION". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=28239@1.
Testo completoCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Problemas de classificação foram amplamente estudados na literatura de aprendizado de máquina, gerando aplicações em diversas áreas. No entanto, em diversos cenários, custos por erro de classificação podem variar bastante, o que motiva o estudo de técnicas de classificação sensível ao custo. Nesse trabalho, discutimos o uso de árvores de decisão para o problema mais geral de Aprendizado Sensível ao Custo do Exemplo (ASCE), onde os custos dos erros de classificação variam com o exemplo. Uma das grandes vantagens das árvores de decisão é que são fáceis de interpretar, o que é uma propriedade altamente desejável em diversas aplicações. Propomos um novo método de seleção de atributos para construir árvores de decisão para o problema ASCE e discutimos como este pode ser implementado de forma eficiente. Por fim, comparamos o nosso método com dois outros algoritmos de árvore de decisão propostos recentemente na literatura, em 3 bases de dados públicas.
Classification problems have been widely studied in the machine learning literature, generating applications in several areas. However, in a number of scenarios, misclassification costs can vary substantially, which motivates the study of Cost-Sensitive Learning techniques. In the present work, we discuss the use of decision trees on the more general Example-Dependent Cost-Sensitive Problem (EDCSP), where misclassification costs vary with each example. One of the main advantages of decision trees is that they are easy to interpret, which is a highly desirable property in a number of applications. We propose a new attribute selection method for constructing decision trees for the EDCSP and discuss how it can be efficiently implemented. Finally, we compare our new method with two other decision tree algorithms recently proposed in the literature, in 3 publicly available datasets.
Булах, В. А., Л. О. Кіріченко e Т. А. Радівілова. "Classification of Multifractal Time Series by Decision Tree Methods". Thesis, КНУ, 2018. http://openarchive.nure.ua/handle/document/5840.
Testo completoAssareh, Amin. "OPTIMIZING DECISION TREE ENSEMBLES FOR GENE-GENE INTERACTION DETECTION". Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1353971575.
Testo completoAzad, Mohammad. "Decision and Inhibitory Trees for Decision Tables with Many-Valued Decisions". Diss., 2018. http://hdl.handle.net/10754/628023.
Testo completoBoz, Olcay. "Converting a trained neural network to a decision tree dectext-decision tree extractor /". Diss., 2000. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9982861.
Testo completoYU, CHIH-FENG, e 余致鋒. "Application of Decision Tree C5.0 to Fund Decision". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/y98nsm.
Testo completo國立嘉義大學
企業管理學系
106
In recent years, financial literacy of citizens has been improving. Furthermore, financial investment channels have likewise multiplied. Most investment tools all need a lot of financial know-how in order to obtain steady profits. Compared to other financial tools, mutual fund risks and barriers to entry are relatively low. The total number of kinds of mutual funds have been increasing yearly and within the many mutual funds available, picking the right fund and strategy to take as the best investment methods are what investors focus on. Every mutual fund has a set of efficiency benchmark. This study analyzes and discusses at the local mutual fund market and uses efficiency benchmark data from 2012 to 2017 of Taiwan’s local stock type and global investment stock type mutual funds. The research uses data mining to analyze the data from these benchmarks and looks for selection and manipulation strategies that can be applied to the mutual funds. Through data mining decision tree analysis, the study categorizes the mutual funds into three types: buy, hold, and sell. This research uses maximum return to explore the problem of investment strategy on mutual funds. Data analysis results help most investors to understand mutual fund strategy and the meaning of each index in order to minimize losses in the mutual fund market.
Huang, Xiao-Juan, e 黃小娟. "Decision-Tree Based Image Clustering". Thesis, 2002. http://ndltd.ncl.edu.tw/handle/42912242158073405104.
Testo completo南華大學
資訊管理學系碩士班
90
In this thesis, we propose an image clustering method based on CLTree for image segmentation. CLTree is a clustering algorithm that uses decision-tree technique. It’s quit different from existing clustering methods, and it finds clusters without making any prior assumptions or any input parameters. Whether a clustering is good or bad depends on the user's subjective judgment, so we offer three image segmentation results. The experimental results reveal that all of them perform well.
Wu, Chia-Chi, e 吳家齊. "Resource-Constrained Decision Tree Induction". Thesis, 2010. http://ndltd.ncl.edu.tw/handle/57990131846994037048.
Testo completo國立中央大學
資訊管理研究所
98
Classification is one of the most important research domains in data mining. Among the existing classifiers, decision trees are probably the most popular and commonly-used classification models. Most of the decision tree algorithms aimed to maximize the classification accuracy and minimize the classification error. However, in many real-world applications, there are various types of cost or resource consumption involved in both the induction of decision tree and the classification of future instance. Furthermore, the problem we face may require us to complete a classification task with limited resource. Therefore, how to build an optimum decision tree with resource constraint becomes an important issue. In this study, we first propose two algorithms which are improved versions of traditional TDIDT(Top-Down Induction on Decision Trees) algorithms. Then, we adopt a brand new approach to deal with multiple resource constraints. This approach extracts association classification rules from training dataset first, and then builds a decision tree from the extracted rules. Empirical evaluations were carried out using real datasets, and the results indicated that the proposed methods can achieve satisfactory results in handling data under different resource constraints.
Jeng, Yung Mo, e 鄭永模. "The Fuzzy Decision Tree Induction". Thesis, 1993. http://ndltd.ncl.edu.tw/handle/11456447856313611299.
Testo completoShi-Feng, Hsi. "The Defuzzification for Fuzzy Decision Tree". 2001. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0009-0112200611304405.
Testo completoHsi, Shi-Feng, e 奚世峰. "The Defuzzification for Fuzzy Decision Tree". Thesis, 2001. http://ndltd.ncl.edu.tw/handle/48869673305420105003.
Testo completo元智大學
資訊管理研究所
89
In recent years, fuzzy decision tree had been widely used to extracting classification knowledge from a set of feature-based data. And many researchers are engaged in the more efficient and optimal algorithms to construct fuzzy decision trees. However, very few papers discuss the process of defuzzification in fuzzy decision tree. Therefore, we propose a new method that emphasizes on the defuzzification process. The tree build by our method is called weighted fuzzy decision tree. It uses the concept of weighted fuzzy production rule(WFPR) in defuzzification process and the concept of fuzzy Bayesian inference(FBI) method to find the parameters needed in the inference process of WFPR. To verify the accuracy of our method for classification, standard benchmark datasets are used. When the tree is build as non-perfect decision tree, our proposed method has higher accuracy for classification than other defuzzification methods; when the tree is perfect decision tree, our method is also acceptable.
Randall, William D. "Software reusability: a decision tree model". Thesis, 1988. http://hdl.handle.net/10945/23120.
Testo completoLin, Cheng-ying, e 林政頴. "Privacy Preserving for Distributed Decision Tree". Thesis, 2008. http://ndltd.ncl.edu.tw/handle/01048697791498275075.
Testo completo國立臺南大學
數位學習科技學系碩士班
96
As the recent development of the computer science, the data quantity of enterprise database increases rapidly. To extract the usefulness information from huge databases, many efficient data mining technologies have been applied. In recent years, the data mining tools are more and more powerful, and the risk of privacy leak has become an urgent problem. Privacy preserving data mining is a relatively new research area in data mining and knowledge discovery. In a common situation, databases are distributed among several organizations who would like to cooperate mining to extract global knowledge, but each party needs prevent it’s privacy not directly sharing the data. Therefore, this study presents an algorithm for privacy preserving distributed decision tree based on C4.5. While this has been done for horizontally partitioned data, this study presents an algorithm for vertically partitioned attributes. Each site computes a portion of data, and then they exchange the result to each other. The goal of this paper is to obtain correct data mining results and preserve the privacy of each site.
Chen, Yih-Ming, e 陳奕名. "Borderline SMOTE adaptive boosted decision tree". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/02768976104039544520.
Testo completo國立交通大學
統計學研究所
104
The problem of learning from imbalanced data has been receiving a growing attention. Since dealing with imbalanced data may decrease the efficiency of classifier, many researchers have been working on this domain and coming up with many solutions, such as the method of combining SMOTE(Synthetic Minority Over-sampling Technique) and decision tree. In this study, we review the existing methods including SMOTE, Borderline SMOTE, Adaptive Boosting and SMOTE Boosting. To improve these methods, we propose an approach Borderline SMOTE Boosting. This approach is compared with the existing methods using three real data examples. The results show that the proposed method leads to a better result.
Ngan, Dang Thi Kim, e 鄧氏金銀. "HTTP Botnet detection using decision tree". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/78666177227649974399.
Testo completo中國文化大學
資訊管理學系
102
Botnet is the most dangerous and widespread threat among the diverse forms of malware internet-attacks nowaday. A botnet is a group of damaged computers connected via Internet which are remotely accessed and controlled by hackers to make various network attacks. Malicious activities include DDoS attack, spam, click fraud, identity theft and information phishing. The most basic characteristic of botnets is the use of command and control channels to communicate with botnet and through which bonet can be updated and command. Botnet has become a common and effective tool used by Botmaster in many cyber-attacks. Recently malicious botnets develop to HTTP botnets instead of typical IRC botnets. HTTP botnets is the latest generations of Botnet ,and it use the standard HTTP protocol to contact with their bots. By using the normal HTTP traffic, the bots is consider as normal users of the networks, and the current network security systems cannot detect out them. To solve this problem, a method based on network behavior analysis system was evolved to improve modify and adding new features to the current methods of detecting HTTP-based Botnets and their bots.
Lai, Jian-Cheng, e 賴建丞. "Fast Quad-Tree Depth Decision Algorithm for HEVC Coding Tree Block". Thesis, 2014. http://ndltd.ncl.edu.tw/handle/39ucm4.
Testo completo國立虎尾科技大學
資訊工程研究所
102
High Efficiency Video Coding (HEVC) is recently developed for ultra high definition video compression technique, which provides a higher compression ratio and throughput compared with previously video compression standard H.264/AVC. Therefore, this technique is widely used to limited bandwidth network transmission and confined storage space. In order to obtain the higher compression ratio and maintain video quality, which provides variable block partition and mode prediction for HEVC encoder. If each block is computed during the mode decision process, a lot of encoding time is consumed. It makes limiting the applicability in real time for HEVC. Hence, there are many fast algorithms proposed to eliminate the block partition or mode prediction. In natural videos, the neighbor blocks have high correlation with current block, by which the reference block method is studied to terminate or eliminate the block or mode prediction. This method uses the lower computation of mode reduction to obtain a best compression ratio and time saving. Therefore, that is widely proposed for HEVC fast algorithm. On the other hand, the non-reference method has been proposed by extracting the feature of video frames. But the non-reference method predict the terminated condition. This thesis, proposes two quad-tree depth decision methods : one is the reference method and the other one non-reference method for depth-correlation and edge strength detection method, respectively. In reference block method, we find the correlation of up to 90% correlation with the co-located coding tree block (CTB) in the previous frame. Therefore, we use the co-located CTB depth information to limit the depth partition of CTB. Different from the previously proposed method, the proposed method adopts the extension of partition depth by one level. But it is poor prediction in fast moving object sequence or change scene. The fast moving and changing scenes are lower correlation between frames. Based on aforementioned disadvantage, the edge strength detection method is proposed to detect the structure variation of CTB to predict the encoded depth. Since this method does not require the reference to neighbor block, a better prediction with variation video sequence can be obtained. But it makes the poor prediction for unobvious edge video. For example, in dark videos, the edge are not obvious and the proposed algorithm makes the poor prediction of depth level. Finally, the proposed fast methods are implemented in HM 10.1 model to demonstrate the efficiency of our algorithm. The proposed edge density detection method can obtain 23.1% of time savings with BD-bitrate close to 0.28% on average and depth-correlation method can provide about 21.1% of time savings and BD-bitrate increase of 0.17% on average.
Chao-YenChien e 簡兆彥. "Building Balanced Search Tree based on Layered Decision Tree for Packet Classification". Thesis, 2012. http://ndltd.ncl.edu.tw/handle/45153250848607847087.
Testo completo國立成功大學
資訊工程學系碩博士班
100
Packet classification is an important building block of the Internet routers for many network applications, such as Quality of Service (QoS), security, monitoring, analysis, and network intrusion detection (NIDS). In this thesis, we propose a scheme called Layer based Search Tree (LST) to solve multi-field packet classification problem. LST improves the traditional decision tree based schemes (e.g. HyperCuts and EffiCuts) by reconstructing the leaf nodes of the decision tree as an approximately balanced search tree. Since all the address subspace covered by each node of LST is disjoint, the buckets of the leaf and internal nodes in LST must not be empty. Thus, only the rules in one bucket can match the header values of the incoming packet. Searches on LST are completed immediately after the packet matches a rule in some internal node. In software environment, the experimental results show that LST requires less memory storage even if LST categorizes the rules by two fields to reduce rule duplication rather than five fields in EffiCuts. Besides, LST needs less number of memory accesses than HyperCuts and EffiCuts. In addition, we design the hardware search engine with pipeline and parallel architecture for the LST in Xilinx Virtex-5 FPGA environment. Because the memory usage of LST is very efficient, our search engine can support the ACL, FW, and IPC tables of 50k rules. LST search engine with dual ported memory can sustain the throughput of over 120 Gbps for the packets of minimum size (40 bytes).
Yang, Tsan-Hui, e 楊璨輝. "Behavior Cloning by RL-based Decision Tree". Thesis, 2006. http://ndltd.ncl.edu.tw/handle/32882692325935020525.
Testo completo國立中正大學
電機工程所
95
It is hard to define a state space or the proper reward function in reinforcement learning to make the robot act as expected. In this paper, we demonstrate the expected behavior for a robot. Then a RL-based decision tree approach which decides to split according to long–term evaluations, instead of a top-down greedy strategy which finds out the relationship between the input and output from the demonstration data. We use this method to teach a robot for target seeking problem. In order to promote the performance in tackling target seeking problem, we add a Q-learning along with the state space based on RL-based decision tree. The experiment result shows that Q-learning can promote the performance quickly. For demonstration, we build a mobile robot powered by an embedded board. The robot can detect the ball of the range in any direction with omni-directional vision system. With such powerful embedded computing capability and the efficient machine vision system, the robot can inherit the learned behavior from a simulator which has learned the empirical behavior and continue to learn with Q-learning to improve the performance of target seeking problem.
Shao, Fu-Hsiang, e 邵福祥. "The kalman filter embedded fuzzy decision tree". Thesis, 1997. http://ndltd.ncl.edu.tw/handle/84437871359722247166.
Testo completo