Indice
Letteratura scientifica selezionata sul tema "Décharges électriques à haute tension (DEHT)"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Décharges électriques à haute tension (DEHT)".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Tesi sul tema "Décharges électriques à haute tension (DEHT)"
Brahim, Marwa. "Délignification assistée par traitements physiques et chimiques à partir de résidus de colza". Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2317/document.
Testo completoIn the context of plant biorefinery, especially for bioethanol production, pretreatment step is important to reduce the recalcitrance of lignocellulosic biomass and to increase the reactivity towards enzymatic / biological conversion processes. Recalcitrance is mainly due to the presence of lignin and crystalline cellulose. The goal of any pretreatment of biomass is to alter the structure of the lignocellulosic material in order to increase the accessibility of cellulose and hemicellulose to the enzymes. Conventional pretreatments include aggressive steps, using harmful reagents and exposing the material to high temperatures and pressures for long periods. In this work, we developed a new process for delignification of rapeseed residues, combining physical pretreatments (ultrasounds (US), microwaves (MW)) and electrotechnologies (PEF, HVED)) to conventional chemical pretreatments (Organosolv, alkaline). This coupling has improved the process in terms of phytomelanin extraction yield (up to 40 % gain) in the case of rapeseed hulls and delignification efficiency (more than 2 times more efficient than the chemical process performed alone) in the case of rapeseed straw while reducing for most studied technologies the severity of the overall process. Characterization through electron microscopy revealed changes in plant tissue represented by the appearance of pores in the treated rapeseed hulls and fiber breakdown of treated rapeseed straw inducing better enzymatic hydrolysis performance. However, loss of sugars from cellulose and hemicellulose was observed with physical pretreatments. Analysis of the recovered lignins allowed us to observe lignin modifications during physical treatments such as recondension reactions in presence of ultrasounds and cleavage of ferulates bridges with high-voltage electrical discharges. Then the formulation of « eco-sourced » adhesives from phytomélanins extracted by the previous studied processes was attempted. Finally, a study of the impact of innovative technologies in terms of technical and economic performances was carried out to consider a scale-up of these technologies. It was concluded that physical step enhanced the profitability of this biorefinery
Dan, Liu. "Couplage de technologies électriques et membranaires pour l'extraction / séparation de composés d'intérêt à partir de sous-produits de la vinification". Compiègne, 2012. http://www.theses.fr/2012COMP1993.
Testo completoThis study concentrates on the intensification of aqueous extraction of biomolecules from winery by-products (yeasts, grape seeds, and grape pomaces) by electrotechnologies (pulsed electric fields (PEF) and high voltage electrical discharges (HVED)) and the purification of the extract by membrane technology. The electrical techniques can damage cell membranes and/or cell wall thus enhancing the release of intracellular compounds. The application of an electrical pretreatment allowed selective extraction of intracellular compounds from Saccharomyces cerevisiae yeasts. Results have shown the effect of the high pressure wave produced during HVED on the fragmentation of grape seeds and the extraction of the phenolic compounds. Finally, an empirical model was used to describe the kinetics of polyphenols extraction process. The application of membrane technology in the clarification of the extracts of winery byproducts has been explored. The principal disadvantage of this technology is membrane fouling. Various techniques were used to reduce the fouling phenomena. The studies carried out on the dynamic systems (stirred filtration and ultrasound assisted filtration) in this work avoided membrane fouling and maintained their performances in terms of fluxes and retentions. Based on the study of fouling mechanisms and quantification of specific cake resistance, the optimum operating conditions supporting a reduced fouling can be proposed
Almohammed, Fouad. "Application des électrotechnologies pour une valorisation optimisée de la betterave à sucre dans un concept de bioraffinerie". Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2328/document.
Testo completoThis work discusses the use of electrotechnologies for an optimized valorization of sugar beet according to the concept of biorefinery. The applied electrotechnologies are pulsed electric fields (PEF) and high-voltage electrical discharges (HVED). The study firstly aims at optimizing an alternative method for sugar extraction by PEF assisted cold alkaline pressing. On the other hand, it proposes new ways for valorizing two by-products of sugar beet industry, which are sugar beet tails and pulps. In the first part, PEF treatment combined with liming leads to a better disintegration of beet tissue. It permits accelerating of pressing kinetics, improvement of juice yield and quality, and reduction of subsequent purification procedure. A parametric optimization study identified the best application itinerary of the proposed extraction process. Fresh sugar beet cossettes are pretreated by PEF at 600 V/cm for 10 ms (Q = 2.7 Wh/kg). The electroporated cossettes are then pressed to extract 75% of intracellular juice. Compressed cossettes are subjected to an alkaline pressing with 10% lime milk. In order to extract the residual sucrose in the obtained press-cake, two additional steps of pressing with an intermediate hydration are required. This optimized process allows well exhausting the sugar cossettes (sugar loss of 0.23% and pulp dry matter of 39%) for a short extraction (30 min) and with low draft (108%) compared to diffusion method. Thus, it allows substantial saving in materials and energy especially for juice extraction and pulp drying. Compared to the conventional method, the energy saving amounted to 91.96 × 106 kWh for a sugar beet factory treating 10 000 tons per day for a campaign of 110 days. In addition, the proposed method simplifies the purification procedure of raw juice and reduces the used amount of lime from 50 to 60%. In the second part of this study, two processing methods were proposed and optimized at lab-scale for valorization of sugar beet tails and pulps. Sugar beet tails were used to produce bioethanol. Raw juice of beet tails was extracted by PEF assisted cold pressing. Bioethanol production was then done by alcoholic fermentation. Pretreatment of beet tails with PEF (450 V/cm, 10 ms) permits accelerating the pressing kinetics, increasing the yield of solutes (79.85% vs. 16.8%), and leads to a more concentrated juice (10% vs. 5.2%). The optimized process permits the production of about 41.75 L of bioethanol per ton of beet tails when PEF pretreatment is applied against only 8.2 L of bioethanol without PEF confirming the potential of this new valorization scheme. Dried beet pulp having a dry matter of 92.8% was used for pectin recovery. The present study showed that the application of HVED pretreatment leads to intensify pectin extraction. The relative gain of pectin yield is 25.3% with an energy consumption of 76.2 kJ/kg. The proposed biorefinery scheme could protect the sugar beet industry in France after the suppression of the sugar quota system in the European Union, which will take effect on 1st October 2017
El, Kantar Sally. "Valorisation des coproduits issus des industries d’agrumes : extraction des molécules bioactives par des technologies innovantes". Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2440/document.
Testo completoThis work consists of the valorization of citrus by-products with innovative technologies. Citrus pressing produces millions of tons of waste per year worldwide. This waste (peels, pulps and seeds) is generally dedicated to animal feed or eliminated by composting or incineration. However its content in bioactive molecules leads to several ways of valorization. Since peels present about half of the citrus waste mass, studies have been focused on the valorization of citrus peels by the extraction of bioactive compounds. Conventional methods generally used for the extraction of bioactive compounds (solid-liquid extraction, hydrodistillation) have several disadvantages such as the use of expensive and toxic solvents, long extraction times and high energy consumption. For this reason, several innovative non-thermal technologies such as Pulsed Electric Fields (PEF), High Voltage Electrical Discharges (HVED) and Ultrasounds (US) and thermal treatments such as microwaves (MO) and infrared (IR) have been tested for the valorization of citrus by-products. Whole citrus fruits (oranges, pomelos, lemons) were PEF treated at an intensity of 3 kV/cm, then citrus juice and polyphenols were extracted by pressing. The study of the PEF-induced cell permeabilization was conducted by several methods and showed that the degree of damage varied according to the type of the treated fruit. The electroporation of the cells induced by the PEF, allowed an increase the juice yields after pressing and improved the liberation of the polyphenols from the citrus peels into the juice. This explains the possibility of obtaining a juice rich in polyphenols by treating the whole fruits with PEF before pressing. Among the solvents tested for the extraction of polyphenols from citrus peels, water is the least effective. The addition of 20% glycerol to water changed the polarity of the medium and improved the extraction of the polyphenols. The use of an enzyme mixture enhanced the release of the polyphenols related to the polysaccharides. Deep eutectic solvents have been as effective as hydroethanolic mixtures. To improve the yields and the kinetics of extractions in the different green solvents and in the enzyme mixture, citrus peels were pretreated with HVED in water. The mechanical effect of HVED, based on the fragmentation of the peels has improved the extraction of polyphenols in the various solvents. The intensification of polyphenols extraction was also conducted by IR and US. The extraction of polyphenols by IR was optimized using the surface response methodology. IR heating did not alter the extracted polyphenols which have significant antifungal and anti-mycotoxinogenic activities. The pretreatment of citrus peels with IR weakened the cell structures, increasing thus the diffusion of polyphenols during US treatment
Zhang, Rui. "Impact of emerging technologies on the cell disruption and fractionation of microalgal biomass". Thesis, Compiègne, 2020. http://www.theses.fr/2020COMP2548.
Testo completoThis research work focuses on extraction and fractionation of bio-molecules from microalgae using physical treatments: pulsed electric fields (PEF), high voltage electrical discharges (HVED) and ultrasonication (US) techniques. In this study, three microalgae species Nannochloropsis sp., Phaeodactylum tricornutum (P. tricornutum) and Parachlorella kessleri (P. kessleri) were investigated. These species have different cell shapes, structure and intracellular contents. The effects of tested techniques on extraction of bio-molecules have been highlighted in a quantitative and qualitative analysis by evaluating the ionic components, carbohydrates, proteins, pigments and lipids. A comparative study of physical treatments (PEF, HVED and US) at the equivalent energy input for release of intracellular bio-molecules from three microalgal species allowed us to better understand the different disintegration mechanisms. For each microalga at the same energy consumption, the HVED treatment proved to be the most efficient for extraction of carbohydrates, while the US treatment for extraction of proteins and pigments. In general, the smallest efficiency was observed for the PEF treatment. However, the highest selectivity towards carbohydrates can be obtained using the mild PEF or HVED technique. The preliminary physical treatments (PEF, HVED or US) of more concentrated suspensions followed by high pressure homogenization (HPH) of diluted suspensions allowed improving the extraction efficiency and decreasing the total energy consumption. The physical pretreatments permit to reduce the mechanical pressure of the HPH and number of passes, to reach the same extraction yield. For the maximum valorisation of microalgal biomass, extraction procedure assisted by HVED treatment (40 kV/cm, 1-8 ms) followed by aqueous and non-aqueous extraction steps seems to be useful for selective extraction and fractionation of different bio-molecules from microalgae. The significant effects of HVED pre-treatment on organic solvent extraction of pigments (chlorophylls, carotenoids) and lipids were also observed
Chadni, Morad. "Impact des prétraitements physiques sur l’intensification de l’extraction et la valorisation des hémicelluloses de hauts poids moléculaires à partir d’épicéa". Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2490.
Testo completoThis thesis project is specifically dedicated to the study of the intensification of the extraction of hemicellulose polymers from spruce wood by the application of physicochemical pretreatments: Microwave (MW), High Voltage Electrical Discharge (HVED) and Steam Explosion (STEX). Extraction of hemicelluloses is often carried out by an autohydrolysis or by chemical treatments. In this work, we have developed an original process for extracting hemicelluloses polymers by combining physical pretreatments (MW, HVED and STEX) with chemical pretreatments and autohydrolysis. This combination allowed us to recover hemicelluloses with average molecular weights (Mw) highs up to 70 kDa, 66 kDa and 55 kDa when STEX, MW and HVED were applied in basic medium respectively. The performance of the pretreatments in terms of extraction yield is higher than the autohydrolysis alone for the same extraction temperatures. The characterization of the extracted hemicelluloses revealed an extraction selectivity as a function of the pH of the medium of impregnation. Impregnation in neutral medium promotes the solubilization of galactoglucomannans (GGM) and impregnation in a basic medium promotes the solubilization of arabinoglucoronoxylans (ARX). The analysis of the degree of acetylation (AD) showed that STEX pretreatment allowed the extraction of acetyl-GGM with an AD of approximately 0.35 which is close to that in native hemicelluloses.The characterization of films made from extracted hemicelluloses showed that these films are good barrier to oxygen with oxygen permeability near to 0.83 cm3 μm-1 day-1 kPa-1 and to UV radiations
Hong, Junting. "Evaluation of atrazine degradation processes in water by electrical discharges and high-frequency ultrasound : parametric optimization and study of reaction mechanisms". Electronic Thesis or Diss., Compiègne, 2024. http://www.theses.fr/2024COMP2804.
Testo completoThe main goal of this thesis is to develop an efficient technology for the degradation of pesticides. For this purpose, the widely used herbicide atrazine was studied as a model molecule. Atrazine was degraded in water by high voltage electrical discharge (HVED), and its degradation performance was compared with traditional water treatment technologies Fenton oxidation and ultrasound (US). The detection and quantification of atrazine and its metabolites were achieved by high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS). An online analysis method by HPLC-HRMS combined with automatic sampling was developed for real-time monitoring of the degradation process. The HVED technology efficiently degraded atrazine and reduced toxic metabolites generated during Fenton oxidation and US processes. HVED process has less energy consumption than US process while achieving the same 89% atrazine degradation efficiency. The mechanism pathways of atrazine degradation for different technologies were proposed. The effect of real matrix (tap water) versus model matrix (deionized water) on atrazine degradation was studied. Results showed that in HVED treatment, the degradation efficiency of atrazine in tap water was lower than that in deionized water, which may be related to the conductivity of the water and to the mechanism of electric arcs generation in a conductive medium. The acute toxicity (LC50) in Daphnia magna was used to evaluate the toxicity of different treatment solutions initially containing atrazine. The toxicity of atrazine solution treated by Fenton oxidation is higher than that treated by HVED and US
Delmas, Antoine. "Etude transitoire du déclenchement de protections haute tension contre les décharges électrostatiques". Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1659/.
Testo completoThe research work presented in this thesis is aimed to analyze and optimize the triggering behavior of high voltage devices against electrostatic discharges (ESD). Two approaches were used : A dedicated tool was created. The " transient-TLP " tool is based on mathematical post-processing of oscilloscope raw data, measured using a standard vf-TLP system. Measurement error is less than 2 %. This method, first designed for on-wafer measurement were then adapted to packaged device measurements. The transient behavior of ESD devices used at Freescale was analyzed using this tool. TCAD simulations were then performed to analyze the turning-on of high voltage ESD devices. The origins of the strong voltage overshoot peak observed at the triggering of this component were explained, and design solutions were proposed to significantly reduce the magnitude of this peak
Delsart, Cristele. "Champs électriques pulsés et décharges électriques de haute tension pour l’extraction et la stabilisation en oenologie". Thesis, Bordeaux 2, 2012. http://www.theses.fr/2012BOR21982/document.
Testo completoThe wine industry needs to find solutions in the coming years to reduce its carbon footprint by 20% and quickly propose alternatives to sulphur dioxide usage. This work on pulsed electric fields offers wine professionals an eco-innovation that could help to address these two issues. Eco-innovation is increasingly seen as the key to future competitiveness in the context of sustainable development. However, before being integrated in wine production, eco-innovation must demonstrate its performance and efficiency without compromising product quality and consumers safety so that it could be approved by government authorities (OIV, EU ...). As such, this thesis has received a joint financial support from the CIVB and the ADEME. The principle of Pulsed Electric Field (PEF) is to apply to a product; electrical pulses of a few kilovolts in a very short period time (a few microseconds) and then repeated n times. During treatment (grapes, grape must or wine) cells transmembrane potential increases till the induction of pores in the membranes. The irreversibility of the pores leads not only to the extraction of cellular components but also cell death. Thus, depending on the time of this technology application in winemaking and operating parameters, allows the extraction of sensory interests compounds such as polyphenols or the inactivation of microorganisms. PEF takes into account three important aspects to the sustainability of a technology: environment, economy and quality. This technique has a number of advantages for wine producers: clean, fast, inexpensive, efficient, industrializable and automated. Compared to other treatments such as pasteurization, sterile filtration, thermovinification, hot or cold maceration, cryoextraction or flash-release, its energy consumption is low (a few tens of kWh / tonne). PEF technology is environmentally friendly, as it requires little energy and no chemical inputs. It is fast and efficient because the processing time is only a few tens to hundreds of milliseconds. Finally, this technique is a non-thermal and therefore does not degrade the heat-sensitive molecules such as flavours. The objectives of this research work was to understand the effect of PEF on the cells, to determine the processing parameters during the extraction of compounds of interest grapes and to inactivate microorganisms in order to stop alcoholic fermentation of sweet wines and stabilize microbiologically red wines before bottling maintaining the quality of the processed product
Rajeha, Hiba. "Optimisation des méthodes d'extraction des composés phénoliques des raisins libanais et de leurs coproduits". Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2209.
Testo completoThis study deals with the optimization of the extraction methods of phenolic compounds from viticulture and viniculture by-products, namely vine shoots and grape pomace. Several innovative technologies were tested and compared: high voltage electrical discharges (HVED), accelerated solvent extraction (ASE), ultrasounds (US) and pulsed electric fields (PEF). The solid-liquid extraction conducted on vine shoots showed that, amongst the studied solvents, water is the least effective. The addition of the β-cyclodextrin to water improves the extraction process but remains less effective than that with hydroethanolic mixtures. The extraction in alkaline medium gives the highest phenolic compound extraction yields. The intensification of phenolic compound extraction from vine shoots was possible thanks to new extraction technologies. The effectiveness of the tested methods was the least with US, followed by PEF to accomplish the highest phenolic yield with HVED. The filterability of the extracts was slower when their composition was complex, and the membrane technology allowed a good purification and concentration of phenolic compounds. The reason behind the high effectiveness of HVED was investigated. The action mechanisms of HVED were studied in details. A mechanical effect of HVED provoked vine shoots fragmentation and particle size reduction. This was the main phenomenon responsible for the intensification of the extraction process. It also suggested that a grinding pretreatment would not be necessary prior to HVED, which considerably diminishes the energy input of the overall process. The presence of a non-mechanical effect and its contribution in the efficiency of HVED were also shown. The formation of hydrogen peroxide during the treatment was observed. However it did not seem to alter vine shoot phenolic compounds since these demonstrated a high radical scavenging capacity. As for the studies conducted on grape pomace, the simultaneous variation of several operating parameters allowed the aqueous and hydroethanolic optimization of phenolic compound extraction from these byproducts by response surface methodology (RSM). The passage from an aqueous to a hydroethanolic medium clearly improved the solid-liquid extraction of phenolic compounds from grape pomace. The use of ASE further increased the phenolic compound yield up to three times as compared to the optimum obtained with a hydroethanolic solvent