Letteratura scientifica selezionata sul tema "Data / features engineering"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Data / features engineering".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Data / features engineering"
Jadhav, Shailaja B., e D. V. Kodavade. "Enhancing Flight Delay Prediction through Feature Engineering in Machine Learning Classifiers: A Real Time Data Streams Case Study". International Journal on Recent and Innovation Trends in Computing and Communication 11, n. 2s (31 gennaio 2023): 212–18. http://dx.doi.org/10.17762/ijritcc.v11i2s.6064.
Testo completoDube, R. P., e H. R. Johnson. "Computer-Assisted Engineering Data Base". Journal of Engineering for Industry 107, n. 1 (1 febbraio 1985): 33–38. http://dx.doi.org/10.1115/1.3185961.
Testo completoShrestha, Sushil, e Manish Pokharel. "Educational data mining in moodle data". International Journal of Informatics and Communication Technology (IJ-ICT) 10, n. 1 (1 aprile 2021): 9. http://dx.doi.org/10.11591/ijict.v10i1.pp9-18.
Testo completoZhang, Song. "The Construction of Modern Administrative Law via Data Mining". Archives des Sciences 74, s1 (10 agosto 2024): 32–39. http://dx.doi.org/10.62227/as/74s16.
Testo completoHuang, Eunchong, Sarah Kim e TaeJin Ahn. "Deep Learning for Integrated Analysis of Insulin Resistance with Multi-Omics Data". Journal of Personalized Medicine 11, n. 2 (15 febbraio 2021): 128. http://dx.doi.org/10.3390/jpm11020128.
Testo completoLi, Songyuan, Yuyan Man, Chi Zhang, Qiong Fang, Suya Li e Min Deng. "PRPD data analysis with Auto-Encoder Network". E3S Web of Conferences 81 (2019): 01019. http://dx.doi.org/10.1051/e3sconf/20198101019.
Testo completoLi, Zongze. "Feature Engineering and Data Visualization Analysis in Artificial Intelligence in Big Data Era". International Journal of Computer Science and Information Technology 3, n. 3 (12 agosto 2024): 390–95. http://dx.doi.org/10.62051/ijcsit.v3n3.41.
Testo completoLu, Songyuanyi. "Technical Features and Trends of Data Science in Financial Engineering". Frontiers in Business, Economics and Management 4, n. 3 (31 luglio 2022): 34–37. http://dx.doi.org/10.54097/fbem.v4i3.1068.
Testo completoChen, Jingcheng, Yining Sun e Shaoming Sun. "Improving Human Activity Recognition Performance by Data Fusion and Feature Engineering". Sensors 21, n. 3 (20 gennaio 2021): 692. http://dx.doi.org/10.3390/s21030692.
Testo completoSalii, Yevhenii, Alla Lavreniuk e Nataliia Kussul. "Statistical methods of feature engineering for the problem of forest state classification using satellite data". System research and information technologies, n. 1 (29 marzo 2024): 86–98. http://dx.doi.org/10.20535/srit.2308-8893.2024.1.07.
Testo completoTesi sul tema "Data / features engineering"
Mohammed, Hussein Syed. "Random feature subspace ensemble based approaches for the analysis of data with missing features /". Full text available online, 2006. http://www.lib.rowan.edu/find/theses.
Testo completoBaik, Edward H. (Edward Hyeen). "Surface-based segmentation of volume data using texture features". Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43516.
Testo completoIncludes bibliographical references (p. 117-123).
by Edward H. Baik.
M.Eng.
Campbell, Richard John. "Recognition of free-form 3D objects in range data using global and local features /". The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486397841221694.
Testo completoOldfield, Robin B. "Lithological mapping of Northwest Argentina with remote sensing data using tonal, textural and contextual features". Thesis, Aston University, 1988. http://publications.aston.ac.uk/14287/.
Testo completoMora, Omar Ernesto. "Morphology-Based Identification of Surface Features to Support Landslide Hazard Detection Using Airborne LiDAR Data". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429861576.
Testo completoFridley, Lila (Lila J. ). "Improving online demand forecast using novel features in website data : a case study at Zara". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117976.
Testo completoThesis: S.M., Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, in conjunction with the Leaders for Global Operations Program at MIT, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (page 77).
The challenge of improving retail inventory customer service level while reducing costs is common across many retailers. This problem is typically addressed through efficient supply chain operations. This thesis discusses the development of new methodologies to predict e-commerce consumer demand for seasonal, short life-cycle articles. The new methodology incorporates novel data to predict demand of existing products through a bottom-up point forecast at the color and location level. It addresses the widely observed challenge of forecasting censored demand during a stock out. Zara introduces thousands of new items each season across over 2100 stores in 93 markets worldwide [1]. The Zara Distribution team is responsible for allocating inventory to each physical and e-commerce store. In line with Zara's quick to retail strategy, Distribution is flexible and responsive in forecasting store demand, with new styles arriving in stores twice per week [1]. The company is interested in improving the demand forecast by leveraging the novel e-commerce data that has become available since the launch of Zara.com in 2010 [2]. The results of this thesis demonstrate that the addition of new data to a linear regression model reduces prediction error by an average of 16% for e-commerce articles experiencing censored demand during a stock out, in comparison to traditional methods. Expanding the scope to all e-commerce articles, this thesis demonstrates that incorporating easily accessible web data yields an additional 2% error reduction on average for all articles on a color and location basis. Traditional methods to improve demand prediction have not before leveraged the expansive availability of e-commerce data, and this research presents a novel solution to the fashion forecasting challenge. This thesis project may additionally be used as a case-study for companies using subscriptions or an analogous tracking tool, as well as novel data features, in a user-friendly and implementable demand forecast model.
by Lila Fridley.
M.B.A.
S.M.
Wang, Ziang. "People Matching for Transportation Planning Using Optimized Features and Texel Camera Data for Sequential Estimation". DigitalCommons@USU, 2012. https://digitalcommons.usu.edu/etd/1298.
Testo completoKatzwinkel, Tim, Bhavinbhai Patel, Alexander Schmid, Walter Schmidt, Justus Siebrecht, Manuel Löwer e Jörg Feldhusen. "Kosteneffiziente Technologien zur geometrischen Datenaufnahme im digitalen Reverse Engineering". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-215118.
Testo completoFabijan, Aleksander. "Developing the right features : the role and impact of customer and product data in software product development". Licentiate thesis, Malmö högskola, Fakulteten för teknik och samhälle (TS), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-7794.
Testo completoErdogan, Ozgur. "Main Seismological Features Of Recently Compiled Turkish Strong Motion Database". Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/3/12609679/index.pdf.
Testo completoLibri sul tema "Data / features engineering"
Safdar, Mutahar, Guy Lamouche, Padma Polash Paul, Gentry Wood e Yaoyao Fiona Zhao. Engineering of Additive Manufacturing Features for Data-Driven Solutions. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-32154-2.
Testo completoH, Fong Henry, e PDA Engineering (Firm : Santa Ana, Calif.). Software Products Division., a cura di. PATRAN II: A guide to new features and enhancements. Santa Ana, Calif. (1560 Brookhollow Dr., Santa Ana 92705-5475): PDA Engineering, Software Products Division, 1985.
Cerca il testo completoBartashevich, Aleksandr, Vladimir Onegin, Sergey Trofimov e Sergey Gayduk. Design furniture. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1025973.
Testo completoZuev, Sergey, Daut Yahutl', Boris Bass e Ruslan Maleev. Ignition devices for fuel-air mixture of heat engines. ru: INFRA-M Academic Publishing LLC., 2024. http://dx.doi.org/10.12737/1911604.
Testo completoOzdemir, Sinan, e Divya Susarla. Feature Engineering Made Easy: Identify unique features from your dataset in order to build powerful machine learning systems. Packt Publishing, 2018.
Cerca il testo completoModeling Hydrologic Effects Of Microtopographic Features. Nova Science Publishers, 2011.
Cerca il testo completo(Editor), Ian Flood, e Nabil Kartam (Editor), a cura di. Artificial Neural Networks for Civil Engineers: Advanced Features and Applications. American Society of Civil Engineers, 1998.
Cerca il testo completoSafdar, Mutahar, Guy Lamouche e Gentry Wood. Engineering of Additive Manufacturing Features for Data-Driven Solutions: Sources, Techniques, Pipelines, and Applications. Springer, 2023.
Cerca il testo completoBaran, Nicholas M. R:Base System 5 Including R:Base 5000; The Microsoft Reference Guide to All Commands, Functions and Features (Command Performance Series). Microsoft Press, 1987.
Cerca il testo completoFeature Engineering for Machine Learning and Data Analytics. Taylor & Francis Group, 2018.
Cerca il testo completoCapitoli di libri sul tema "Data / features engineering"
Taniguchi, Masanobu, Tomoyuki Amano, Hiroaki Ogata e Hiroyuki Taniai. "Features of Financial Data". In Statistical Inference for Financial Engineering, 1–39. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03497-3_1.
Testo completoDel Frate, Fabio, e Matteo Picchiani. "Features Extraction from Satellite Data". In Encyclopedia of Earthquake Engineering, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36197-5_223-1.
Testo completoDel Frate, Fabio, e Matteo Picchiani. "Features Extraction from Satellite Data". In Encyclopedia of Earthquake Engineering, 1039–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-35344-4_223.
Testo completoDai, Lingna, Fei Gao, Rongsheng Li, Jiachen Yu, Xiaoyuan Shen, Huilin Xiong e Weilun Wu. "Gated Fusion of Discriminant Features for Caricature Recognition". In Intelligence Science and Big Data Engineering. Visual Data Engineering, 563–73. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-36189-1_47.
Testo completoSangha, Ratinder Kaur, e Preeti Rai. "An Appearance-Based Gender Classification Using Radon Features". In Data, Engineering and Applications, 159–69. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6347-4_15.
Testo completoSafdar, Mutahar, Guy Lamouche, Padma Polash Paul, Gentry Wood e Yaoyao Fiona Zhao. "Feature Engineering in Additive Manufacturing". In Engineering of Additive Manufacturing Features for Data-Driven Solutions, 17–43. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-32154-2_2.
Testo completoChang, Yuan-chin Ivan, Haoran Hsu e Lin-Yi Chou. "Graphical Features Selection Method". In Intelligent Data Engineering and Automated Learning — IDEAL 2002, 475–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45675-9_71.
Testo completoHan, Yiqiu, e Wai Lam. "Exploiting Heterogeneous Features for Classification Learning". In Intelligent Data Engineering and Automated Learning, 177–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45080-1_25.
Testo completoYangui, Rania, Ahlem Nabli e Faiez Gargouri. "SOIM: Similarity Measures on Ontology Instances Based on Mixed Features". In Model and Data Engineering, 169–76. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11587-0_17.
Testo completoSingh, Manan, e Kavi Narayana Murthy. "Authorship Attribution using Filtered N-grams as Features". In Data Engineering and Communication Technology, 379–90. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0081-4_38.
Testo completoAtti di convegni sul tema "Data / features engineering"
Yuan, Run, e Haonan Long. "Driver fatigue detection based on multi-feature fusion facial features". In 2024 5th International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), 683–86. IEEE, 2024. http://dx.doi.org/10.1109/icbase63199.2024.10762609.
Testo completoHibatullah, Muhammad Helmi, e Yani Widyani. "SRS for Software with Machine Learning Features". In 2024 IEEE International Conference on Data and Software Engineering (ICoDSE), 211–16. IEEE, 2024. https://doi.org/10.1109/icodse63307.2024.10829896.
Testo completoYe, Dandan. "Reversible Data Hiding for Clustering Based on Pixel Texture Features". In 2024 3rd International Conference on Cloud Computing, Big Data Application and Software Engineering (CBASE), 343–47. IEEE, 2024. https://doi.org/10.1109/cbase64041.2024.10824492.
Testo completoJoshi, Nilesh S., e Jami J. Shah. "On the Viability of Developing CAD Data Exchange Standard for Form Features". In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85606.
Testo completoMirza, Waqas, e Irfan Manarvi. "Laptop selection using data mining of critical features". In Industrial Engineering (CIE39). IEEE, 2009. http://dx.doi.org/10.1109/iccie.2009.5223722.
Testo completoDu, Ping, e Erin F. MacDonald. "Eye-Tracking Data Predicts Importance of Product Features and Saliency of Size Change". In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12737.
Testo completoStanik, Christoph, Marlo Haering, Chakajkla Jesdabodi e Walid Maalej. "Which App Features Are Being Used? Learning App Feature Usages from Interaction Data". In 2020 IEEE 28th International Requirements Engineering Conference (RE). IEEE, 2020. http://dx.doi.org/10.1109/re48521.2020.00019.
Testo completoZeng, Weixin, Xiang Zhao, Jiuyang Tang e Xuemin Lin. "Collective Entity Alignment via Adaptive Features". In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2020. http://dx.doi.org/10.1109/icde48307.2020.00191.
Testo completoHanayneh, Leen, Yiwen Wang, Yan Wang, Jack C. Wileden e Khurshid A. Qureshi. "Feature Mapping Automation for CAD Data Exchange". In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49671.
Testo completoSpathis, Prométhée, e Raul Adrian Gorcitz. "A data-driven analysis of YouTube community features". In the 7th Asian Internet Engineering Conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2089016.2089019.
Testo completoRapporti di organizzazioni sul tema "Data / features engineering"
Rana, Arnav, e Sanjay Tiku. PR-214-223806-R01 Guidance for Performing Engineering Critical Assessments for Dents on Natural Gas Pipelines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), novembre 2023. http://dx.doi.org/10.55274/r0000044.
Testo completoTiku, Sanjay, Arnav Rana, Binoy John e Aaron Dinovitzer. PR-214-203805-R01 Performance Evaluation of ILI Systems for Dents and Coincident Features. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), marzo 2024. http://dx.doi.org/10.55274/r0000056.
Testo completoTiku, Sanjay. PR-214-203820-R01 Performance Evaluation of ILI for Dents with Cracks and Gouges. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), luglio 2023. http://dx.doi.org/10.55274/r0000031.
Testo completoBerkowitz, Jacob, Nathan Beane, Kevin Philley, Nia Hurst e Jacob Jung. An assessment of long-term, multipurpose ecosystem functions and engineering benefits derived from historical dredged sediment beneficial use projects. Engineer Research and Development Center (U.S.), agosto 2021. http://dx.doi.org/10.21079/11681/41382.
Testo completoGeisthardt, Eric, Burton Suedel e John Janssen. Monitoring the Milwaukee Harbor breakwater : an Engineering With Nature® (EWN®) demonstration project. Engineer Research and Development Center (U.S.), marzo 2021. http://dx.doi.org/10.21079/11681/40022.
Testo completoTiku, Sanjay, Arnav Rana e Binoy John. PR214-213800-R01 Evaluation of API RP 1183 Dent Fatigue Analyses using In-Service Dents Data. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), ottobre 2024. http://dx.doi.org/10.55274/r0000092.
Testo completoChien, Stanley, Lauren Christopher, Yaobin Chen, Mei Qiu e Wei Lin. Integration of Lane-Specific Traffic Data Generated from Real-Time CCTV Videos into INDOT's Traffic Management System. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317400.
Testo completoIngensand, Jens, e Kalimar Maia, a cura di. OGC Vector Tiles Pilot: Tiled Feature Data Conceptual Model Engineering Report. Open Geospatial Consortium, Inc., febbraio 2019. http://dx.doi.org/10.62973/18-076.
Testo completoWhitfield, Paula, Jenny Davis, Amanda Tritinger, Danielle Szimanski, Rebecca Golden, Joseph Gailani, Michael Ramirez, Brook Herman, Matt Whitbeck e Jeffery King. Swan Island : monitoring and adaptive management plan. Engineer Research and Development Center (U.S.), agosto 2022. http://dx.doi.org/10.21079/11681/45044.
Testo completoEastman, Brittany. Legal Issues Facing Automated Vehicles, Facial Recognition, and Privacy Rights. SAE International, luglio 2022. http://dx.doi.org/10.4271/epr2022016.
Testo completo