Letteratura scientifica selezionata sul tema "Data approximation"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Data approximation".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Data approximation"
FROYLAND, GARY, KEVIN JUDD, ALISTAIR I. MEES, DAVID WATSON e KENJI MURAO. "CONSTRUCTING INVARIANT MEASURES FROM DATA". International Journal of Bifurcation and Chaos 05, n. 04 (agosto 1995): 1181–92. http://dx.doi.org/10.1142/s0218127495000843.
Testo completoGrubas, Serafim I., Georgy N. Loginov e Anton A. Duchkov. "Traveltime-table compression using artificial neural networks for Kirchhoff-migration processing of microseismic data". GEOPHYSICS 85, n. 5 (19 agosto 2020): U121—U128. http://dx.doi.org/10.1190/geo2019-0427.1.
Testo completoSTOJANOVIĆ, MIRJANA. "PERTURBED SCHRÖDINGER EQUATION WITH SINGULAR POTENTIAL AND INITIAL DATA". Communications in Contemporary Mathematics 08, n. 04 (agosto 2006): 433–52. http://dx.doi.org/10.1142/s0219199706002180.
Testo completoFRAHLING, GEREON, PIOTR INDYK e CHRISTIAN SOHLER. "SAMPLING IN DYNAMIC DATA STREAMS AND APPLICATIONS". International Journal of Computational Geometry & Applications 18, n. 01n02 (aprile 2008): 3–28. http://dx.doi.org/10.1142/s0218195908002520.
Testo completoChen, Jing-Bo, Hong Liu e Zhi-Fu Zhang. "A separable-kernel decomposition method for approximating the DSR continuation operator". GEOPHYSICS 72, n. 1 (gennaio 2007): S25—S31. http://dx.doi.org/10.1190/1.2399368.
Testo completoMardia, K. V., e I. L. Dryden. "Shape distributions for landmark data". Advances in Applied Probability 21, n. 4 (dicembre 1989): 742–55. http://dx.doi.org/10.2307/1427764.
Testo completoMardia, K. V., e I. L. Dryden. "Shape distributions for landmark data". Advances in Applied Probability 21, n. 04 (dicembre 1989): 742–55. http://dx.doi.org/10.1017/s0001867800019029.
Testo completoBirch, A. C., e A. G. Kosovichev. "Towards a Wave Theory Interpretation of Time-Distance Helioseismology Data". Symposium - International Astronomical Union 203 (2001): 180–82. http://dx.doi.org/10.1017/s0074180900219025.
Testo completoDong, Bin, Zuowei Shen e Jianbin Yang. "Approximation from Noisy Data". SIAM Journal on Numerical Analysis 59, n. 5 (gennaio 2021): 2722–45. http://dx.doi.org/10.1137/20m1389091.
Testo completoPiegl, L. A., e W. Tiller. "Data Approximation Using Biarcs". Engineering with Computers 18, n. 1 (29 aprile 2002): 59–65. http://dx.doi.org/10.1007/s003660200005.
Testo completoTesi sul tema "Data approximation"
Ross, Colin. "Applications of data fusion in data approximation". Thesis, University of Huddersfield, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247372.
Testo completoDeligiannakis, Antonios. "Accurate data approximation in constrained environments". College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2681.
Testo completoThesis research directed by: Computer Science. Title from abstract of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Tomek, Peter. "Approximation of Terrain Data Utilizing Splines". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-236488.
Testo completoCao, Phuong Thao. "Approximation of OLAP queries on data warehouses". Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00905292.
Testo completoLehman, Eric (Eric Allen) 1970. "Approximation algorithms for grammar-based data compression". Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/87172.
Testo completoIncludes bibliographical references (p. 109-113).
This thesis considers the smallest grammar problem: find the smallest context-free grammar that generates exactly one given string. We show that this problem is intractable, and so our objective is to find approximation algorithms. This simple question is connected to many areas of research. Most importantly, there is a link to data compression; instead of storing a long string, one can store a small grammar that generates it. A small grammar for a string also naturally brings out underlying patterns, a fact that is useful, for example, in DNA analysis. Moreover, the size of the smallest context-free grammar generating a string can be regarded as a computable relaxation of Kolmogorov complexity. Finally, work on the smallest grammar problem qualitatively extends the study of approximation algorithms to hierarchically-structured objects. In this thesis, we establish hardness results, evaluate several previously proposed algorithms, and then present new procedures with much stronger approximation guarantees.
by Eric Lehman.
Ph.D.
Hou, Jun. "Function Approximation and Classification with Perturbed Data". The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1618266875924225.
Testo completoZaman, Muhammad Adib Uz. "Bicubic L1 Spline Fits for 3D Data Approximation". Thesis, Northern Illinois University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10751900.
Testo completoUnivariate cubic L1 spline fits have been successful to preserve the shapes of 2D data with abrupt changes. The reason is that the minimization of L1 norm of the data is considered, as opposite to L2 norm. While univariate L1 spline fits for 2D data are discussed by many, bivariate L1 spline fits for 3D data are yet to be fully explored. This thesis aims to develop bicubic L1 spline fits for 3D data approximation. This can be achieved by solving a bi-level optimization problem. One level is bivariate cubic spline interpolation and the other level is L1 error minimization. In the first level, a bicubic interpolated spline surface will be constructed on a rectangular grid with necessary first and second order derivative values estimated by using a 5-point window algorithm for univariate L 1 interpolation. In the second level, the absolute error (i.e. L1 norm) will be minimized using an iterative gradient search. This study may be extended to higher dimensional cubic L 1 spline fits research.
Cooper, Philip. "Rational approximation of discrete data with asymptotic behaviour". Thesis, University of Huddersfield, 2007. http://eprints.hud.ac.uk/id/eprint/2026/.
Testo completoSchmid, Dominik. "Scattered data approximation on the rotation group and generalizations". Aachen Shaker, 2009. http://d-nb.info/995021562/04.
Testo completoMcQuarrie, Shane Alexander. "Data Assimilation in the Boussinesq Approximation for Mantle Convection". BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/6951.
Testo completoLibri sul tema "Data approximation"
Iske, Armin. Approximation Theory and Algorithms for Data Analysis. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05228-7.
Testo completoMotwani, Rajeev. Lecture notes on approximation algorithms. Stanford, CA: Dept. of Computer Science, Stanford University, 1992.
Cerca il testo completoC, Mason J., e Cox M. G, a cura di. Algorithms for approximation II: Based on the proceedings of the Second International Conference on Algorithms for Approximation, held at Royal Military College of Science, Shrivenham, July 1988. London: Chapman and Hall, 1990.
Cerca il testo completoFranke, Richard. Recent advances in the approximation of surfaces from scattered data. Monterey, Calif: Naval Postgraduate School, 1987.
Cerca il testo completoIvanov, Viktor Vladimirovich. Metody vychisleniĭ na ĖVM: Spravochnoe posobie. Kiev: Nauk. dumka, 1986.
Cerca il testo completoFranke, Richard H. Least squares surface approximation to scattered data using multiquadric functions. Monterey, Calif: Naval Postgraduate School, 1993.
Cerca il testo completoMolchanov, I. N. Mashinnye metody reshenii͡a︡ prikladnykh zadach algebra, priblizhenie funkt͡s︡iĭ. Kiev: Nauk. dumka, 1987.
Cerca il testo completoK, Ray Bimal, a cura di. Polygonal approximation and scale-space analysis. Oakville, Ont: Apple Academic Press, 2013.
Cerca il testo completoC, Mason J., Cox M. G e Institute of Mathematics and Its Applications., a cura di. Algorithms for approximation: Based on the proceedings of the IMA Conference on Algorithms for the Approximation of Functions and Data, held at the Royal Military College of Science, Shrivenham, July 1985. Oxford [Oxfordshire]: Clarendon Press, 1987.
Cerca il testo completoEitan, Tadmor, Institute for Computer Applications in Science and Engineering. e Langley Research Center, a cura di. Recovering pointwise values of discontinuous data within spectral accuracy. Hampton, Va: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1985.
Cerca il testo completoCapitoli di libri sul tema "Data approximation"
Shekhar, Shashi, e Hui Xiong. "Data Approximation". In Encyclopedia of GIS, 203. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_237.
Testo completoHutchings, Matthew, e Bertrand Gauthier. "Local Optimisation of Nyström Samples Through Stochastic Gradient Descent". In Machine Learning, Optimization, and Data Science, 123–40. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-25599-1_10.
Testo completoMarkovsky, Ivan. "From Data to Models". In Low-Rank Approximation, 37–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89620-5_2.
Testo completoDeng, Shaobo, Huihui Lu, Sujie Guan, Min Li e Hui Wang. "Approximation Relation for Rough Sets". In Data Mining and Big Data, 402–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7502-7_38.
Testo completoRengaswamy, Raghunathan, e Resmi Suresh. "Function Approximation Methods". In Data Science for Engineers, 175–252. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/b23276-6.
Testo completoIske, Armin. "Euclidean Approximation". In Approximation Theory and Algorithms for Data Analysis, 103–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05228-7_4.
Testo completoIske, Armin. "Chebyshev Approximation". In Approximation Theory and Algorithms for Data Analysis, 139–84. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-05228-7_5.
Testo completoMarkovsky, Ivan. "Data-Driven Filtering and Control". In Low-Rank Approximation, 161–72. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89620-5_6.
Testo completoAdir, Allon, Ehud Aharoni, Nir Drucker, Ronen Levy, Hayim Shaul e Omri Soceanu. "Approximation Methods Part II: Approximations of Standard Functions". In Homomorphic Encryption for Data Science (HE4DS), 125–47. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-65494-7_6.
Testo completoWu, Weili, Yi Li, Panos M. Pardalos e Ding-Zhu Du. "Data-Dependent Approximation in Social Computing". In Approximation and Optimization, 27–34. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12767-1_3.
Testo completoAtti di convegni sul tema "Data approximation"
Ma, Guanqun, David Lenz, Tom Peterka, Hanqi Guo e Bei Wang. "Critical Point Extraction from Multivariate Functional Approximation". In 2024 IEEE Topological Data Analysis and Visualization (TopoInVis), 12–22. IEEE, 2024. http://dx.doi.org/10.1109/topoinvis64104.2024.00006.
Testo completoSahrom, Nor Ashikin, Mohammad Izat Emir Zulkifly e Siti Nur Idara Rosli. "Interval-Valued Fuzzy Bézier Surface Approximation". In 2024 5th International Conference on Artificial Intelligence and Data Sciences (AiDAS), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/aidas63860.2024.10730727.
Testo completoBarbas, Petros, Aristidis G. Vrahatis e Sotiris K. Tasoulis. "RLAC: Random Line Approximation Clustering". In 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021. http://dx.doi.org/10.1109/bigdata52589.2021.9671596.
Testo completoZhao, Danfeng, Zhou Huang, Feng Zhou, Antonio Liotta e Dongmei Huang. "An Approximation Method for Large Graph Similarity". In 2020 IEEE International Conference on Big Data (Big Data). IEEE, 2020. http://dx.doi.org/10.1109/bigdata50022.2020.9378447.
Testo completoDas, Abhinandan, Johannes Gehrke e Mirek Riedewald. "Approximation techniques for spatial data". In the 2004 ACM SIGMOD international conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1007568.1007646.
Testo completoFreedman, Daniel, e Pavel Kisilev. "Fast Data Reduction via KDE Approximation". In 2009 Data Compression Conference (DCC). IEEE, 2009. http://dx.doi.org/10.1109/dcc.2009.47.
Testo completoPanda, Biswanath, Mirek Riedewald, Johannes Gehrke e Stephen B. Pope. "High-Speed Function Approximation". In Seventh IEEE International Conference on Data Mining (ICDM 2007). IEEE, 2007. http://dx.doi.org/10.1109/icdm.2007.107.
Testo completoHuang, Zhou, e Feng Zhou. "An Approximation Method for Querying Similar Large Graphs". In 2022 IEEE International Conference on Big Data (Big Data). IEEE, 2022. http://dx.doi.org/10.1109/bigdata55660.2022.10020310.
Testo completoShahcheraghi, Maryam, Trevor Cappon, Samet Oymak, Evangelos Papalexakis, Eamonn Keogh, Zachary Zimmerman e Philip Brisk. "Matrix Profile Index Approximation for Streaming Time Series". In 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021. http://dx.doi.org/10.1109/bigdata52589.2021.9671484.
Testo completoKannan, Ramakrishnan, Mariya Ishteva e Haesun Park. "Bounded Matrix Low Rank Approximation". In 2012 IEEE 12th International Conference on Data Mining (ICDM). IEEE, 2012. http://dx.doi.org/10.1109/icdm.2012.131.
Testo completoRapporti di organizzazioni sul tema "Data approximation"
Franke, Richard, Hans Hagen e Gregory M. Nielson. Least Squares Surface Approximation to Scattered Data Using Multiquadric Functions. Fort Belvoir, VA: Defense Technical Information Center, dicembre 1992. http://dx.doi.org/10.21236/ada259804.
Testo completoRay, Jaideep, Matthew Barone, Stefan Domino, Tania Banerjee e Sanjay Ranka. Verification of Data-Driven Models of Physical Phenomena using Interpretable Approximation. Office of Scientific and Technical Information (OSTI), settembre 2021. http://dx.doi.org/10.2172/1821318.
Testo completoBaraniuk, Richard, Ronald DeVore, Sanjeev Kulkarni, Andrew Kurdila, Stanley Osher, Guergana Petrova, Robert Sharpley, Richard Tsai e Hongkai Zhao. Model Classes, Approximation, and Metrics for Dynamic Processing of Urban Terrain Data. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2013. http://dx.doi.org/10.21236/ada586168.
Testo completoFranke, Richard. Using Legendre Functions for Spatial Covariance Approximation and Investigation of Radial Nonisotrophy for NOGAPS Data. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2001. http://dx.doi.org/10.21236/ada389396.
Testo completoWu, Yan, Sonia Fahmy e Ness B. Shroff. On the Construction of a Maximum-Lifetime Data Gathering Tree in Sensor Networks: NP-Completeness and Approximation Algorithm. Fort Belvoir, VA: Defense Technical Information Center, gennaio 2008. http://dx.doi.org/10.21236/ada517885.
Testo completoShah, Rajiv R. High-Level Adaptive Signal Processing Architecture with Applications to Radar Non-Gaussian Clutter. Volume 2. A New Technique for Distribution Approximation of Random Data. Fort Belvoir, VA: Defense Technical Information Center, settembre 1995. http://dx.doi.org/10.21236/ada300902.
Testo completoGorton, O., e J. Escher. Cross Sections for Neutron-Induced Reactions from Surrogate Data: Assessing the Use of the Weisskopf-Ewing Approximation for (n,n') and (n,2n) Reactions. Office of Scientific and Technical Information (OSTI), settembre 2020. http://dx.doi.org/10.2172/1668500.
Testo completoGuan, Jiajing, Sophia Bragdon e Jay Clausen. Predicting soil moisture content using Physics-Informed Neural Networks (PINNs). Engineer Research and Development Center (U.S.), agosto 2024. http://dx.doi.org/10.21079/11681/48794.
Testo completoBunn, M. I., T. R. Carter, H. A. J. Russell e C. E. Logan. A semiquantitative representation of uncertainty for the 3D Paleozoic bedrock model of Southern Ontario. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331658.
Testo completoRofman, Rafael, Joaquín Baliña e Emanuel López. Evaluating the Impact of COVID-19 on Pension Systems in Latin America and the Caribbean. The Case of Argentina. Inter-American Development Bank, ottobre 2022. http://dx.doi.org/10.18235/0004508.
Testo completo