Letteratura scientifica selezionata sul tema "Damage function"
Cita una fonte nei formati APA, MLA, Chicago, Harvard e in molti altri stili
Consulta la lista di attuali articoli, libri, tesi, atti di convegni e altre fonti scientifiche attinenti al tema "Damage function".
Accanto a ogni fonte nell'elenco di riferimenti c'è un pulsante "Aggiungi alla bibliografia". Premilo e genereremo automaticamente la citazione bibliografica dell'opera scelta nello stile citazionale di cui hai bisogno: APA, MLA, Harvard, Chicago, Vancouver ecc.
Puoi anche scaricare il testo completo della pubblicazione scientifica nel formato .pdf e leggere online l'abstract (il sommario) dell'opera se è presente nei metadati.
Articoli di riviste sul tema "Damage function"
Windartik, Emyk, Ima Rahmawati, Ita Ainun Jariyah, Raras Merbawani, Indah Lestari, Ifa Ro’ifah e Arief Andriyanto. "The Degree of Diabetic Wounds Affects Kidney Function Damage". Nurse Media Journal of Nursing 9, n. 2 (27 dicembre 2019): 159–66. http://dx.doi.org/10.14710/nmjn.v9i2.24210.
Testo completoKim, Moon-Jeong, e Hee-Chang Eun. "Identification of damage-expected members of truss structures using frequency response function". Advances in Mechanical Engineering 9, n. 1 (gennaio 2017): 168781401668791. http://dx.doi.org/10.1177/1687814016687911.
Testo completoYang, Tian-qun, Yuichi Majima, Yongqing Guo, Teruhiko Harada, Takeshi Shimizu e Kazuhiko Takeuchi. "Mucociliary Transport Function and Damage of Ciliated Epithelium". American Journal of Rhinology 16, n. 4 (luglio 2002): 215–19. http://dx.doi.org/10.1177/194589240201600407.
Testo completoZhang, Wei, Limin Sun e Liye Zhang. "Local damage identification method using finite element model updating based on a new wavelet damage function". Advances in Structural Engineering 21, n. 10 (27 dicembre 2017): 1482–94. http://dx.doi.org/10.1177/1369433217746837.
Testo completoBoettle, M., J. P. Kropp, L. Reiber, O. Roithmeier, D. Rybski e C. Walther. "About the influence of elevation model quality and small-scale damage functions on flood damage estimation". Natural Hazards and Earth System Sciences 11, n. 12 (19 dicembre 2011): 3327–34. http://dx.doi.org/10.5194/nhess-11-3327-2011.
Testo completoMatsuoka, Masashi, e Miguel Estrada. "Development of Earthquake-Induced Building Damage Estimation Model Based on ALOS/PALSAR Observing the 2007 Peru Earthquake". Journal of Disaster Research 8, n. 2 (1 marzo 2013): 346–55. http://dx.doi.org/10.20965/jdr.2013.p0346.
Testo completoRuilope, Luis M. "Arterial Function and Cardiorenal Damage". Journal of Clinical Hypertension 16, n. 6 (25 aprile 2014): 398. http://dx.doi.org/10.1111/jch.12318.
Testo completoNINIC, D., e H. STARK. "A multiaxial fatigue damage function". International Journal of Fatigue 29, n. 3 (marzo 2007): 533–48. http://dx.doi.org/10.1016/j.ijfatigue.2006.04.003.
Testo completoDackermann, Ulrike, Wade A. Smith, Mehrisadat Makki Alamdari, Jianchun Li e Robert B. Randall. "Cepstrum-based damage identification in structures with progressive damage". Structural Health Monitoring 18, n. 1 (16 ottobre 2018): 87–102. http://dx.doi.org/10.1177/1475921718804730.
Testo completoZhao, Jie, Hans DeSmidt e Meng Peng. "Harmonic Transfer Function Based Damage Identification of Breathing Cracked Jeffcott Rotor". Shock and Vibration 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/4056236.
Testo completoTesi sul tema "Damage function"
Byrne, Christopher. "Muscle function after exercise-induced muscle damage". Thesis, Bangor University, 2001. https://research.bangor.ac.uk/portal/en/theses/muscle-function-after-exerciseinduced-muscle-damage(2bbf5fe1-f35b-4b7b-9790-ff3a04b86875).html.
Testo completoOhtsuki, Akimichi. "Organic Chemical Approaches to DNA Function and Damage". 京都大学 (Kyoto University), 2011. http://hdl.handle.net/2433/142392.
Testo completoLi, Xiaoling. "Investigation of tissue transglutaminase function in apoptosis". Thesis, Nottingham Trent University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251281.
Testo completoKarras, Georgios Ioannis. "Mechanism and function of RAD6-mediated DNA damage tolerance". Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-129233.
Testo completoNafria, Javier Garcia. "Structure-function studies on proteins involved in DNA damage prevention". Thesis, University of York, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.547327.
Testo completoBurrage, Joseph. "Analysis of the function of LSH in DNA damage repair". Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/9416.
Testo completoMaisse, Carine. "Regulation and function of the DeltaNp73 isoforms after DNA damage". Paris 6, 2004. http://www.theses.fr/2004PA066598.
Testo completoIn our search for the underlying causes of cancer, TP53 is the most intensively studied gene. P53 plays a central role for balancing the antagonistic processes of proliferation and apoptosis. As a sequence-specific transcription factor, p53 regulates the expression of genes involved in cell cycle arrest and apoptosis in response to genotoxic damage or cellular stress. Failure of p53 function consequently leads to uncontrolled cell growth, a defining feature of cancer cells. Given the importance of p53 as a tumor suppressor, it is therefore no wonder that p53 is the most frequent site of genetic alterations found in human cancers. The recent discovery of two TP53-related genes, TP73 and TP63 with striking sequence homology, was therefore a big surprise, raising the possibility that other tumor suppressors exist which share the power of p53 in preventing cancer formation. The three members of the p53 family share significant homology both at the genomic and at the protein level. The highest level of identity is reached in the DBD (DNA-Binding Domain), suggesting that they can bind to the same DNA sequence and transactivate the same promoters. In fact, p73 and p63 are able to activate some p53 targets and to induce apoptosis, but they appear more and more different from their relative. The study of the respective knock-out mice gives a good illustration of these differences : while p53-null mice develop normally but present spontaneous tumors, the p73 and p63-null mice present severe developmental troubles but no spontaneous tumors, indicating that they may have more complex functions. Conversely to p53, p73 and p63 contain additional C-terminal extensions. In both proteins, these extensions show alternative splicing, which results in at least six C-terminal variants for p73 and three for p63. These isoforms have different transcription and biological properties, and their expression patterns change among normal tissues. Moreover, the α variants of p73 and p63 have close to their C terminus a SAM (Sterile Alpha Motif) domain, which is thought to be responsible for regulating p53-like functions, and is implicated in various human syndromes where p63 is mutated. In addition to the C-terminal variants aminoterminous truncated variants of p73 and p63 exist : ΔNp73 and ΔΝp63. These N-terminally truncated isoforms lack the transactivation domain (TA), which is coded by the first 3 exons, and derive from the use of an alternative promoter (P2) located in intron 3 and an additional exon (exon 3'). While TAp73 isoforms work as transcription factors and can induce irreversible cell cycle arrest and apoptosis like p53, the ΔNp73 isoforms that lack the transactivation domain are incapable of directly inducing gene expression and do not induce growth arrest or cell death. However, the ΔNp73 forms have a very important regulatory role, since they exert a dominant negative effect on p53 and TAp73 by blocking their transactivation activity, and hence their ability to induce apoptosis. The relative levels of expression of the ΔNp73 isoforms can therefore determine the function of both TAp73 and p53. It is most interesting that the ΔNp73 promoter (P2) contains a very efficient p53/p73 responsive element and consequently, p53 and TAp73 efficiently induce ΔNp73 expression. Moreover, upon strong DNA damage, induced by UV irradiation or drug treatment, ΔNp73 is rapidly degraded, releasing the block exerted on p53 and TAp73 and thus allowing cell cycle arrest and apoptosis to proceed. Hence, ΔNp73 is part of a dominant negative feedback loop that regulates the function of both p53 and TAp73 and this regulation can be overcome in case of strong DNA damage
De, Moura Miguez Araujo Sofia Jorge. "Interactions and function of nucleotide excision repair protein complexes". Thesis, University College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322320.
Testo completoZhang, Muyu [Verfasser], Bernd [Akademischer Betreuer] Markert e Rüdiger [Akademischer Betreuer] Schmidt. "Auto-correlation-function-based damage index for damage detection and system identification / Muyu Zhang ; Bernd Markert, Rüdiger Schmidt". Aachen : Universitätsbibliothek der RWTH Aachen, 2016. http://d-nb.info/1130327329/34.
Testo completoChapman, J. R. "Molecular analysis of mediator-protein function in the DNA damage response". Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.597474.
Testo completoLibri sul tema "Damage function"
Schwartz, Marvin. Recovery of inferior alveolar nerve function following nerve damage. [Toronto: Faculty of Dentistry, University of Toronto], 1990.
Cerca il testo completoKysela, Boris. Ionizing radiation-induced DNA damage and repair in relation to biological function. Uxbridge: Brunel University, 1994.
Cerca il testo completoSpence, John W. Theoretical damage function for the effects of acid deposition on galvanized steel structures. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory, 1988.
Cerca il testo completoSpence, John W. Theoretical damage function for the effects of acid deposition on galvanized steel structures. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory, 1988.
Cerca il testo completoThe healing power of neurofeedback: The revolutionary LENS technique for restoring optimal brain function. Rochester, Vt: Healing Arts Press, 2006.
Cerca il testo completoBrain injury survival kit: 365 tips, tools & tricks to deals with cognitive function loss. New York: Demos Medical Pub., 2009.
Cerca il testo completoSöderback, Ingrid. Intellectual function training and intellectual housework training in patients with acquired brain damage: A study of occupational therapy methods. Stockholm: Folksam, 1988.
Cerca il testo completoSchutz, Larry E. Head injury recovery in real life. San Diego: Plural Pub., 2010.
Cerca il testo completoBrain repair after stroke. Cambridge: Cambridge University Press, 2010.
Cerca il testo completoAbraham, Kenneth S. The forms and functions of tort law. 2a ed. New York, N.Y: Foundation Press, 2002.
Cerca il testo completoCapitoli di libri sul tema "Damage function"
Dickerson, J. W. T. "Recovery of Function: Nutritional Factors". In Recovery from Brain Damage, 23–33. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3420-4_2.
Testo completoMitchell, David, e Rita Ghosh. "Oxidative Damage and Promoter Function". In Oxidative Damage to Nucleic Acids, 91–99. New York, NY: Springer New York, 2007. http://dx.doi.org/10.1007/978-0-387-72974-9_7.
Testo completoRose, F. D., Ian Q. Whishaw e M. W. van Hof. "Hemidecortication and Recovery of Function: Animal Studies". In Recovery from Brain Damage, 115–35. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3420-4_7.
Testo completoSymon, Lindsay. "Recovery of Brain Function Following Ischemia". In Mechanisms of Secondary Brain Damage, 102–9. Vienna: Springer Vienna, 1993. http://dx.doi.org/10.1007/978-3-7091-9266-5_15.
Testo completoSinden, John D., Kathryn M. Marsden e Helen Hodges. "Neural Transplantation and Recovery of Function: Animal Studies". In Recovery from Brain Damage, 35–65. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3420-4_3.
Testo completoHitchcock, Edward. "Neural Implants and Recovery of Function: Human Work". In Recovery from Brain Damage, 67–78. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3420-4_4.
Testo completoDoménech, Mónica, Cristina Sierra e Antonio Coca. "Questionnaires for Cognitive Function Evaluation". In Assessment of Preclinical Organ Damage in Hypertension, 191–96. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15603-3_18.
Testo completoHayakawa, Mika, Satoru Sugiyama, Kazuki Hattori, Masaaki Takasawa e Takayuki Ozawa. "Age-Associated Damage in Mitochondrial DNA in Human Hearts". In Cellular Function and Metabolism, 95–103. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3078-7_14.
Testo completoWinkler, C., e D. Kirik. "Parkinson’s Disease II: Replacement of Dopamine and Restoration of Striatal Function". In Brain Damage and Repair, 549–61. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2541-6_36.
Testo completoManson, Graeme, S. G. Pierce, Keith Worden e Daley Chetwynd. "Classification Using Radial Basis Function Networks with Uncertain Weights". In Damage Assessment of Structures VI, 135–42. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-976-8.135.
Testo completoAtti di convegni sul tema "Damage function"
BRUNS, MARLENE, BENEDIKT HOFMEISTER, CLEMENS HÜBLER e RAIMUND ROLFES. "Damage Localization Via Model Updating Using a Damage Distribution Function". In Structural Health Monitoring 2019. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/shm2019/32202.
Testo completoMarchesin, Dan, Gustavo Hime, Pavel Bedrikovetsky e Amaury Alvarez. "Robust Fast Recovery Of The Filtration Function For Flow Of Water With Particles In Porous Media". In European Formation Damage Conference. Society of Petroleum Engineers, 2007. http://dx.doi.org/10.2118/107770-ms.
Testo completoLew, Jiann-Shiun, e Jiann-Shiun Lew. "Transfer function parameter changes due to structural damage". In 38th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1317.
Testo completoSchulz, Mark, P. Pai, Sunil Thyagarajan e Jaycee Chung. "Structural damage diagnosis by frequency response function optimization". In Dynamics Specialists Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-1223.
Testo completoBeni, S. A., R. Hammamian e M. R. Haghifam. "Estimation of customers damage function by questionnaire method". In 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013). Institution of Engineering and Technology, 2013. http://dx.doi.org/10.1049/cp.2013.1078.
Testo completoDudding, Ashley T. "Bogie Spring Fatigue Damage - A Function of Static Displacement". In International Truck & Bus Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/922432.
Testo completoCuomo, Stefano, Gian Piero M. Fierro e Michele Meo. "Damage localization on composite structures: radial basis function application". In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIV, a cura di Peter J. Shull, Tzu-Yang Yu, Andrew L. Gyekenyesi e H. Felix Wu. SPIE, 2020. http://dx.doi.org/10.1117/12.2559213.
Testo completoTanner, Roger I., Fuzhong Qi e Shaocong Dai. "Bread dough rheology: Computing with a damage function model". In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2010 (ICCMSE-2010). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4906672.
Testo completoLew, Jiann-Shiun, Carlo Hyde e Montanez Wade. "Damage Detection of Flexible Beams Using Transfer Function Correlation". In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8373.
Testo completoDu, Detao, Xinbing Liu, Jeffrey A. Squier e Gerard A. Mourou. "Laser-induced breakdown as a function of pulse duration: from 7 ns to 150 fs". In Laser-Induced Damage in Optical Materials: 1994, a cura di Harold E. Bennett, Arthur H. Guenther, Mark R. Kozlowski, Brian E. Newnam e M. J. Soileau. SPIE, 1995. http://dx.doi.org/10.1117/12.213723.
Testo completoRapporti di organizzazioni sul tema "Damage function"
Hong, Harrison, Jeffrey Kubik, Neng Wang, Xiao Xu e Jinqiang Yang. Pandemics, Vaccines and an Earnings Damage Function. Cambridge, MA: National Bureau of Economic Research, settembre 2020. http://dx.doi.org/10.3386/w27829.
Testo completoSirbu, Bianca. Function of ZFAND3 in the DNA Damage Response. Fort Belvoir, VA: Defense Technical Information Center, giugno 2012. http://dx.doi.org/10.21236/ada566216.
Testo completoAdams, B. Microstructural dependence of the cavitation damage function in FCC materials. Office of Scientific and Technical Information (OSTI), gennaio 1990. http://dx.doi.org/10.2172/6986490.
Testo completoBoyer, Thomas G. Regulation of BRCA1 Function by DNA Damage-Induced Site-Specific Phosphorylation. Fort Belvoir, VA: Defense Technical Information Center, giugno 2005. http://dx.doi.org/10.21236/ada439207.
Testo completoGriffin, Patrick J. Detailed Description of the Derivation of the Silicon Damage Response Function. Office of Scientific and Technical Information (OSTI), marzo 2016. http://dx.doi.org/10.2172/1561023.
Testo completoGiraldez, J., S. Booth, K. Anderson e K. Massey. Valuing Energy Security: Customer Damage Function Methodology and Case Studies at DoD Installations. Office of Scientific and Technical Information (OSTI), ottobre 2012. http://dx.doi.org/10.2172/1055367.
Testo completoDepriest, Kendall. Silicon Damage Response Function Derivation and Verification: Assessment of Impact on ASTM Standard E722. Office of Scientific and Technical Information (OSTI), giugno 2016. http://dx.doi.org/10.2172/1259547.
Testo completoTaylor, Jimmy D., Greg K. Yarrow e James E. Miller. Beavers. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, marzo 2017. http://dx.doi.org/10.32747/2017.7207729.ws.
Testo completoRahmani, Mehran, e Manan Naik. Structural Identification and Damage Detection in Bridges using Wave Method and Uniform Shear Beam Models: A Feasibility Study. Mineta Transportation Institute, febbraio 2021. http://dx.doi.org/10.31979/mti.2021.1934.
Testo completoViksna, Ludmila, Oksana Kolesova, Aleksandrs Kolesovs, Ieva Vanaga e Seda Arutjunana. Clinical characteristics of COVID-19 patients (Latvia, Spring 2020). Rīga Stradiņš University, dicembre 2020. http://dx.doi.org/10.25143/fk2/hnmlhh.
Testo completo